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Abstract

Ensembles of quantum systems, such as liquid state

NMR, have been proposed as possibilities for implementing
quantum algorithms. For such implementations, projective

measurement outcomes are replaced by expectation values.
Although these are apparently deterministic, we point out

that real implementations involve ensembles of finite size,
giving probabilistic approximations to expectation values. The
performance of such algorithms must be compared to their

classical probabilistic counterparts. We discuss proposed
scalable ensemble versions of the Deutsch-Jozsa algorithm

in this context and show that their performance is worse than
the classical probabilistic algorithm.
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“Standard” Quantum Computing

Implementations on a single quantum system amenable to

projective measurements.

L-qubit quantum system

Pure state preparation

Apply algorithm unitary

Projective

measurement on L′

qubit subsystem

Classical computation

|ψi〉

∣
∣ψf

〉
:= Ûalg |ψi〉

x ∈ {0, . . . , 2L
′
− 1}

with probability
∣
∣
〈
x|ψf

〉∣
∣2

Possible solution

I For useful algorithms the probability of returning x corresponding to trivial
or incorrect solutions is small.

I Typically a decomposition

Ûalg = Ûm . . . Û1

into simple unitary operations facilitates algorithm implementation.
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Expectation Value Quantum Computing

Implementations using an ensemble of identical, non-interacting
quantum systems.

Ensemble of L-qubit quantum systems

Mixed state preparation

Apply algorithm unitary

Expectation value (EV)

measurements on L′

qubit subsystem

Classical computation

ρ̂init

ρ̂final := Ûalg ρ̂init Û
†
alg

〈

σ̂
(k)
z

〉

≡ Tr
(

σ̂
(k)
z ρ̂final

)

Possible solution

I The ensemble is in a mixed state and it is impossible to extract
projective measurement outcomes from any single ensemble member. The
“standard” versions of quantum algorithms must be modified accordingly.

I Idealized NMR implementations of quantum algorithms follow this

scheme.

Idealized EV implementations extract the problem solution from the

expectation values (EVs),
〈

σ̂
(k)
z

〉

, for qubits k = 1, . . . , L. These

implementations are deterministic.
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Expectation-Value Quantum Computing:
Real vs. Idealized Implementations.

Real EV implementations use ensembles with a finite number of members.

The ensemble approximates expectation values via sample averages
of projective measurement outcomes on individual ensemble members.

Fluctuations in the sample averages imply probabilistic outcomes. Real
NMR implementations follow this with M ≈ 1020 ensemble members

(sample molecules).







M
Ensemble
members

Ûalg

Ûalg

k

k z
(k)
M

z
(k)
1







Projective measurement
outcomes on ensemble
members give sample

averages:

z(k) :=
1

M

M∑

j=1

z
(k)
j

Projective measurement outcomes on qubit k of ensemble member j:

Projector |0〉 〈0| ↔ z
(k)
j

= +1 with prob Tr
(
ρ̂final |0〉 〈0|

)

Projector |1〉 〈1| ↔ z
(k)
j

= −1 with prob Tr
(
ρ̂final |1〉 〈1|

)

approximate EVs via
〈

σ̂
(k)
z

〉

≈ z(k).

Success rates for real EV implementations must be compared to those

for classical probabilistic algorithms. The multiplicity of algorithm
unitary applications across all ensemble members must be included for a

fair comparison.
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Mixed State Preparation

Pseudo-pure state preparation schemes allow thermal equilibrium inputs

to mimic pure states at the cost of signal strength. Scalable proposals
avoid catastrophic signal losses at the cost of algorithm modifications.

I For L spin 1/2 nuclei the Hamiltonian

Ĥ =
~

2

L∑

j=1

ωjσ̂
(j)
z +

π~

2

∑

j 6=k

Jjkσ̂
(j)
z ⊗ σ̂

(k)
z

with weak coupling gives the thermal equilibrium density operator

ˆρth ≈
1

2L



Î −
~

2

L∑

j=1

ωjσ̂
(j)
z



 when ωj � Jjk.

I Pseudo-pure state preparation schemes accomplish

ρ̂th → ρ̂init = 1−ε

2L
Î + ε |ψi〉 〈ψi| with ε =

αL

2L

where α is independent of L. Standard algorithm unitaries can be used

but the signal strength decreases exponentially with the problem
size:

∣
∣
∣
∣

〈

σ̂
(k)
z

〉∣
∣
∣
∣
≤ αL

2L
.

I Scalable implementations use initial states with a fixed number of
qubits, k, in a pure state and the remainder in states for which signal

strength scales well. Examples are ρ̂th or

ρ̂init = 1
2L−k

Î ⊗
∣
∣ψi

〉 〈
ψi

∣
∣

Modified algorithm unitaries are required but the signals scale well
with problem size.
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Deutsch-Jozsa Problem

The Deutsch-Jozsa algorithm is a testbed for quantum
computing. Do scalable EV versions exist?

I Deutsch-Jozsa problem considers f : {0, 1}N → {0, 1} satisfying

f is constant ⇒ f ≡ 0 or f ≡ 1

f is balanced ⇒ f(x) = 0 for exactly half the arguments,

f(x) = 1 for the other half.

and asks to determine the type given that f is either balanced or constant.

I Classical algorithm applies “oracle” f at distinct randomly chosen
x1, x2, x3, . . . .

Evaluate f(x1).

Evaluate f(x2) where

x2 6= x1.

f(x2) 6= f(x1)

f balanced.

f(x2) = f(x1)

Evaluate f(x3) where
x3 6= x2, x1.

f(x3) 6= f(x2) f(x3) = f(x2)

f balanced.
Evaluate f(x4) where
x4 6= x3, x2, x1.
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DJ Problem: Classical Solutions

I Deterministic classical algorithm solves the problem with certainty by
terminating when f(xk+1) 6= f(xk) (balanced) or 2N/2 + 1 oracle

invocations which return the same result (constant).

I Probabilistic classical algorithm terminates after M ≤ 2N/2 oracle

invocations on distinct randomly chosen inputs and concludes:

f(x1) = f(x2) = . . . = f(xM ) ⇒ f constant.

f(xk) 6= f(xj) for some j, k = 1, . . . ,M ⇒ f balanced.

This never misidentifies a constant function. A balanced function is

erroneously identified as constant whenever the first M oracle invocations
return the same result. The probability of misidentification is

pclassicalfail = 2
N/2

N

N/2 − 1

N − 1
. . .

N/2 −M + 1

N −M + 1
︸ ︷︷ ︸

Probability that oracle always returns 0
(or always 1) on M distinct inputs.

⇒ pclassicalfail < 2 1
2M

.
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DJ Problem: “Standard” Quantum Solutions

I “Standard” quantum algorithm uses a single quantum system having
an N qubit argument register, a one qubit function register and the oracle

defined on computational basis states via:

Ûf |x〉 |x0〉 := |x〉 |x0 ⊕ f(x)〉

where |x〉 = |xN〉 . . . |x1〉 and |x0〉 represent function and argument

register basis states respectively.

I Applying the following circuit, terminating with a projective

measurement.

|xN〉

|x1〉

|x0〉

Ĥ

Ĥ

Ĥ

Ûf

Ĥ

Ĥ







Measure

I With initial states |xN〉 = . . . = |x1〉 = |0〉 and |x0〉 = |0〉 ,
measurement in the computational basis yields z where

x = 0 ⇒ f constant.

x 6= 0 ⇒ f balanced.

“Standard” quantum algorithm solves DJ problem with certainty
with one oracle invocation.
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DJ Problem: Proposed EV Quantum Solutions

Modified versions of the DJ algorithm for expectation value quantum
computers apparently avoid the pseudo-pure state scaling problem [1, 2].

I Maximally mixed states for the argument register, pure state for the
function register only!

1
2 Î

1
2 Î

|0〉

Ûf

Measure 〈σ̂z〉

I Oracle apparently evaluates f at all possible arguments:

ρ̂init =
1

2N

2N−1∑

x=0

|x〉 〈x| ⊗ |0〉 〈0|
Ûf
−→

1

2N

2N−1∑

x=0

|x〉 〈x| ⊗ |f(x)〉 〈f(x)|

I The expectation values for the function register

〈σ̂z〉 =







±1 f constant

0 f balanced

The idealized EV algorithm solves the problem with one function
evaluation with certainty.
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DJ Problem: Statistics of EV Quantum Solutions

In a real EV implementation of the proposed ensemble DJ algorithm,

fluctuations in the sample averages imply some possibility for misidentifying a
balanced function as constant.

I Constant f identification

f ≡ 1 ⇒ z
(0)
j

= 1 for j = 1 . . .M ⇒ z(0) = 1

f ≡ −1 ⇒ z
(0)
1 = −1 for j = 1 . . .M ⇒ z(0) = −1

leads to the decision criterion

z(0) = ±1 ⇒ f constant

I Balanced f distinguished from constant f , in the best resolution case,
if at least two projective measurement outcomes on individual ensemble

members differ, giving

−1 + 2
M

≤ z(0) ≤ 1 − 2
M

⇒ f balanced

I Balanced f misidentified if all ensemble members give the same
projective measurement outcome. The probability that this occurs is the

probability of failure for the real EV quantum solution,

p
quantum
fail

= 2 1
2M

> pclassicalfail

where the classical failure rate is for the random classical algorithm after
M oracle calls (equivalent to 1 oracle call on each of M ensemble
members in the EV quantum solution).

The proposed EV quantum algorithm performs more poorly than

it classical counterpart. In the classical random algorithm f is
evaluated on M different inputs; this cannot be guaranteed in the

proposed EV quantum versions.
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Conclusions

I There is an important distinction between idealized and real expectation
value implementations of quantum algorithms. Idealized implementations

are deterministic whereas real implementations are probabilistic.

I The success probability for a real expectation value implementation must

be compared to classical probabilistic solutions using equivalent resources.
The multiplicity of ensemble members must be included in this accounting.

I Certain existing scalable proposals for solving the Deutsch-Jozsa problem

have a greater failure probability than the classical probabilistic algorithm
using equivalent resources.
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