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Spin-qubits and gates in QDs
- advantage: long decoherence time is expected
* disadvantage: slow single-qubit operations
* realization: single spin — H QD (DiVincenzo et al.)
* singlet-triplet transition in He QD (Jacak et al.)
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Singlet-triplet transition (N>4) observed experimentally
by Tarucha et al (PRL, 2000) and its simplified model for
the last shell - left; similar transition theoretically via exact
diagonalization (Wojs PRB, 96; Jacak et al. Springer, 98)

Arrangement of gate on 2 He MQDs -

One can consider e.g. a vertical pair of He QDs — the Coulomb
Interaction V can be treated as small or large only by comparison
with the singlet-triplet qubit energy separationE, which can be
changed in a wide region by the magnetic field shift. Thus the ratio
V/E can ‘switch’ on and off qubits interaction on demand.

Rabi oscillations

Out of the singlet-triplet intersection point
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QD placed in a diluted magnetic semiconductor medium (e.g. Ga, Mn As or Zn, Mn As) - large g factor A \n 5, (0) L
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probability that admixtures are placed in given points of the space (2D) S ————— = .
B, BLUE shift in PL spectrum e et Static field gives Rabi osc. only at intersection point;
One can consider X exciton in a MQD i T=2R o, i e addressing each qubit via distinct g-factors in layers
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Diagonalization of last three terms provides a description of the magnetic medium £ //\\ e AP G Similarly, as dressing of orblta! degrees of freedom with phonons results in the
(ferromagnetic diluted semiconductor) with two types of spin waves : - LD 400 TR e | deconerencei(polaronidephasingimostyidleiiofsSpioNos RONEIcaE BEE R
(Holstein-Primakov method) e ™ decoherence of spin degrees of freedom (spin of e and of h in a MQD) due to
. . . . . . . dressing with magnons; the most important property for dephasing is the
Further diagonalization of the full Hamiltonian provides the information on formation /\ Formation of maaneto-polaron in MQD - : ’ L :
magneto-polaron i.e. dressing of spin degrees of freedom of e-h pair with magnons ey T ) P S EEEIE & Sguqred o for Magnons vy = Qonvenlent oS that. 9l
- methods of causal Green function for estimation of fidelty Erery <) phonons and will give a similar time scale of dephasing as LO for orbital
PL spectra for CdSe/Zn(Mn)S Bacher, Forchel et al 2002 degrees of freedom - i.e. several hundreds of ps - well confirmed by experiments




