
Chapter I

Normal forms and
desingularization

1. Analytic differential equations in the complex domain

For an open domain U ⊆ Cn we denote by O(U) the complex linear space
of functions holomorphic in U (see Appendix). The space of vector-valued
holomorphic functions is denoted by

Om(U) = O(U)× · · · × O(U)︸ ︷︷ ︸
m times

= O(U)⊗C Cm.

1A. Differential equations, solutions, initial value problems. Let
U ⊆ C×Cn be an open domain and F = (F1, . . . , Fn) : U → Cn a holomor-
phic vector function. An analytic ordinary differential equation defined by
F on U is the vector equation (or the system of n scalar equations)

dx

dt
= F (t, x), (t, x) ∈ U ⊆ C× Cn, F ∈ On(U). (1.1)

The solution of this equation is a parameterized holomorphic curve, the
holomorphic map ϕ = (ϕ1, . . . , ϕn) : V → Cn, defined in an open subset
V ⊆ C, whose graph {(t, ϕ(t)) : t ∈ V } belongs to U and whose complex
“velocity vector” dϕ

dt =
(dϕ1

dt , . . . , dϕn

dt

) ∈ Cn at each point t coincides with
the vector F (t, ϕ(t)) ∈ Cn.

The graph of ϕ in U is called the integral curve. From the real point
of view it is a 2-dimensional smooth surface in R2n+2. Note that from the
beginning we consider only holomorphic solutions which may be, however,
defined on domains of different size.
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2 I. Normal forms and desingularization

The equation is autonomous, if F is independent of t. In this case the
image ϕ(V ) ⊆ Cn is called the phase curve. Any differential equation (1.1)
can be “made” autonomous by adding a fictitious variable z ∈ C governed
by the equation dz

dt = 1.
If (t0, x0) = (t0, x0,1, . . . , x0,n) ∈ U is a specified point, then the ini-

tial value problem, sometimes also called the Cauchy problem, is to find an
integral curve of the differential equation (1.1) passing through the point
(t0, x0), i.e., a solution satisfying the condition

ϕ : V → Cn, ϕ(t0) = x0 ∈ Cn. (1.2)

In what follows we will often denote by a dot the derivative with respect
to the complex variable t, ẋ(t) = dx

dt (t).
The first fundamental result is the local existence and uniqueness theo-

rem.

Theorem 1.1. For any holomorphic differential equation (1.1) and every
point (t0, x0) ∈ U there exists a sufficiently small polydisk Dε = {|t − t0| <
ε, |xj − x0,j | < ε, j = 1, . . . , n} ⊆ U , such that the solution of the initial
value problem (1.2) exists and is unique in this polydisk.

This solution depends holomorphically on the initial value x0 ∈ Cn and
on any additional parameters, provided that the vector function F depends
holomorphically on these parameters.

From the real point of view, Theorem 1.1 asserts existence of 2n functions
of two independent real variables whose graph is a surface in Cn+1 ∼= R2n+2,
with the tangent plane spanned by two real vectors ReF, Im F . To derive
this theorem from the standard results on existence, uniqueness and differ-
entiability of solutions of smooth ordinary differential equations in the real
domain, one should use rather deep results on integrability of distributions;
see Remark 2.10 below. Rather unexpectedly, the direct proof is simpler
than in the real case in the part concerning dependence on initial condi-
tions. This proof is given in the next subsection. The main idea of this
proof, as well as many other proofs below, is the contracting map principle.

1B. Contracting map principle. Consider the linear space A(Dρ) of
functions holomorphic in the polydisk Dρ and continuous on its closure,

A(Dρ) = {f : Dρ → C holomorphic in Dρ and continuous on Dρ}. (1.3)

This space is naturally equipped with the supremum-norm,

‖f‖ρ = max
z∈Dρ

|f(z)|, z = (z1, . . . , zn) ∈ Cn, (1.4)
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and thus naturally a subspace of the complete normed (i.e., Banach) space
C(Dρ) of continuous complex-valued functions. Though holomorphic func-
tions may have very complicated boundary behavior and thus A(U) $ O(U),
they are continuous and therefore for any smaller domain U ′ relatively com-
pact in U (i.e., when U ′ b U), there is an obvious inclusion A(U ′) ⊃ O(U).

Theorem 1.2. The space A(Dρ) and its vector counterparts Am(Dρ) =⊕
m times A(Dρ) are complete (Banach) spaces.

Proof. Any fundamental sequence in A(Dρ) is by definition fundamental in
the Banach space C(Dρ) and has a uniform limit in the latter space. By the
Weierstrass compactness principle [Sha92], this limit is again holomorphic
in Dρ, i.e., belongs to A(Dρ). ¤

A map F of a metric space M into itself is called contracting, if
for some positive real number λ < 1 and all u, v ∈ M the inequality
dist(F (u), F (v)) 6 λ dist(u, v) holds. A point w ∈ M is fixed (by F ), if
F (w) = w.

Theorem 1.3 (Contracting map principle). Any contracting map F : M →
M of a complete metric space M has a unique fixed point in M.

This fixed point is the limit of any sequence of iterations uk+1 = F (uk),
k = 0, 1, 2, . . . beginning with an arbitrary initial point u0 ∈ M .

Proof. For any initial point u0 ∈ M , the sequence uk, k = 1, 2, . . . is
fundamental, since dist(uk, uk+1) 6 λk dist(u0, u1) and by the triangle in-
equality dist(uk, ul) 6 dist(u0, u1)λk/(1−λ) for any k < l. By completeness
assumption, the sequence uk converges to a limit w ∈ M . Since F is con-
tinuous, passing to the limit in the identity uk+1 = F (uk) yields w = F (w).
If w1, w2 are two fixed points, then dist(w1, w2) 6 λdist(F (w1), F (w2)) =
λdist(w1, w2) which is possible only if dist(w1, w2) = 0, i.e., when w1 =
w2. ¤

1C. Picard operators and their contractivity. The exposition below
is based on [Arn78, §31] with minor modifications.

Consider the equation (1.1) defined in a domain U . Denote by Dε = {|z−
x0| < ε, |t − t0| < ε} ⊂ Cn+1 a polydisk centered at the point (t0, x0) ∈ U
and small enough to belong to U .

Definition 1.4. The Picard operator P associated with the differential
equation (1.1) and the initial value (t0, z0) ∈ U , is the operator f 7→ Pf
defined by the integral formula

(Pf)(s, z) = z +
∫ s

t0

F (t, f(t, z)) dt (1.5)
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Figure I.1. Domain of definition of Picard iterations (in the intersec-
tion with the hyperplane z = const)

for all vector functions f(t, z) the expression in the right hand side makes
sense.

We will now construct a complete metric space invariant by P, on which
this operator is contracting. Denote by L0 and L1 the bounds for the mag-
nitude of F and its Lipschitz constant in U : for any (t, x), (t, x′) ∈ U ,

|F (t, z)| 6 L0, |F (t, z)− F (t, z′)| 6 L1 |z − z′|. (1.6)

Denote by M the subspace of the space An(Dε) which consists of the func-
tions satisfying the additional inequality

|f(t, z)− z| 6 L0 |t− t0|. (1.7)

This space is complete in the metric induced by the norm ‖ · ‖ε inherited
from the ambient space An(Dε) (Exercise 1.3).

Lemma 1.5. If the polydisk Dε is sufficiently small, the Picard operator P
given by the integral (1.5), is well defined and contracting on M.

More precisely, for sufficiently small ε its contraction factor λ does not
exceed εL1, where L1 is the Lipschitz constant for F in U .

Proof. Explicit majorizing of the integral shows that

|Pf(s, z)− z| 6 L0

∫ s

t0

|dt| 6 L0 |s− t0| 6 L0ε,

so if ε is chosen sufficiently small, the operator P is well defined on M and
maps this space into itself. For any two vector functions f, f ′ defined on
such a small polydisk Dε, we have by virtue of the same estimate

‖Pf −Pf ′‖ = sup
|s−t0|<ε

∫ s

t0

L1 |f(t, z)− f ′(t, z)| |dt| 6 εL1 ‖f − f ′‖.
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If εL1 < 1, the operator P is contracting. ¤

Proof of Theorem 1.1. Assume ε is so small that the εL1 < 1 so that by
Lemma 1.5, the Picard operator P is contracting. By Theorem 1.2 the fixed
point of this operator (which exists by Theorem 1.3 and Lemma 1.5) is a
holomorphic vector function f : Dε → Cn that satisfies the integral equation

f(s, z) = z +
∫ s

t0

F (t, f(t, z)) dt, |s− t0| < ε, |z − x0| < ε. (1.8)

For each fixed z, the function ϕz(t) = f(t, z) clearly satisfies both the ini-
tial condition (1.2) with x0 = z and the differential equation (1.1). By
construction, it depends holomorphically on the initial condition z.

To prove holomorphic dependence on additional parameters, one can
treat them as fictitious dependent variables. Assume that the vector function
F = F (t, x, y) depends holomorphically on additional parameters y ∈ Cm,
and consider the initial value problem (recall that the dot means the deriv-
ative d

dt) {
ẋ = F (t, x, y),

ẏ = 0,

x(t0) = x0,

y(t0) = y0.
(1.9)

The solution of this initial value problem is a function f(t, x, y, x0, y0) holo-
morphically depending on all variables. ¤

Remark 1.6. For a differential equation with the right hand side F (t, x) the
shifted solution x′(t) = x(t − y), y ∈ C1, satisfies the shifted equation ẋ′ =
F (t−y, x′) which analytically depends on the parameter y. By Theorem 1.1,
this shows that solutions of the initial value problem depend holomorphically
also on the t-component of the initial point (t0, x0) ∈ U .

1D. Principal example: exponential formula for linear systems.
The proof of the existence theorem is constructive: the solution of a differ-
ential equation is obtained as the uniform limit of its Picard approximations,
iterations of the Picard operator.

In the simplest case of a differential equation with constant (i.e., inde-
pendent of t, x, y) right hand side F = const ∈ Cn the Picard approxima-
tions stabilize immediately: if f0(t, v) = v, then f1(t, v) = f2(t, v) = · · · =
v + (t− t0)F .

A linear system with constant coefficients is the system of equations

ẋ = Ax, x ∈ Cn, A ∈ Mat(n,C) (1.10)

where A = ‖aij‖ is a constant (independent of t and x) (n × n)-matrix
with complex entries. Reasoning by induction, one can see that the Picard
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approximations for the solution of (1.10) which start with the constant initial
term f0(t, v) = v, have the form

fk(t, v) =
(
E + tA + t2

2!A
2 + · · ·+ tk

k!A
k
)

v. (1.11)

Indeed,

Pfk(t, v) = v +
∫ t

0
A · (E + sA + · · ·+ sk

k! A
k
)
v ds

= Ev +
(
tA + · · ·+ tk+1

(k+1)!A
k+1

)
v = fk+1(t, v).

These formulas motivate the following fundamental object.

Definition 1.7 (matrix exponential). For an arbitrary constant matrix A ∈
Mat(n,C) its exponential expA is the sum of the infinite (matrix) series

expA = E + A +
1
2!

A2 + · · ·+ 1
k!

Ak + · · · . (1.12)

Since |Ak| 6 |A|k and since the factorial series
∑

k>0 rk/k! converges
absolutely for all values r ∈ R, the matrix series (1.12) converges absolutely
on the complex linear space Mat(n,C) ∼= Cn2

for any finite n.
Note that for any two commuting matrices A,B their exponents satisfy

the group identity

exp(A + B) = expA · expB = expB · expA. (1.13)

This can be proved by substituting A,B instead of two scalars a, b into the
formal identity obtained by expansion of the law eaeb = ea+b.

The explicit formula (1.11) for Picard approximations for the linear sys-
tem (1.10) immediately proves the following theorem.

Theorem 1.8. The solution of the linear system ẋ = Ax, A ∈ Mat(n,C),
with the initial value x(0) = v is given by the matrix exponential,

x(t) = (exp tA) v, t ∈ C, v ∈ Cn. ¤ (1.14)

Remark 1.9. Computation of the matrix exponential can be reduced to
computation of a matrix polynomial of degree 6 n− 1 and exponentials of
eigenvalues of A. Indeed, assume that A has a Jordan normal form A =
Λ + N , where Λ = diag{λ1, . . . , λn} is the diagonal part and N the upper-
triangular (nilpotent) part commuting with Λ. Then expΛ is a diagonal
matrix with the exponentials of the eigenvalues of Λ on the diagonal, Nn = 0
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by nilpotency, and therefore

exp[t(Λ + N)] = exp tΛ · exp tN

=




exp tλ1

. . .
exp tλn


 ·

(
E + tN +

t2

2!
N2 + · · ·+ tn−1

(n− 1)!
Nn−1

)
.

(1.15)

This provides a practical way of solving linear systems with constant coef-
ficients: components of any solution in any basis are linear combinations of
quasipolynomials tk exp tλj , 0 6 k 6 n− 1 with complex coefficients.

Remark 1.10 (Liouville–Ostrogradskii formula). By direct inspection of
the formula (1.15) we conclude that

∀A ∈ Mat(n,C) det expA = exp trA. (1.16)

Indeed, det expA = det expΛ · det exp N =
∏n

i=1 expλi · 1 = exp trΛ =
exp trA, since the matrix polynomial expN is upper triangular with units
on the diagonal.

1E. Flow box theorem. Let f(t, x0) be the holomorphic vector function
solving the initial value problem (1.2) for the differential equation (1.1).

Definition 1.11. The flow map for a differential equation (1.1) is the vector
function of n + 2 complex variables (t0, t1, v) defined when (t0, x) ∈ U and
|t0 − t1| is sufficiently small, by the formula

(t0, t1, v) 7→ Φt1
t0

(v) = f(t1, v), (1.17)

where f(t, v) is the fixed point of the Picard operator P as in (1.8) associated
with the initial point t0.

In other words, Φt1
t0

(v) is the value ϕ(t) which takes the solution of the
initial value problem with the initial condition ϕ(t0) = v, at the point t1
sufficiently close to t0.

Example 1.12. For a linear system (1.10) with constant coefficients, the
flow map is linear:

Φt1
t0

(v) = [exp(t1 − t0)A] v.

This map is defined for all values of t0, t1, v.

By Theorem 1.1, Φ is a holomorphic map. Since the solution of the initial
value problem is unique, it obviously must satisfy the functional equation

Φt2
t1

(Φt1
t0

(x)) = Φt2
t0

(x) (1.18)
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for all t1, t2 sufficiently close to t0 and all x sufficiently close to x0. Since for
any x the vector function t 7→ ϕx(t) = Φt

t0(x) is a solution of (1.1), we have

∂

∂t

∣∣∣∣
t=t0, x=x0

Φt
t0(x) = − ∂

∂t0

∣∣∣∣
t=t0, x=x0

Φt
t0(x) = F (t0, x0).

From the integral equation (1.8) it follows that

Φt
t0(x0) = x0 + (t− t0)F (t0, x0) + o(|t− t0|), (1.19)

and therefore the Jacobian matrix of Φ with respect to the x-variable is
(

∂Φt
t0(x)
∂x

)

t=t0, x=x0

= E. (1.20)

Differential equations can be transformed to each other by various trans-
formations. The most important is the (bi)holomorphic equivalence, or holo-
morphic conjugacy.

Definition 1.13. Two differential equations, (1.1) and another such equat-
ion

ẋ′ = F ′(t′, x′), (t′, x′) ∈ U ′, (1.21)
are conjugated by the biholomorphism H : U → U ′ (the conjugacy), if H
sends any integral trajectory of (1.1) into an integral trajectory of (1.21).

Two systems are holomorphically equivalent in their respective domains,
if there exists a biholomorphic conjugacy between them.

Clearly, biholomorphically conjugate systems are indistinguishable in
everything that concerns properties invariant by biholomorphisms. Finding
a simple system biholomorphically equivalent to a given one, is therefore of
paramount importance.

Theorem 1.14 (Flow box theorem). Any holomorphic differential equation
(1.1) in a sufficiently small neighborhood of any point is biholomorphically
conjugated by a suitable biholomorphic conjugacy H : (t, x) 7→ (t, h(t, x))
preserving the independent variable t, to the trivial equation

ẋ′ = 0. (1.22)

Proof of the theorem. Consider the map H ′ : Cn+1 → Cn+1 which is de-
fined near the point (t0, x0) using the flow map (1.17) for the equation (1.1),

H ′ : (t, x′) 7→ (t, Φt
t0(x

′)), (t, x′) ∈ (Cn+1, (t0, x0)).

By construction, it takes the lines x′ = const parallel to the t-axis, into
integral trajectories of the equation (1.1), while preserving the value of t.

The Jacobian matrix ∂H ′(t, x′)/∂(t, x′) of the map H ′ at the point
(t0, x0) has by (1.20) the form

(
1
∗ E

)
and is therefore invertible.
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Thus H ′ restricted on a sufficiently small neighborhood of the point
(t0, x0), is a biholomorphic conjugacy between the trivial system (1.21),
whose solutions are exactly the lines x′ = const, and the given system (1.1).
The inverse map also preserves t and conjugates (1.1) with (1.21). ¤

1F. Vector fields and their equivalence. The above constructions af-
ter small modification become more transparent in the autonomous case,
when the vector function x 7→ F (x) which is now independent of t, can
be considered as a holomorphic vector field on its domain U ⊆ Cn. The
space of vector fields holomorphic in a domain U ⊆ Cn will be denoted by
D(U), while the notation D(Cn, x0) is reserved for the space of germs of
holomorphic vector fields at a specific point x0 ∈ Cn, usually the origin,
x0 = 0.

In the autonomous case, translation of the independent variable pre-
serves solutions of the equation

ẋ = F (x), F : U → Cn, (1.23)

so the flow map Φt1
t0

actually depends only on the difference t = t1 − t0
and hence will be denoted simply by Φt(·) = Φt

0(·). The functional identity
(1.18) takes the form

Φt(Φs(x)) = Φt+s(x), t, s ∈ (C, 0), x ∈ (Cn, x0), (1.24)

which means that the maps {Φt} form a one-parametric pseudogroup of
biholomorphisms. (“Pseudo” means that the composition in (1.24) is not
always defined. The pseudogroup is a true group, Φt◦Φs = Φt+s, if the maps
Φt are globally defined for all t ∈ C. For more details on pseudogroups see
§6D).

For autonomous equations it is natural to consider biholomorphisms that
are time-independent.

Definition 1.15. Two holomorphic vector fields, F ∈ D(U) and F ′ ∈ D(U ′)
defined in two domains U,U ′ ⊆ Cn, are biholomorphically equivalent if there
exists a biholomorphic map H : U → U ′ conjugating their respective flows,

H ◦ Φt = Φ′t ◦H (1.25)

whenever both sides are defined. The biholomorphism H is said to be a
conjugacy between F and F ′.

A conjugacy H maps phase curves of the first field into phase curves of
the second field; in a similar way the suspension

id×H : (C, 0)× U → (C, 0)× U ′, (t, x) 7→ (t,H(x)),

maps integral curves of the two fields into each other. Differentiating the
identity (1.25) in t at t = 0, we conclude that the differential dH(x) of a
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holomorphic conjugacy sends the vector v = F (x) of the first field, attached
to a point x ∈ U , to the vector v′ = F ′(x′) of the second field at the
appropriate point x′ = H(x). In the coordinates this property takes the
form of the identity

H∗(x) · F (x) = F ′(H(x)), H∗(x) =
(

∂H
∂x

)
=

(
∂hi
∂xj

)
, (1.26)

in which the Jacobian matrix H∗(x) =
(

∂H
∂x

)
is involved. The formula (1.26)

is sometimes used as the alternative definition of the holomorphic equiva-
lence. The third (algebraic, in some sense most natural) way to introduce
this equivalence is explained in the next section.

1G. Vector fields as derivations. It is sometimes convenient to define
vector fields in a way independent of the coordinates. Each vector field
F = (F1, . . . , Fn) in a domain U ⊂ Cn defines a derivation F ∈ DerO(U) of
the C-algebra O(U) of functions holomorphic in U , by the formula

Ff(x) =
n∑

j=1

Fj(x)
∂f

∂xj
. (1.27)

We often identify the holomorphic vector field F with the components Fi

with the corresponding differential operator F =
∑

Fj
∂

∂xj
.

Derivations can be defined in purely algebraic terms as C-linear maps of
the algebra O(U) satisfying the Leibnitz identity,

F(fg) = f(Fg) + (Ff)g.

Indeed, any C-linear operator with this property in any coordinate
system (x1, . . . , xn) defines n functions Fj = Fxj and (obviously) sends
all constants to zero. Any analytic function f can be written f(x) =
f(a) +

∑n
1 hj(x) (xj − aj) with hj(a) = ∂f

∂xj
(a). Applying the Leibnitz rule,

we conclude that (Ff)(a) =
∑

j Fjhj(a)+0·Fhj =
∑

j Fj
∂f
∂xj

(a), as claimed.

A similar algebraic description can be given for holomorphic maps. With
any holomorphic map H : U → U ′ between two domains U,U ′ ⊆ Cn one can
associate the pullback operator H : O(U ′) → O(U), acting on f ′ ∈ O(U ′)
by composition, (Hf ′)(x) = f ′(H(x)). This operator is a homomorphism
of commutative C-algebras, a C-linear map respecting multiplication (i.e.,
H(f ′g′) = Hf ′ · Hg′ for any f ′, g′ ∈ O(U ′)). Conversely, any continuous
homomorphism H between the two algebras is induced by a holomorphic
map H = (h1, . . . , hn) with hi = Hxi, where xi ∈ O(U ′) are the coordinate
functions (restricted on U ′). The map H is a biholomorphism if and only if
H is an isomorphism of C-algebras.

In this language the action of biholomorphisms on vector fields can be
described as a simple conjugacy of operators: two derivations F and F′ of
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the algebras O(U) and O(U ′) respectively, are said to be conjugated by the
biholomorphism H : U → U ′, if

F ◦H = H ◦ F′ (1.28)

as two C-linear operators from O(U ′) to O(U).
Another advantage of this invariant description is the possibility of

defining the commutator of two vector fields naturally, as the commuta-
tor of the respective differential operators. One can immediately verify that
[F,F′] = FF′ − F′F satisfies the Leibnitz identity as soon as F,F′ do, and
hence corresponds to a vector field. In coordinates the commutator takes
the form

[F, F ′] =
(

∂F ′

∂x

)
F −

(
∂F

∂x

)
F ′. (1.29)

Example 1.16. For any two F = Ax, F′ = A′x linear vector fields, their
commutator [F,F′] is again a linear vector field with the linearization matrix
A′A−AA′. It coincides (modulo the sign) with the usual matrix commutator
[A,A′].

1H. Rectification of vector fields. A straightforward counterpart of the
Flow box Theorem 1.14 for holomorphic vector fields holds only if the field
is nonvanishing.

Definition 1.17. A point x is a singular point (singularity) of a holomor-
phic vector field F , if F (x0) = 0. Otherwise the point is nonsingular.

Theorem 1.18 (Rectification theorem). A holomorphic vector field F is
holomorphically equivalent to the constant vector field F ′(x′) = (1, 0, . . . , 0)
in a sufficiently small neighborhood of any nonsingular point.

Proof. The flow Φ′ of the constant vector field F ′ can be immediately com-
puted: (Φ′)t(x′) = x′ + t · (1, 0, . . . , 0). Consider any affine hyperplane
Π ⊂ U passing through x0 and transversal to F (x0) and the hyperplane
Π′ = {x′1 = 0}. Let t = x′1 : Cn → C be the function equal to the first
coordinate in Cn, so that (Φ′)−t(x′) ∈ Π′. Let h′ : Π′ → Π be any biholo-
morphism (e.g., linear invertible map). Then the map

H ′ = Φt ◦ h ◦ (Φ′)−t, t = t(x′),

is a holomorphic map that sends any (parameterized) trajectory of F ′, pass-
ing through a point x′ ∈ Π′, to the parameterized trajectory of F passing
through x = h(x′). Being composition of holomorphic maps, H ′ is also holo-
morphic, and coincides with h′ when restricted on Π′. It remains to notice
that the differential dH ′(x0) maps the vector (1, 0, . . . , 0) transversal to Π′,
to the vector F (x0) transversal to Π. This observation proves that H ′ is
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invertible in some sufficiently small neighborhood U of x0, and the inverse
map H conjugates F in U with F ′ in H(U). ¤

1I. One-parametric groups of holomorphisms. The Rectification the-
orem from §1 can be formulated in the language of germs as follows: Two
germs of holomorphic vector fields at nonsingular points are always holomor-
phically equivalent to each other. In particular, any germ of a holomorphic
vector field at a nonsingular point is holomorphically equivalent to the germ
of a nonzero constant vector field.

Because of this “triviality” of local description of nonsingular vector
fields, we will mostly be interested in germs of vector fields at the singular
points. The first result is existence of germs of the flow maps Φt at the
singular point, for all values of t ∈ C.

Denote by Diff(Cn, 0) the group of germs of holomorphic self-maps
H : (Cn, 0) → (Cn, 0) equipped with the operation of composition (which
is always defined).

Proposition 1.19. If F ∈ D(Cn, 0) is the germ of a holomorphic vector
field which is singular (i.e., F (0) = 0), then the germs of the flow maps
Φt(·) are defined for all t ∈ C and form a one-parametric subgroup of the
group Diff(Cn, 0) of germs of biholomorphic self-maps: Φt ◦ Φs = Φt+s for
any t, s ∈ C.

Proof. The existence of the flow maps Φt for all sufficiently small t ∈ (C, 0),
the possibility of their composition, and validity of the group identity for
such small t all follow from Theorem 1.1 and the fact that Φt(x0) = x0.

For an arbitrary large value of t ∈ C we may define Φt as the composition
of germs of the flow maps Φti , i = 1, . . . , N , taken in any order, where the
complex numbers ti are sufficiently small to satisfy conditions of Theorem 1.1
but added together give t. From the local group identity it follows that the
definition does not depend on the particular choice of ti and preserves the
group property. ¤

Remark 1.20. Every germ of a self-map H ∈ Diff(Cn, 0) uniquely defines
an automorphism H ∈ AutO(Cn, 0) of the commutative algebra of holomor-
phic germs acting by substitution, Hf = f ◦H.

Proposition 1.19 translates into the algebraic language as follows: for any
derivation F ∈ DerO(Cn, 0) of the algebra of holomorphic germs there exist
a one-parametric subgroup {Ht : t ∈ C} ⊂ AutO(Cn, 0) of automorphisms
of this algebra, such that d

dt

∣∣
t=0

Ht = F.

For the reasons to be explained below in §3C, the subgroup of auto-
morphisms Ht is often referred to as the exponent, Ht = exp(tF), of the
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derivation F. Respectively, the flow (germs of self-maps) will be sometimes
denoted by the exponent, Φt = exp(tF ), of the corresponding vector field
F .

Exercises and Problems for §1.

Exercise 1.1. Let a ∈ U be a nonsingular point of a holomorphic vector field
F ∈ D(U). A trajectory of the vector field is the projection of the graph of the
solution into the domain of the field along the time axis.

Prove that the trajectory passing through a is either the line x = a, or can be
represented as the graph of a function y = ϕa(x) having an algebraic ramification
point of some finite order ν. Express ν in terms of orders of the components of the
field F at a.

Exercise 1.2. Let P : (Cn, 0) → (Cn−1, 0) be a holomorphic epimorphism (i.e.,
map of rank n − 1) constant along trajectories of an analytic vector field F ∈
D(Cn, 0). Construct explicitly the rectifying chart for F .

Exercise 1.3. Prove that the space M of functions satisfying the inequality (1.7),
is indeed complete.

Exercise 1.4. Two linear vector fields in Cn are holomorphically equivalent in
some domains containing the origin. Prove that these fields are linear equivalent,
i.e., that there exists a linear map H ∈ GL(n,C) conjugating them.

Exercise 1.5. Prove that if two germs of vector fields at a singular point are
analytically equivalent, then the eigenvalues of these fields at the singular point
coincide.

Exercise 1.6. Prove that the vector field F (z) = z2 ∂
∂z is holomorphic on the

Riemann sphere P1 = C ∪ {∞}. Compute the flow of this field.

Problem 1.7. Give a complete analytic classification of the holomorphic flows on
the Riemann sphere P1 (i.e., construct a list, finite or infinite, of flows such that
every holomorphic flow in analytically equivalent to one of the flows from the list,
while any two different flows in the list are not holomorphically equivalent.

Exercise 1.8. Prove that the constant holomorphic vector fields ∂
∂z on the two

tori T1 = C/(Z+ iZ) and T2 = C/(Z+ 2iZ), are not holomorphically equivalent.

2. Holomorphic foliations and their singularities

By the Existence/Uniqueness Theorem 1.1, any open connected domain U ⊆
Cn with a holomorphic vector field F defined on it, can be represented as
the disjoint union of connected phase curves passing through all points of
U . The Rectification Theorem 1.18 provides a local model for the geometric
object called foliated space of simply foliation. A systematic treatment of
foliations can be found, for instance, in [Tam92, CC03].
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2A. Principal definitions. Speaking informally, a foliation is a partition
of the phase space into a continuum of connected sets called leaves, which
locally look as the family of parallel affine subspaces.

Definition 2.1. The standard holomorphic foliation of dimension n (re-
spectively, of codimension m) of a polydisk B = {(x, y) ∈ Cn × Cm : |x| <
1, |y| < 1} is the representation of B as the disjoint union of n-disks, called
(standard) plaques,

B =
⊔

|y|<1

Ly, Ly = {|x| < 1} × {y} ⊆ B. (2.1)

Definition 2.2. A holomorphic foliation F of a domain U ⊂ Cn+m (or,
more generally, a complex analytic manifold U of dimension n + m) is the
partition U =

⊔
α Lα of the latter into the disjoint union connected sub-

sets Lα, called leaves, which locally is biholomorphically equivalent to the
standard holomorphic foliation by plaques.

The latter phrase means that each point a ∈ U admits an open neigh-
borhood B′ 3 a and a biholomorphism H : B′ → B of B′ onto the standard
polydisk B, which sends the local leaves, the connected components of the
intersections Lα ∩B′, to the plaques of the standard foliation,

∀α ∃Y = Y (α) : H(Lα ∩B′) =
⊔

y∈Y (α)

Ly. (2.2)

Sometimes the local leaves will also be referred to as the plaques of the
foliation near a point a: the plaques constitute biholomorphic images of
n-disks, parameterized by a small m-disk. Note that different plaques may
belong to the same leaf of the global foliation.

Remark 2.3. The definition of foliation admits several flavors. In the weak-
est settings the standard foliations are families of parallel balls slicing the
real cylinder in Rn+m (the formulas remain the same as in (2.1)), while the
local equivalencies H are simply homeomorphisms or smooth maps of low or
high differentiability (up to C∞ or even real analytic). In particular, we will
call the topological foliation a partition of the space U into disjoint subsets
Lα which is locally homeomorphic to the standard foliation (in the sense
(2.2) with H being a homeomorphism).

Moreover, one can require different regularity of H along the leaves and
in the transversal direction. We will not deal with such exotic cases until
§28.

Remark 2.4 (important). The space of plaques of a foliation is naturally
parameterized by points of a polydisk. Yet the index set Y (α) in (2.2) can be
rather complicated (e.g., dense), since the global behavior of leaves outside
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the ball B′ can be rather complicated. Yet in all of our applications all sets
Y (α) will be at most countable.

The global space of leaves may have a very complicated structure even
topologically (non-Hausdorff), therefore for indexing the leaves we use “ab-
stract” sets without any additional structure.

Definition 2.5. Two holomorphic foliations F and F′ defined on the re-
spective holomorphic manifolds U,U ′, are called holomorphically equivalent
or topologically equivalent, if there exists a biholomorphism H : U → U ′ (re-
spectively, a homeomorphism) which maps (necessarily biholomorphically
or homeomorphically, depending on the context) the leaves of F to those of
F′: H(Lα) = L′α′ for some indices α, α′.

Note that this definition is global.
Everywhere below U stands for a holomorphic manifold or an open do-

main in Cn. The following result is an obvious reformulation of the Rectifi-
cation theorem in the language of foliations.

Proposition 2.6. For any holomorphic vector field F ∈ D(U) without
singularities in U , the partition of U into maximal integral curves of F
forms a holomorphic foliation FF of (complex ) dimension 1 and codimen-
sion n− 1. ¤

We say that the foliation FF is generated by the vector field F . Speaking
about foliations rather than about vector fields means that the parametriza-
tion of solutions by the (complex) time is to be ignored.

Proposition 2.7. Two holomorphically equivalent vector fields F ∈ D(U)
and F ′ ∈ D(U ′) generate two holomorphically equivalent one-dimensional
foliations.

Conversely, if the foliations F, F′ generated by two nonsingular vector
fields, are holomorphically equivalent by a biholomorphism H : U → U ′, then
there exists a nonvanishing holomorphic function ρ ∈ O(U) such that

ρ(x) ·H∗(x) · F (x) = F ′(H(x)), ρ(x) 6= 0 in U ; (2.3)

cf. with (1.26) and Definition 1.15.

Proof. The first assertion is obvious immediately. To prove the second, it
is sufficient to show that two vector fields generating the same holomorphic
one-dimensional foliation, differ by a nonvanishing holomorphic scalar factor
ρ. This is obvious for the standard foliation: the first component must be
nonzero while all other components are identically zero. ¤
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2B. Foliations and integrable distributions. For a given holomorphic
foliation F of dimension n and codimension m, the tangent spaces to leaves
at different points are n-dimensional complex spaces in an obvious sense
analytically depending on the point.

Such a geometric object is called distribution. To define formally sub-
spaces analytically depending on parameters, one can choose between the
language of holomorphic vector fields and that of holomorphic differential
forms.

Definition 2.8. A (holomorphic nonsingular) n-dimensional distribution in
a domain U ⊆ Cn+m is either

• a tuple of n holomorphic vector fields F1, . . . , Fn ∈ D(U), linearly
independent at every point of U , or

• tuple of m holomorphic 1-forms ω1, . . . , ωm ∈ Λ1(U), linearly in-
dependent at every point of U so that ω1 ∧ · · · ∧ ωm ∈ Λk(U) is
nonvanishing.

Two tuples of the same type {Fj} and F ′
j} (resp., {ωi} and {ω′i} define

the same distribution, if F ′
j =

∑
k cjk(x)Fk, resp., ω′i =

∑
k c′ik(x)ωk) for

some holomorphic functions cjk(x), c′ik(x). The forms and the fields defining
the same distribution must be dual to each other, ωi · Fj = 0 for all i, j.

A one-dimensional distribution is usually called a line field .
Clearly, any holomorphic foliation defines the corresponding tangent dis-

tribution of the same dimension. The converse in general is not true unless
n = 1.

A holomorphic n-dimensional distribution is called integrable in U , if it
is tangent to leaves of a nonsingular holomorphic foliation in U .

Theorem 2.9 (Frobenius integrability criteria). A distribution defined by a
tuple of holomorphic vector fields is integrable, if and only if the commutator
of any two vector fields belongs to the same distribution, i.e., if

[Fi, Fj ] =
n∑

k=1

cijk Fk, cijk ∈ O(U). (2.4)

A distribution defined by a tuple of holomorphic 1-forms is integrable, if
and only if the ideal spanned by these forms in the exterior algebra Λ•(U)
over O(U), is closed by the exterior derivative, i.e., if

dωi =
m∑

k=1

c′ik ωk ∧ ηk, ηk ∈ Λ1(U), cik ∈ O(U). (2.5)
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We will not prove this theorem. Its proof can be derived from the local
existence theorem for holomorphic vector fields in the same way as it is done,
mutatis mutandis, in the C∞-smooth case in [War83].

Remark 2.10. The Frobenius integrability condition trivially holds for n =
1. On the other hand, from the real point of view the holomorphic vector
field F corresponds to a 2-dimensional distribution generated by two vector
fields F1 = F and F2 = iF , i =

√−1, in R2n ∼= Cn. The Frobenius
integrability condition for this distribution reduces, as one can easily verify,
to the Cauchy–Riemann identities between the real and imaginary parts of
the components of the holomorphic vector field F .

Remark 2.11. In the (complex) 2-dimensional case where U ⊆ C2 that
will be our principal object of studies later, the only nontrivial possibility
is a one-dimensional distribution that is automatically integrable. It can
be defined either by one vector field F ∈ D(U) or by one Pfaffian form
ω ∈ Λ1(U). For many reasons the Pfaffian presentation is more convenient.

2C. Holonomy. The notion of holonomy intends to be a replacement of
the flow of the vector fields in the case where the natural parametrization
of the solutions is absent or ignored.

Definition 2.12. A (parameterized) cross-section to a leaf L of a foliation F

of codimension m on U at a point a ∈ U is a holomorphic map τ : (Cm, 0) →
(U, a) transversal to L. Very often we identify the cross-section with the
image of the map τ .

If F is a standard foliation and τ, τ ′ any two cross-sections (at different,
in general) points a, a′ of the leaf, say L0 = {y = 0}, then any other leaf Lα

sufficiently close to L0 intersects each cross-section exactly once. This defines
in a unique way the holomorphic correspondence map ∆τ,τ ′ : (τ, a) → (τ ′, a′):
points with the same y-components are mapped into each other. In the
charts on τ, τ ′ defined by the parameterizations, the correspondence map
becomes the germ of a holomorphic map from Diff(Cm, 0).

The correspondence maps obviously satisfy the identity

∆τ,τ ′′ = ∆τ ′,τ ′′ ◦∆τ,τ ′ (2.6)

for any three cross-sections τ, τ ′, τ ′′ to the same leaf of the standard foliation.
Taking a biholomorphic image of this construction, we arrive at the

following conclusion. For any two cross-sections τ, τ ′ to two sufficiently
close points on the same leaf, there exists a uniquely defined correspondence
map ∆τ,τ ′ between the cross-sections that satisfies the identity (2.6) for any
third cross-section which is also sufficiently close.
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τ j τ j+1

τ j+2

τ k

Cross sections

local leaves 
of F

Figure I.2. Construction of the holonomy map for a foliation over a
given path γ connecting two points on the leaf. The cross-sections τj

are chosen close enough

Globalization of this construction associates the correspondence map
not with just a pair of cross-sections to the same leaf, but rather with a
path connecting the base points of these cross-sections. Let L be a leaf of
a holomorphic foliation F, τ, τ ′ two cross-sections cutting L at the points
a, a′ ∈ L, and γ : [0, 1] → L an (oriented) path connecting a = γ(0) with
a′ = γ(1).

Since the segment [0, 1] and its image are compact, one can cover them
by finitely many open sets Uj in such a way that in each set the foliation is
locally trivial (biholomorphically equivalent to the standard foliation). One
can insert between the cross-sections τ, τ ′ sufficiently many intermediate
cross-sections τj , j = 1, . . . , k, τ0 = τ , τk = τ ′, at some intermediate points
of the curve γ such that every two consecutive cross-sections τj , τj+1 belong
to the same domain Uj (for this purpose one has to choose τj ⊂ Uj−1∩Uj . Let
∆τj ,τj+1 be the corresponding local correspondence maps as defined earlier.
The composition

∆γ = ∆τk−1,τk
◦ · · · ◦∆τ0,τ1 : (τ, a) → (τ ′, a′) (2.7)

is a holomorphic map (more precisely, a germ) from Diff(Cm, 0), also called
the correspondence map along the path γ.

The identity (2.6) means that the correspondence map ∆γ in fact does
not depend on the choice of the intermediate cross-sections τj . Moreover,
∆γ depends on the homotopy class of the path γ (with fixed endpoints)
rather than on the path itself. Indeed, for another sufficiently close path
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γ′ connecting the same endpoints, we can choose cross-sections τ ′1, . . . , τ
′
k−1

sufficiently close to the respective cross-sections τj for all j = 1, . . . , k−1 (the
two extreme cross-sections coincide). Then one can use the identities (2.6)
to show that the composition ∆γ′ = ∆τ ′k−1,τ ′k

◦ · · · ◦∆′
τ ′0,τ1

: (τ, a) → (τ ′, a′)
coincides with ∆γ , since τ ′0 = τ0 and τ ′k = τk.

Remark 2.13. The construction of holonomy maps corresponds to what
in the classical parlance was called “continuation of solutions of differential
equations over a path”: a specific solution (corresponding to the leaf) was
explicitly or implicitly singled out together with a certain path on it, and all
nearby solutions were “continued over the path” on the selected solution.

Choosing another pair of cross-sections at the same endpoints (or an-
other parametrization of the same cross-sections) results in composition of
∆γ with two biholomorphisms from left and right, so using suitable charts,
one can always bring any particular correspondence map ∆γ to be the iden-
tity map. The situation changes completely if there is more than one homo-
topically distinct path connecting the same endpoints, or, what is the same,
when one considers closed paths.

Let a ∈ L be a point on the leaf L of a holomorphic foliation,
τ : (Cm, 0) → (U, a) a cross-section at a, and γ ∈ π1(L, a) a closed loop
considered modulo the homotopic equivalence.

Definition 2.14. The holonomy self-map ∆γ : (τ, a) → (τ, a) is the holo-
morphic holonomy correspondence map associated with a closed path γ ∈
π1(L, a).

The holonomy group of the foliation F along the leaf L ∈ F is the image
of the fundamental group π1(L, a) in the group of germs of holomorphic
self-maps Diff(τ, a).

The holonomy group is defined as a subgroup in Diff(Cm, 0) modulo a
simultaneous conjugacy of all holonomy maps, independently of the choice
of the cross-section τ or even the base point a ∈ L. It is an obvious invariant
of a foliation which carries almost all information on behavior of leaves of
the foliation, adjacent to L.

Proposition 2.15. Assume that two holomorphic foliations F, F′ are topo-
logically or holomorphically conjugate by a homeomorphism (resp., biholo-
morphism) H. If L ∈ L is a leaf mapped by H into a leaf L′ ∈ F′, then for
any choice of the points a ∈ L, a′ ∈ L′ and the corresponding cross-sections
τ, τ ′ the corresponding holonomy groups G ⊂ Diff(τ, a) and G′ ⊂ Diff(τ ′, a′)
are topologically (resp., holomorphically) conjugate: there exists the germ
of a map h : (τ, a) 7→ (τ ′, a′), holomorphic or continuous respectively, such
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that h conjugates each element of g with some element g′ ∈ G′ and respects
the group law.

Proof. Let τ be a cross-section to L at a and τ ′ = H(τ) (with the induced
chart), then the assertion is a tautology: the restriction h = H|τ realizes the
required conjugacy between G and G′. Any other choice of a′ and τ ′ results
in replacing G′ by a holomorphically conjugate group. ¤

However, the inverse statement is in general wrong (see Exercise 2.10).

Definition 2.16. Let F be a holomorphic foliation on a complex manifold
U , and B ⊆ U an arbitrary subset. The saturation of B by leaves of F is
the union of all leaves that intersect B:

Sat(B, F) =
⋃

L∈F, L∩B 6=∅
L.

In general, saturations of even simple sets can be rather complicated.
Yet some basic things can be guaranteed. The following can be considered
as a generalization of the theorem on continuous dependance of solutions of
differential equations on initial conditions.

Lemma 2.17. Saturation of an open set is open. In particular, saturation
of a neighborhood of any point on each leaf contains an open neighborhood
of the leaf. ¤

From this observation we can derive a corollary that will be used later.
Let G ⊂ Diff(τ, a) be a finitely generated subgroup. A germ of an analytic
function u ∈ O(τ, a) is called G-invariant, if u ◦ g = u for all germs of
self-maps g ∈ G.

Lemma 2.18. Any germ of a holomorphic function u ∈ O(τ, a) which is
invariant by the holonomy group G ⊆ Diff(τ, a), uniquely extends as a holo-
morphic function defined in some open neighborhood V of the leaf L and
constant along all leaves of the foliation F in V .

Proof. Let a′ ∈ L be any point on L, connected by a path γ : [0, 1] → L
with the base point a. The holonomy map ∆a,a′ allows us to translate
(analytically continue) the germ u, considered as a function from O(U, a)
constant along the local plaques of F, to the germ u′ ∈ O(U, a′), also constant
along the local plaques. This extension depends on the choice of the path
γ, yet for a different choice of this path γ′ the result will differ by the
continuation of the germ u ◦ g, where g is the holonomy map associated
with the loop γ′ ◦ γ−1 ∈ π1(L, a). Yet since u by assumption is G-invariant,
the result will be the same and thus correctly defined for an arbitrary point
a′ ∈ L. ¤
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Remark 2.19. Most holonomy groups do not admit nonconstant invariant
functions. Exceptions correspond to integrable foliations; see §11.

2D. Singular foliations. The holonomy group may be nontrivial only for
a leaf of the foliation which has a nontrivial fundamental group. Such leaves,
in general difficult to find for arbitrary holomorphic foliations, can be easily
found for foliations with singularities, or singular foliations. Starting from
this moment, we consider only one-dimensional foliations unless explicitly
stated otherwise.

A holomorphic vector field F ∈ D(U) defines a nonsingular holomorphic
foliation on the complement to its singular locus Σ = ΣF = {x ∈ U : F (x) =
0} by Proposition 2.6. This singular locus can be an arbitrary analytic subset
of U . However, very often the foliation can be extended from U on a bigger
open subset eventually containing a part of Σ.

If U ⊂ U ′ are two domains and F′ a foliation on the larger domain,
then F′ can be restricted on U : by definition, this means the foliation whose
leaves are connected components of the intersections L′α ∩ U for all leaves
L′α ∈ F′.

Theorem 2.20. Let U be a connected open domain in Cn and 0 6≡ F ∈
D(U) a holomorphic vector field with the singular locus Σ ⊂ U .

Then there exists an analytic subset Σ′ ⊆ Σ of complex codimension > 2
in U and the foliation F′ of U r Σ′ whose restriction on U r Σ coincides
with the foliation generated by the initial vector field F .

Proof. The assertion needs the proof only when Σ is an analytic hypersur-
face (a complex analytic set of codimension 1).

Consider an arbitrary smooth point a ∈ Σ of the singular locus Σ:
nonsmooth points already form an analytic subset Σ1 ⊂ Σ of codimension
> 2 in U . Locally near this point Σ can be described by one equation
{f = 0} with f holomorphic and df(a) 6= 0. Let ν > 1 be the maximal
power such that all components F1, . . . , Fn of the vector field F are divisible
by fν . By construction, the vector field f−ν F extends analytically on Σ
near a and its singular locus is a proper analytic subset Σ2 ⊂ Σ (locally
near a). Since the germ of Σ at a is smooth hence irreducible, such a subset
necessarily has codimension > 2 respective to the ambient space.

The union Σ′ = Σ1 ∪ Σ2 has codimension > 2 and in U r Σ′ the field
locally represented as f−ν F is nonsingular and thus defines a holomorphic
foliation F′ extending F on the neighborhood of all points of Σ. ¤

Remark 2.21. If U is two-dimensional, the holomorphic vector field F can
be replaced by the distribution defined by an appropriate holomorphic 1-
form ω ∈ Λ1(U) with the singular locus Σ which consists of isolated points
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only (the singular locus of a holomorphic 1-form is the common zero of its
coefficients).

Theorem 2.20 means that when speaking about holomorphic foliations
with singularities, generated by holomorphic vector fields, one can always as-
sume that the singular locus has codimension > 2; in particular, singularities
of holomorphic foliations on the plane (and more generally, on holomorphic
surfaces) are isolated points. The inverse statement is also true, as was
observed in [Ily72b].

Theorem 2.22 ([Ily72b]). Assume that Σ ⊂ U ⊆ Cn is an analytic subset
of codimension > 2 and F a holomorphic nonsingular 1-dimensional foliation
of U rΣ which does not extend on any part of Σ.

Then near each point a ∈ Σ the foliation F is generated by a holomorphic
vector field F with the singular locus Σ.

Proof. One can always assume that the local coordinates near a are chosen
so that the line field tangent to leaves of F, is not everywhere parallel to
the coordinate x1-plane. Then this line field is spanned by the meromorphic
vector field G = (1, G2, . . . , Gn), where Gj ∈ M(U r Σ) are meromorphic
functions in U r Σ. By E. Levi’s theorem, any meromorphic function can
be meromorphically extended on analytic subsets of codimension 1 [GH78,
Chapter III, §2]. Therefore we may assume that Gj are in fact meromorphic
in U . Decreasing if necessary the size of U , each Gj can be represented as
the ratio Gj = Pj/Qj , where Pj , Qj ∈ O(U) are holomorphic in U and the
representation is irreducible.

Let Σj = {Pj = Qj = 0}, j = 2, . . . , n: by irreducibility, Σj is of
codimension > 2, so

⋃
j>2 Σj is also of codimension > 2. Multiplying the

field G by the product of denominators Q2 · · ·Qn, we obtain a holomorphic
vector field tangent to the same foliation; cancelling a nontrivial common
factor for the components of this field as in Theorem 2.20, we arrive at yet
another holomorphic field F , also tangent to F, such that the singular locus
Σ′ = Sing(F ) of this field has codimension > 2.

It remains to show that the singular locus Σ′ coincides with Σ locally in
U . In one direction it is obvious: if Σ′ is smaller than Σ, this means that F is
analytically extended as a nonsingular holomorphic foliation to some parts of
Σ, contrary to the assumption that Σ is the minimal singular locus. Assume
that Σ′ is larger than Σ, i.e., there exists a nonsingular point b ∈ U rΣ of
F, at which F vanishes. Since the foliation F is biholomorphically equivalent
to the standard foliation near b, in the suitable chart F is parallel to the first
coordinate axis, so that singular points of F are zeros of its first component.
On the other hand, by construction Σ′ is of codimension > 2 and hence



2. Holomorphic foliations and their singularities 23

cannot be the zero locus of any holomorphic function. The contradiction
proves that Σ′ ∩ U cannot be larger than Σ ∩ U . ¤
Example 2.23. The vector field ∂

∂x +e1/x ∂
∂y is analytic outside the line Σ =

{x = 0} of codimension 1 on the plane and defines a holomorphic foliation in
C2 r Σ. This foliation cannot be defined by a vector field holomorphically
extendable on Σ, which shows that the condition on the codimension in
Theorem 2.22 cannot be relaxed.

Together Theorems 2.20 and 2.22 motivate the following concise defin-
ition. Since we will never consider in this book holomorphic foliations of
dimension other than 1, this is explicitly included in the definition.

Definition 2.24. A singular holomorphic foliation in a domain U (or a
complex analytic manifold) is a holomorphic foliation F with complex one-
dimensional leaves in the complement U r Σ to an analytic subset Σ of
codimension > 2, called the singular locus of F.

Usually we will assume that the singular locus Σ is maximal, i.e., the
foliation cannot be analytically extended on any set larger than U rΣ.

The second part of Proposition 2.7 motivates the following important
definition.

Definition 2.25. Two holomorphic vector fields F ∈ D(U), F ′ ∈ D(U ′)
with singular loci Σ, Σ′ of codimension > 2 are holomorphically orbitally
equivalent if the singular foliations F, F′ they generate, are holomorphically
equivalent, i.e., there exists a biholomorphism H : U → U ′ which maps Σ
into Σ′ and is a biholomorphism of foliations outside these loci.

Proposition 2.7 remains valid also for singular holomorphic foliations: if
two such foliations are holomorphically equivalent, then the corresponding
vector fields are orbitally equivalent, i.e., related by the identity (2.3) with
the holomorphic function ρ nonvanishing in U .

Indeed, from Proposition 2.7 it follows that for the holomorphically or-
bitally equivalent fields there exists a holomorphic function ρ satisfying (2.3)
and nonvanishing outside Σ = Sing(F ). Since Σ has codimension > 2, ρ
must be nonvanishing everywhere on U .

Changing only one adjective in Definition 2.25 (requiring that H be
merely a homeomorphism), we obtain the definition of topologically orbitally
equivalent vector fields. This weaker equivalence cannot be translated into
a formula similar to (2.3), since homeomorphisms in general do not act on
the vector fields.

2E. Complex separatrices. Foliations with isolated singularities may
have multiply-connected leaves, i.e., leaves with a nontrivial holonomy group.
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Recall that a (singular) analytic curve S ⊂ U is a complex analytic set of
complex dimension 1 at its smooth points. Intrinsic structure of irreducible
components of analytic curves is relatively easy. This result can be found,
e.g., in [Chi89, §6].

Theorem 2.26. The germ of an irreducible analytic curve S ⊂ (Cn, 0)
admits a holomorphic injective map

γ : (C1, 0) → (Cn, 0), t 7→ γ(t) ∈ S. (2.8)

The map γ is called local uniformization, or local parametrization of ana-
lytic curves. It is obviously nonconstant, and without loss of generality one
may assume that the derivative d

dtγ(t) is nonvanishing outside the origin
t = 0. The local parametrization is defined uniquely modulo a biholomor-
phism: for any other injective parametrization γ′ there exists h ∈ Diff(C1, 0)
such that γ′ = γ ◦ h (cf. with Exercise 2.1).

Let F be a singular holomorphic foliation on an open domain U with
the singular locus Σ.

Definition 2.27. A complex separatrix of a singular holomorphic foliation
F at a singular point a ∈ Sing(F) is a local leaf L ⊂ (U, a)rΣ whose closure
L ∪ {a} is the germ of an analytic curve.

Since the leaves are by definition connected, the closure is irreducible (as
a germ) at any it’s point, hence (by the above uniformization arguments)
the complex separatrix is topologically a punctured disk near the singularity.
The fundamental group of the separatrix is nontrivial (infinite cyclic), thus
the holomorphic map generating the local holonomy group is an invariant of
the singular foliation. Note that the leaves are naturally oriented by their
complex structure, so the loop generating the local fundamental group is
uniquely defined modulo free homotopy.

In other words, every singular point that admits a complex separatrix,
produces at least one holomorphic germ of a self-map that is an analytic
invariant of the foliation. Later, in §14 we will show that every planar
foliation (on a complex 2-dimensional manifold) has at least one separa-
trix through each singularity. Besides, by blow-up (desingularization) and
Poincaré compactification, two related operations discussed in detail in §8
and §25A respectively, one can often create multiply-connected leaves of
singularities extending a given singular foliation.

The rest of this section consists of a few examples important for future
applications.

Example 2.28. Consider first the singular foliation spanned by a diagonal
linear system

ẋ = Ax, A = diag{λ1, . . . , λn}, λj 6= 0. (2.9)
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This foliation has an isolated singularity (of codimension n) at the origin,
and all coordinate axes are complex separatrices.

Consider the first coordinate axis S1 = {x2 = · · · = xn = 0} and the
separatrix L1 = S1 r {0}. The loop γ = {|x1| = 1} parameterized coun-
terclockwise is the canonical generator of L1. Choose the affine hyperplane
τ = {x1 = 1} ⊂ Cn as the cross-section to S1 at the point (1, 0, . . . , 0) ∈ S1.
A solution of the system (the parameterized leaf of the foliation) passing
through the point (1, b2, . . . , bn) ∈ τ is as follows:

C1 3 t 7→ x(t) = (expλ1t, b2 expλ2t, . . . , bn expλnt) ∈ Cn.

The image of the straight line segment [0, 2πi/λ1] ⊂ C on the t-plane coin-
cides with the loop γ when b = 0 (i.e., on the separatrix S1) and is uniformly
close to this loop on all leaves near S1. The endpoints x(2πi/λ1) all belong
to τ and hence the holonomy map M1 : Cn−1 → Cn−1 is linear diagonal,

b 7→ M1b, M1 = diag{2πiλj/λ1}n
j=2. (2.10)

The other holonomy maps Mk for the canonical loops on the separatrices Sk

parallel to the kth axis, are obtained by obvious relabelling of the indices.

Particular cases of this result are of special importance.

Example 2.29. Consider an integrable planar foliation given by the Pfaffian
equation ω = 0 with an exact form ω = du, u ∈ O(C2, 0). If u has a
Morse critical point, then in suitable analytic coordinates (x, y) the germ
u takes the form u = xy, hence the foliation is given by the linear form
x dy + y dx = 0 corresponding to the vector field ẏ = y, ẋ = −x. The
holonomy operators corresponding to the two coordinate axes, are both
identical.

Integrable foliations with more degenerate singularities will be treated
in detail in §11.

Example 2.30. Let n = 2. Consider the vector field F = (x + y) ∂
∂x +

y ∂
∂y corresponding to a linear vector field with a nontrivial Jordan matrix.

The corresponding singular foliation has only one complex separatrix, the
punctured axis S = {y = 0}.

Consider the standard cross-section τ = {x = 1}. Solutions of the differ-
ential equation with the initial condition (x0, y0) can be written explicitly,

x(t) = (x0 + ty0) exp t, y = y0 exp t.

Let t(y0) be another moment of complex time when the solution close to
the separatrix again crosses τ after continuing along a path close to the
standard loop on the separatrix; by definition, this means that we consider
the initial point with x0 = 1 and x(t(y0)) ≡ 1, i.e., 1+t(y0)y0 = 1/ exp t(y0).
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If the holonomy map is linear, then y(t(y0)) = λy0 identically in y0, i.e.,
exp t(y0) = λ is a constant. Substituting this into the previous identity, we
obtain 1 + t(y0)y0 = 1/λ. This is impossible in the limit y0 → 0 unless
λ = 1. On the other hand, λ = 1 is also impossible since t(y0) 6≡ 0.

Thus the holonomy map cannot be linear. The principal term of this
map in a more general setting is computed in Proposition 27.14.

This example shows that a linear foliation may have nonlinear (and even
nonlinearizable) holonomy.

2F. Suspension of a self-map. The construction of holonomy associates
with any loop γ on a leaf L ∈ F of a holomorphic foliation F the holomorphic
self-map ∆γ . Very often the inverse problem appears: given an invertible
holomorphic self-map f , construct a foliation for which this self-map would
be the holonomy, associated with a loop on a leaf.

We will show that in absence of additional constraints on the phase space
M and the leaf L, this problem is always trivially solvable. The construction
is well known in the real analysis as suspension of a map to a flow.

Theorem 2.31. Any biholomorphic germ f ∈ Diff(Cn, 0) can be realized as
the holonomy map along a loop on the leaf of a holomorphic foliation on an
(n + 1)-dimensional holomorphic manifold Mn+1.

Construction of the foliation. For simplicity we discuss only the case
n = 1: the general case requires only minimal modifications.

Consider the segment [0, 1] ⊂ C and let U be its ε-neighborhood, ε < 1
2 .

In the Cartesian product M̃ = U×(C, 0) with the coordinates (z, w) consider
the trivial foliation F0 by “horizontal lines” {w = const}.

Any self-map from f ∈ Diff(C1, 0) can be considered as a map
f : (τ0, 0) → (τ1, 0), w 7→ f(w), between the cross-sections τ0 = {z = 0} and
τ1 = {z = 1}. The latter can be extended as a holomorphic invertible map
f : (z, w) 7→ (z+1, f(w)) between the open sets M0 = {|z| < ε}×(C, 0) ⊂ M̃

and M1 = {|z − 1| < ε} × (C, 0) ⊂ M̃ . By construction, this map preserves
the restriction of the foliation F0 on the open sets Mi.

The quotient space M = M̃/f is defined as the topological space ob-
tained from M̃ by identification of all points a and f(a). This space inherits
the structure of an (abstract) holomorphic manifold (the charts are inherited
from those on M). Moreover, since f preserves the foliation, the quotient
manifold M carries a well defined foliation F. Two different cross-sections
τ0, τ1 ⊂ M̃ after identification become a single cross-section τ to the leaf L
of the foliation F obtained from the zero leaf {w = 0} ∈ F0, and the segment
[0, 1] on this leaf becomes a closed loop on L. The holonomy of the foliation
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F, associated with the loop γ ⊂ L, by construction coincides with the map
f which is transformed into the self-map. ¤

The construction can be modified by a number of ways, while keeping
the principal idea the same. If M̃ is a manifold with a foliation F0 on it,
and f : M0 → M1 is a biholomorphic map between open subsets of M̃ , which
is an automorphism of the foliation F0, then the quotient space M = M̃/f
is a new manifold with a different topology, which carries a holomorphic
foliation on it.

Exercises and Problems for §2.

Exercise 2.1. Let S ⊂ (Cn, 0) be the germ of an irreducible analytic curve and
γ an injective analytic parametrization. Prove that any other holomorphic map
γ′ : (C1, 0) → (Cn, 0) with the range in S differs from γ by a holomorphic map
h : (C1, 0) → (C1, 0) so that γ′ = γ ◦ h.

Problems 2.2–2.7 together constitute a proof of the Frobenius Theorem 2.9.

Problem 2.2. Prove that vector fields generating an integrable distribution, are
in involution, i.e., always satisfying condition (2.4).

Prove that Pfaffian forms generating an integrable distribution, are in involu-
tion, i.e., satisfy the conditions (2.5).

Problem 2.3. Prove that two holomorphic vector fields F, F ′ ∈ D(M) on a holo-
morphic manifold M , have identically zero commutator, [F, F ′] ≡ 0, if and only if
their flows exp(tF ), exp(t′F ′) ∈ Diff(M) commute for all complex values of t, t′ ∈ C.

Formulate and prove an analog of this result for incomplete vector fields (i.e.,
when the flows are not globally defined for all values of t, t′, as in the case where
U ⊆ C2 is a noninvariant planar domain).

Problem 2.4. Prove that any tuple of everywhere linearly independent commuting
vector fields generates an integrable distribution tangent to leaves of a holomorphic
foliation.

Problem 2.5. Let F1, . . . , Fk be holomorphic everywhere linearly independent
vector fields in involution (i.e., satisfying condition (2.4)).

Construct another tuple of holomorphic vector fields F ′1, . . . , F
′
k spanning the

same distribution, such that the fields [F ′i , F
′
j ] ≡ 0 for all 1 6 i, j 6 k.

Prove that vector fields in involution generate an integrable distribution.

Problem 2.6. Prove that for any differential 1-form ω and two vector fields F,G
on a manifold M ,

dω(F,G) = F ω(G)−Gω(F )− ω([F,G]) (2.11)

(the right hand side contains the evaluation of ω on the fields F, G and [F,G] and
their derivatives along G and F ).

Problem 2.7. Prove that a tuple of everywhere linearly independent 1-forms sat-
isfying (2.5), defines an integrable distribution.
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Exercise 2.8. Prove that a nonvanishing Pfaffian form ω in C3 defines an integrable
distribution, if and only if ω ∧ dω = 0.

Problem 2.9. Prove that each holonomy operator g corresponding to any sepa-
ratrix of an integrable foliation du = 0 with an analytic potential u ∈ O(x, y), is
periodic: some iterated power of g is identity.

Exercise 2.10. Construct two foliations having leaves with holomorphically con-
jugated holonomy groups, which are themselves not holomorphically conjugate in
neighborhoods of the leaves.

Exercise 2.11. Is it always possible to rectify simultaneously two nonsingular
vector fields? Two commuting nonsingular vector fields? Give a simple sufficient
condition guaranteeing such simultaneous rectification.

Exercise 2.12. Consider the foliation {ω = 0} on C2 = {(z, t)} defined by a
meromorphic Pfaffian 1-form

ω =
dz

z
−

n∑

j=0

λj dt

t− aj
, λj ∈ C,

n∑
0

λj = 0,

and its extension on C× P1.
Prove that the projective line L = {0} × P1 is a separatrix of this foliation

carrying singular points (0, aj), j = 0, . . . , n. Compute the holonomy group of the
leaf Lr (singular points).

Exercise 2.13. The same question about the foliation on Cm × P1 defined by the
vector Pfaffian form

dz − Ωz = 0, Ω =
n∑
0

Aj dt

t− aj
,

where Aj ∈ Mat(m,C) are commuting matrix residues of the meromorphic matrix
1-form Ω.

Problem 2.14. Consider the Riccati equation

dz

dt
= a(t) z2 + b(t) z + c(t), a, b, c ∈ M(P) ∼= C(t), (2.12)

with meromorphic coefficients a, b, c having poles only on the finite point set Σ ⊆ P.
Is it true that solutions of this equation can be continued along any path on the
t-plane, avoiding the singular locus Σ?

Prove that equation (2.12) defines a singular holomorphic foliation F on the
compactified phase space P1 × P1, which is transversal to any “vertical” projective
line {t = a}, a /∈ Σ. Show that each leaf of F can be continued over any path in
the t-sphere, avoiding the singular locus. Prove that the induced transformation
between any two cross-sections {t = a} × P1 and {t = b} × P1, a, b /∈ U , is a well-
defined Möbius transformation (fractional linear map z 7→ αz+β

γz+δ with αδ−βγ 6= 0).
Does F always possess a separatrix?

Exercise 2.15. How many separatrices a homogeneous vector field of degree r on
C2 may have? How many separatrices a generic homogeneous vector field has?
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3. Formal flows and embedding theorem

The assumption on convergence of Taylor series for the right hand sides of
differential equations and their respective solutions is a very serious restric-
tion: if it holds, then one can use various geometric tools as described in
§2. However, considerable information can be gained without the conver-
gence assumption, on the level of formal power (Taylor) series. For natural
reasons, the corresponding results have more algebraic flavor.

In this section we introduce the class of formal vector fields and formal
morphisms (self-maps), and prove that the flow of any such formal field
can be correctly defined as a formal automorphism. The correspondence
“field 7→ flow” can be inverted for maps with unipotent linearization: as
was shown by F. Takens in 1974, any such formal map can be embedded
in a unique formal flow [Tak01]. In §4 we establish classification of formal
vector fields by the natural action of formal changes of variables.

3A. Formal vector fields and formal self-maps. For convenience, we
will always assume that all Taylor series are centered at the origin, and use
the standard multi-index notation: for α = (α1, . . . , αn) ∈ Zn

+ we denote
|α| = α1 + · · ·+ αn and α! = α1! · · ·αn!.

Definition 3.1. A formal (Taylor) series at the origin in Cn is the expression

f =
∑
α

cαxα, α ∈ Zn
+, cα ∈ C. (3.1)

The minimal degree |α| corresponding to a nonzero coefficient cα, is called
the order of f .

The set of all formal series is denoted by C[[x]] = C[[x1, . . . , xn]]. It
is a commutative infinite-dimensional algebra over C which contains as a
proper subset the algebra of germs of holomorphic functions, isomorphic to
the algebra C{x1, . . . , xn} of converging series.

Definition 3.2. The canonical basis of C[[x]] is the collection of all mono-
mials xα, α ∈ Zn

+, ordered in the following way: (i) all monomials of lower
degree |α| precede all monomials of higher degree, and (ii) all monomials of
the same degree are ordered lexicographically. This order will be denoted
deglex-order.

Since the series may diverge, evaluation of f(x0) at any point x0 ∈ Cn

other than x0 = 0, makes no sense. However, without risk of confusion we
will denote the free term of a series f ∈ C[[x]] by f(0) and the coefficient
cα by 1

α!
∂αf
∂xα (0). Under these agreements the Taylor formula becomes a

definition of the Taylor series f =
∑

α>0
1
α!

∂αf
∂xα (0) xα. Sometimes we write
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f(x) as an indication of the formal variables x = (x1, . . . , xn) in which the
series f depends.

All formal partial derivatives ∂αf/∂xα of a formal series f are well de-
fined in the class C[[x]] as termwise derivatives.

The subset of C[[x]] which consists of formal series without the free term,
is (as one can easily verify) a maximal ideal of the commutative ring C[[x]];
it will be denoted by

m = {f ∈ C[[x]] : f(0) = 0} =
{ ∑

|α|>1

cαxα

}
.

The maximal ideal is unique (again a simple exercise). In other words, the
ring C[[x]] is a local ring .

For any finite k ∈ N the space of kth order jets can be described as the
quotient

Jk(Cn, 0) = C[[x1, . . . , xn]]/mk+1.

As a quotient ring, the affine finite-dimensional C-space Jk(Cn, 0) inherits
the structure of a commutative C-algebra.

Definition 3.3. The truncation of formal series to a finite order k is the
canonical projection map jk : C[[x]] → Jk(Cn, 0), f 7→ f mod mk+1.

The name comes from the natural identification of Jk(Cn, 0) with poly-
nomials of degree 6 k in the variables x1, . . . , xn. If l > k is a higher order,
then ml+1 ⊂ mk+1 so that the truncation operator jk naturally “descends”
as the projection J l(Cn, 0) → Jk(Cn, 0) which will also be denoted by jk.

In other words, a formal Taylor series f ∈ C[[x]] uniquely defines the
k-jet jkf of any finite order k so that C[[x1, . . . , xn]] is in a sense the limit
of the jet spaces Jk(Cn, 0) as k → ∞. We will sometimes refer to formal
series as infinite jets and write C[[x1, . . . , xn]] = J∞(Cn, 0).

The canonical monomial basis in C[[x]] projects into canonically deglex-
ordered monomial bases in all jet spaces Jk(Cn, 0). Convergence in C[[x]] is
defined via finite truncations.

Definition 3.4. A sequence {fj}∞j=1 ⊂ C[[x]] is said to be convergent, if and
only if all its truncations jkfj converge in the respective finite-dimensional
k-jet space Jk(Cn, 0) for any finite k > 0.

Remark 3.5 (important). All formal algebraic constructions described
above can be implemented over the field R rather than C as the ground
field. Moreover, for future purposes we will need the algebra A[[x]] of for-
mal power series in the indeterminates x = (x1, . . . , xn) with the coefficients
belonging to more general C- or R-algebras A. The principal examples are
the algebras A = C[λ1, . . . , λm] of polynomials in auxiliary indeterminates
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or the algebra A = O(U) of holomorphic functions of additional variables
λ1, . . . , λm.

After introducing the algebra of “formal functions” we can define formal
vector fields and formal maps via their algebraic (functorial) properties as
in §1G.

With any vector formal series F = (F1, . . . , Fn) (n-tuple of elements
from C[[x]]) one can associate a derivation F =

∑n
1 Fj∂/∂xj ∈ DerC[[x]] of

the algebra C[[x]], a C-linear application satisfying the Leibnitz rule (cf. with
(1.27)),

F : C[[x]] → C[[x]], F(gh) = g (Fh) + h (Fg).
Conversely, any derivation F ∈ DerC[[x]] is of the form F =

∑n
1 Fj∂/∂xj

with the components Fj = Fxj . By formal vector fields, we mean both
realizations, F ∈ C[[x]]n or F ∈ DerC[[x]]. The field F is said to have
singularity (at the origin), if all these series are without free terms, Fj(0) =
0, j = 1, . . . , n.

The collection of formal vector fields will be denoted D[[Cn, 0]]. It is
a C-linear (infinite dimensional) space which possesses additional algebraic
structures of the module over the ring C[[x]]. The commutator (Lie bracket)
of formal fields is defined in the usual way as [F,G] = FG−GF.

In a parallel way, a vector formal series H = (h1, . . . , hn) ∈ C[[x]]n can
be identified with an automorphism H ∈ AutC[[x]] of the algebra C[[x]]
if H(0) = 0, i.e., hj ∈ m. Under this assumption, for any formal series
f =

∑
α cαxα ∈ C[[x]] one can correctly define the substitution

Hf(x) = f(H(x)) =
∑

α>0

cαhα =
∑

α>0

cαhα1
1 (x) · · ·hαn

n (x). (3.2)

Indeed, any k-truncation of f(H(x)) is completely determined by the k-
truncations of f and H. We will say that H is tangent to identity, if j1H =
id.

The operator H defined by (3.2), is an automorphism of the algebra
C[[x]], a C-linear map respecting the multiplication,

H : C[[x]] → C[[x]], H(fg) = Hf ·Hf.

Conversely, any homomorphism preserving convergence in C[[x]] is of the
form f 7→ f ◦ H for an appropriate vector series H ∈ C[[x]]n with the
components hj = Hxj ∈ C[[x]]. By a formal map we mean either H or H,
depending on the context. If H is an homomorphism, then it must map
the maximal ideal m ⊂ C[[x]] into itself and hence hj(0) = 0, j = 1, . . . , n,
which can be abbreviated to H(0) = 0.

If H is invertible (an isomorphism of the algebra C[[x]]), we say it is a
formal isomorphism of Cn at the origin. The collection of such isomorphisms
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forms a group denoted by Diff[[Cn, 0]] with the operation of composition.
The latter can be defined either via substitution of the series, or as the
composition of the operators acting on C[[x]].

Since the maximal ideal m is preserved by any formal map H ∈
Diff[[Cn, 0]] and any singular formal vector field F ∈ D[[Cn, 0]], F (0) = 0,

H(m) = m, F(m) ⊆ m,

truncation of the series at the level of k-jets commutes with the action of
H and F, therefore defining correctly the isomorphism jkH : Jk(Cn, 0) →
Jk(Cn, 0) and derivation jkF : Jk(Cn, 0) → Jk(Cn, 0) respectively, which
can be identified with the k-jets of the formal map H and the formal vector
field F . We wish to stress that jkF is defined as an automorphism of the
finite-dimensional jet space only if F (0) = 0.

3B. Inverse function theorem. For future purposes we will need the
formal inverse function theorem.

Theorem 3.6. Let H be a formal map with the linearization matrix A =(
∂H
∂x

)
(0) which is nondegenerate. Then H is invertible in Diff[[Cn, 0]].

If A = E is the identity matrix and H = (h1, . . . , hn), hi(x) = xi +
vi(x) mod mk+1, where vi are homogeneous polynomials of degree k > 2,
then the formal inverse map H−1 = (h′1, . . . , h

′
n) has the components h′i(x) =

xi − vi(x) mod mk+1.

Clearly, the first assertion of the theorem follows from the second asser-
tion applied to the formal map A−1H.

Recall that a finite-dimensional linear operator A : Cn → Cn is unipo-
tent , if A− E is nilpotent, (A−E)n = 0.

Lemma 3.7. If H ∈ Diff[[Cn, 0]] is a formal map with the identical lin-
earization matrix (∂H

∂x ), then its truncation jkH considered as an automor-
phism of the finite-dimensional jet algebras Jk(Cn, 0), is a unipotent map
for any finite order k.

Proof. For any monomial xα from the canonical basis, Hxα = xα+(higher
order terms)= xα+(linear combination of monomials of higher deglex-
order). ¤

Proof of Theorem 3.6. Consider the homomorphism H ∈ AutC[[x]] and
denote N = H − E the formal “finite difference” operator (E = id denotes
the identical operator), Nf = f ◦H − f (in the sense of the substitution of
formal series). By Lemma 3.7, all finite truncations jkN are nilpotent.

Define the operator H−1 as the series

H−1 = E−N + N2 −N3 ± · · · . (3.3)
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This series converges (in fact, stabilizes) after truncation to any finite order
because of the above nilpotency, hence by definition converges to an oper-
ator on C[[x]] satisfying the identities H ◦H−1 = H−1 ◦H = E. It is an
homomorphism of algebra(s), since for any a, b ∈ C[[x]] and their images
a′ = Ha, b′ = Hb which also can be chosen arbitrarily, we have H(ab) = a′b′

and therefore

H−1(a′b′) = H−1H(ab) = ab = (H−1a′)(H−1b′).

Direct computation of the components of the inverse map yields

h′i = H−1xi = xi −Nxi + · · · = xi − (hi(x)− xi) + · · · = xi − vi(x) + · · ·
as asserted by the theorem. ¤

The above formal construction is the algebraization of the recursive com-
putation of the Taylor coefficients of the formal inverse map H−1(x). Note
that stabilization of truncations of the series (3.3) means that computation
of the terms of any finite degree k of the components h′i of the inverse map
is achieved in a finite (depending on k) number of steps.

3C. Integration and formal flow of formal vector fields. Consider
an (autonomous) formal ordinary differential equation

ẋ = F (x), F = (F1, . . . , Fn) ∈ D[[Cn, 0]] ∼= C[[x]]n (3.4)

with a formal right hand side part F . Since evaluation of a formal series at
any point other than the origin makes no sense, the “standard” definition of
solutions can at best be applied to constructing a solution with the initial
condition x(0) = 0. Yet in the most interesting case where F (0) = 0, this
solution is trivial, x(t) ≡ 0.

The alternative, suggested by Remark 1.20, is to define a one-parametric
subgroup of formal self-maps {Ht : t ∈ C} ⊂ Diff[[Cn, 0]] satisfying the con-
dition

Ht ◦Hs = Ht+s ∀t, s ∈ C, H0 = E. (3.5)
Together with the group {Ht} of self-maps we always consider the corre-
sponding one-parameter group of automorphisms {Ht} ⊂ AutC[[x]].

This subgroup is said to be holomorphic, if all finite truncations jkHt

depend holomorphically on t. For a holomorphic subgroup the derivative

F =
dHt

dt

∣∣∣∣
t=0

= lim
t→0

t−1(Ht −E) : C[[x]] → C[[x]] (3.6)
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is a formal vector field,

F(fg) =
d

dt

∣∣∣∣
t=0

Ht(fg) =
d

dt

∣∣∣∣
t=0

[
(Htf)(Htg)

]

=
[

d

dt

∣∣∣∣
t=0

(Htf)
]
(H0g) + (H0f)

[
d

dt

∣∣∣∣
t=0

(Htg)
]

= g Ff + f Fg.

Definition 3.8. A holomorphic one-parametric subgroup of formal self-
maps {Ht} ⊆ Diff[[Cn, 0]] is a formal flow of the formal vector field F
corresponding to the derivation F ∈ DerC[[x]], if the corresponding group
of automorphisms {Ht} satisfies the identity

F =
dHt

dt

∣∣∣∣
t=0

∈ DerC[[x]]. (3.7)

The formal field F is called the generator of the subgroup {Ht}.
The above observation means that any analytic one-parametric subgroup

of formal maps is always a formal flow of some formal field F (3.7). The
following theorem is a formal analog of Proposition 1.19 showing that, con-
versely, any formal vector field F generates an holomorphic one-parametric
subgroup of formal self-maps {Ht} ⊂ Diff[[C, 0]].

Denote by Fm the iterated composition F ◦ · · · ◦ F : C[[x]] → C[[x]] (m
times) and consider the exponential series

Ht = exp tF = E + tF +
t2

2!
F2 + · · ·+ tm

m!
Fm + · · · . (3.8)

Theorem 3.9. Any singular formal vector field F admits a formal flow
{Ht}. This flow is defined by the series (3.8) which converges for all values
of t ∈ C and depends analytically on t.

Proof. We have to show that this series converges and its sum is an iso-
morphism of the algebra C[[x]] for any t ∈ C. Then the identity (3.7) will
follow automatically by the termwise differentiation of the series (3.8).

Convergence of the series (3.8) can be seen from the following argument.
Let k be any finite order. Truncating the series (3.8), i.e., substituting
jkF instead of F, we obtain a matrix formal power series. This series is
always convergent: for an arbitrary choice of the norm | · | on the finite-
dimensional space Jk(Cn, 0) the norm of the operator jkF is finite, |jkF| =
r < +∞, and hence the series (3.8) is majorized by the convergent scalar
series 1 + |t|r + |t|2r2/2! + · · · = exp |t|r < +∞ for any finite t ∈ C; cf. with
Definition 1.7. Denote its sum by exp jkF : Jk(Cn, 0) → Jk(Cn, 0).

Truncations exp jkF for different orders k agree in common terms: if
l > k, then jk(exp t jlF) = exp t jkF. This allows us to define the sum
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of the series exp tF as a linear operator Ht : C[[x]] → C[[x]] via its finite
truncations of all orders.

The group property Ht+s = Ht ◦Hs equivalent to the group property
(3.5), follows from the formal identity exp(t+s) = exp t · exp s, since tF and
sF obviously commute. It remains to show that Ht is an algebra homomor-
phism, i.e., Ht(fg) = Htf Htg for any two series f, g ∈ C[[x]].

By the iterated Leibnitz rule, for any f, g ∈ C[[x]],

Fk(fg) =
∑

p+q=k

(p+q)!
p!q! Fpf · Fqg.

Substituting this identity into the exponential series, we have

Ht(fg) =
∑

k

tk

k! F
k(fg) =

∑

k

∑

p+q=k

tp+q

p!q! Fpf · Fqg

=
(∑

p

tp

p! F
pf

) · (
∑

q

tq

q! F
qg

)
= Htf ·Htg. ¤

Motivated by the series (3.8), we will often use the exponential notation:
if F is a formal or analytic vector field with a singular point at the origin,
we will denote by exp tF the time t flow (formal or analytic) of this field.

3D. Embedding in the flow and matrix logarithms.

Definition 3.10. A holomorphic germ H ∈ Diff(Cn, 0) or a formal self-map
H ∈ Diff[[Cn, 0]] is said to be embeddable, if there exists a holomorphic germ
of a vector field F (resp., a formal vector field F ∈ D[[Cn, 0]]) such that H
is a time one (resp., formal time one) flow map of F , i.e., H = expF .

For a linear system ẋ = Ax with constant coefficients, the flow consists of
linear maps x 7→ (exp tA)x; see (1.12). Therefore for a linear map x 7→ Mx,
M ∈ GL(n,C), it is natural to consider the embedding problem in the class
of linear vector fields F (x) = Ax. Then the problem reduces to finding a
matrix logarithm, a matrix solution of the equation

expA = M, A, M ∈ Mat(n,C). (3.9)

Clearly, the necessary condition for solvability of this equation is nondegen-
eracy of M . It also turns out to be sufficient for matrices over the field
C.

Lemma 3.11. For any nondegenerate matrix M ∈ Mat(n,C), detM 6= 0,
there exists the matrix logarithm A = ln M , a complex matrix satisfying the
equation (3.9)

Proof. We give two constructions of matrix logarithms for nondegenerate
matrices.
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eigenvalues
of M

U

∂U

0

Figure I.3. Construction of the integral representation of the matrix
logarithm for a nondegenerate matrix with the given spectrum

1. First, for a scalar matrix M = λE, 0 6= λ ∈ C, the logarithm can be
defined as lnM = (lnλ) E, for any choice of lnλ. A matrix having a single
nonzero eigenvalue of high multiplicity has the form M = λ(E + N), where
N is a nilpotent (upper-triangular) matrix. Its logarithm can be defined
using the formal series for the scalar logarithm as follows:

lnM = ln(λE) + ln(E + N) = (lnλ) E + N − 1
2N2 + 1

3N3 − · · · (3.10)

(the sum is finite). This formula gives a well-defined answer by virtue of the
formal identity exp(x− x2

2 + x3

3 ± . . . ) = 1 + x, since the matrices E and N
commute.

An arbitrary matrix M can be reduced to a block diagonal form with
each block having a single eigenvalue. The block diagonal matrix formed by
logarithms of individual blocks solves the problem of computing the matrix
logarithm in the general case.

2. The second proof uses the integral representation for analytic matrix
functions. For any function f(x) complex analytic in a domain U ⊂ C
bounded by a simple curve ∂U and any matrix M with all eigenvalues in U ,
the value f(M) can be defined by the contour integral

f(M) =
1

2πi

∮

∂U
f(λ)(λE −M)−1 dλ (3.11)

[Gan59, Ch. V, §4]. In application to f(x) = lnx we have to choose a simple
loop ∂U containing all eigenvalues of M inside U but the origin λ = 0 outside
(cf. with Fig. I.3). Then in the domain U one can unambiguously select a
branch of complex logarithm lnλ which can be substituted into the integral
representation.

To prove that the integral representation gives the same answer as before,
it is sufficient to verify it only for the diagonal matrices, when the inverse
can be computed explicitly. The advantage of this formula is the possibility
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of bounding the norm | lnM | defined by the above integral, in terms of |M |
and |M−1|. ¤

Remark 3.12. The matrix logarithm is by no means unique. In the first
construction one has the freedom to choose branches of logarithms of eigen-
values arbitrarily and independently for different Jordan blocks. In the
second construction besides choosing the branch of the logarithm, there ex-
ists a freedom to choose the domain U (i.e., the loop ∂U encircling all the
eigenvalues of M but not the origin).

Remark 3.13. There is a natural obstruction for extracting the matrix
logarithm in the class of real matrices. If expA = M for some real matrix
A, then M can be connected with the identity E by a path of nondegenerate
matrices exp tA, in particular, M should be orientation-preserving. If M is
nondegenerate but orientation-reverting, it has no real matrix logarithm.

However, there are more subtle obstructions. Consider the real matrix
M =

(−1 1
−1

)
with determinant 1. If M = expA, then by (1.16) exp trA = 1

so that for a real matrix necessarily trA = 0. The two eigenvalues cannot be
simultaneously zero, since then the exponent will have the eigenvalues both
equal to 1. Therefore the eigenvalues must be different, in which case the
matrix A and hence its exponent M must be diagonalizable. The contradic-
tion shows impossibility of solving the equation expA = M in the class of
real matrices.

3E. Logarithms and derivations. Inspired by the construction of the
matrix exponential, one can attempt to prove that for any formal map H ∈
Diff[[Cn, 0]] there exists a formal vector field F whose formal time one flow
coincides with H, as follows.

Consider an arbitrary finite order k and the k-jet Hk = jkH considered
as an isomorphism of the finite-dimensional C-algebra Fk = Jk(Cn, 0). By
Lemma 3.11, there exists a linear map Fk : Fk → Fk such that expFk = Hk.

Assume that for some reasons

(i) jets of the logarithms Fk of different orders agree after truncation,
i.e., jkFl = Fk for l > k, and

(ii) each Fk is a derivation of the commutative algebra Fk, thus a k-jet
of a vector field.

Then together these jets would define a derivation F of the algebra F =
C[[x]].

The first objective can be achieved if Fk are truncations of some poly-
nomial or infinite series. There is only one such candidate, the loga-
rithmic series lnH : C[[x]] → C[[x]], obtained from the formal series for
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ln(1 + x) = x− 1
2x2 + 1

3x3 ∓ · · · by substitution,

lnH = (H−E)− 1
2
(H−E)2 +

1
3
(H−E)3 ∓ · · · (3.12)

(cf. with (3.10)). Until the end of this section we use the notation lnH only
in the sense of the series (3.12).

The series for lnH does not converge everywhere even in the finite-
dimensional case: the domain of convergence contains the ball |H−E| < 1
and all unipotent finite-dimensional matrices, but most certainly not the
matrix −E. Besides that difficulty, it is absolutely not clear why the formal
logarithm of an isomorphism of the commutative algebra C[[x]], even if it
converges, must be a derivation: no simple arguments similar to the one
used in the proof of Theorem 3.9, exist (sometimes this circumstance is
overlooked).

Let F be a commutative C-algebra of finite dimension n over C and H
an automorphism of F.

Theorem 3.14. The series (3.12) converges for all unipotent automor-
phisms H of a finite dimensional algebra F and its sum F = lnH in this
case is a derivation of this algebra.

Proof using the Lie group tools. Consider the matrix Lie group T ⊂
GL(n,C) of upper-triangular matrices with units on the principal diagonal
and the corresponding Lie algebra t ⊂ Mat(n,C) of strictly upper-triangular
matrices.

The exponential series (3.8) and the matrix logarithm (3.12) restricted
on t and T respectively, are polynomial maps defined everywhere. They
are mutually inverse: for any F ∈ t and H ∈ T we have ln expF = F and
exp lnH = H. This follows from the identities ln ez = z, eln w = w expanded
in the series. In particular, exp is surjective.

For any Lie subalgebra g ⊆ t and the corresponding Lie subgroup G ⊆ T

the exponential map exp: g → G is the restriction of (3.8) on g.
By [Var84, Theorem 3.6.2], the exponential map remains surjective also

on G, i.e., exp g = G. We claim that in this case the logarithm maps G into
g. Indeed, if H ∈ G and H = expF for some F ∈ g, then lnH = ln expF =
F ∈ g.

The assertion of the theorem arises if we take G = T∩Aut(F) to be the
Lie subgroup of triangular automorphisms of F ∼= Cn and g = t ∩Der(F) of
triangular derivations of the commutative algebra F. ¤

Remark 3.15. Surjectivity of the exponential map for a subgroup of the
triangular group T is a delicate fact that follows from the nilpotency of the
Lie algebra t. Indeed, by the Campbell–Hausdorff formula, expF · expG =
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expK, where K = K(F,G) is a series which in the nilpotent case is a
polynomial map t× t → t defined everywhere. Thus the image exp g is a Lie
subgroup in G ⊆ T for any subalgebra g, containing a small neighborhood of
the unit E. It is well known that any such neighborhood generates (by the
group operation) the whole connected component of the unit, so that exp g

coincides with this component. If G is simply connected, then exp g = G as
asserted.

Without nilpotency the answer may be different: as follows from Re-
mark 3.13, for two Lie algebras gl(n,R) ⊂ gl(n,C) and the respective Lie
groups GL(n,R) ⊂ GL(n,C), the exponent is surjective on the ambient
(bigger) group but not on the subgroup.

Remark 3.16. Using similar arguments, one can prove that for an arbitrary
automorphism H ∈ Aut(F) sufficiently close to the unit E, the logarithm
lnH given by the series (3.12) is a derivation, lnH ∈ Der(F). This follows
from the fact that ln and exp are mutually inverse on sufficiently small neigh-
borhoods of E and 0 respectively. However, the size of this neighborhood
depends on F.

3F. Embedding in the formal flow. Based on Theorem 3.14, one can
prove the following general result obtained by F. Takens in 1974; see
[Tak01].

Theorem 3.17. Let H ∈ Diff[[Cn, 0]] be a formal map whose linearization
matrix A = ∂H

∂x (0) is unipotent, (A−E)n = 0.
Then there exists a formal vector field F ∈ D[[Cn, 0]] whose linearization

is a nilpotent matrix N , such that H is the formal time 1 map of F .

Proof. As usual, we identify the formal map with an automorphism H of
the algebra F = C[[x1, . . . , xn]] so that its finite k-jets jkH become auto-
morphisms of the finite dimensional algebras Fk = Jk(Cn, 0). Without loss
of generality we may assume that the matrix A is upper-triangular so that
the isomorphism H and all its truncations jkH in the canonical deglex-
ordered basis becomes upper-triangular with units on the diagonal: the jets
jkH are finite-dimensional upper-triangular (unipotent) automorphisms of
the algebras Fk.

Consider the infinite series (3.12) together with its finite-dimensional
truncations obtained by applying the operation jk to all terms. Each such
truncation is a logarithmic series for ln jkH which converges (actually, sta-
bilizes after finitely many steps) and its sum is a derivation jkF of Fk by
Theorem 3.14. Clearly, different truncations agree on the lower order terms,
thus lnH converges in the sense of Definition 3.4 to a derivation F of F.
This derivation corresponds to the formal vector field F as required. ¤
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Exercises and Problems for §3.

Problem 3.1. Let F ∈ D[[Cn, 0]] be a formal vector field corresponding to the
derivation F ∈ DerC[[x]], and {Ht} ⊂ Diff[[Cn, 0]] its formal flow corresponding
to the one-parametric group of automorphisms {Ht} ⊂ AutC[[x]] related by the
identity (3.7).

Prove that in this case d
dtH

t = F ◦Ht for any t on the level of vector formal
series.

Exercise 3.2. Consider the derivation F = ∂
∂x on the algebra C[x] of univariate

polynomials. Prove that the exponential series exp tF is well defined for all values of
t ∈ C as an automorphism of C[x], but is not defined if the algebra C[x] is replaced
by the algebras C[[x]] or O(D), where D = {|x| < 1} is the unit disk.

Problem 3.3. Prove that the integral representation (3.11) coincides with the
standard definition of a matrix function f(M) in the case where f is a (scalar)
polynomial.

Exercise 3.4. Find all complex logarithms of the matrix M =
(−1 1

−1

)
(i.e.,

solutions of the equation expA = M).

4. Formal normal forms

In the same way as holomorphic maps act on holomorphic vector fields by
conjugacy (1.26), formal maps act on formal vector fields. In this section
we investigate the formal normal forms, to which a formal vector field can
be brought by a suitable formal isomorphism.

Definition 4.1. Two formal vector fields F, F ′ are formally equivalent, if
there exists an invertible formal self-map H such that the identity (1.26)
holds on the level of formal series.

The fields are formally equivalent if and only if the corresponding deriva-
tions F,F′ of the algebra C[[x]] are conjugated by a suitable isomorphism
H ∈ Diff[[Cn, 0]] of the formal algebra: H ◦ F′ = F ◦H.

Obviously, two holomorphically equivalent (holomorphic) germs of vec-
tor fields are formally equivalent. The converse is in general not true, as the
formal self-maps may be divergent.

4A. Formal classification theorem. Formal classification of formal vec-
tor fields strongly depends on its principal part, in particular, on properties
of the linearization matrix A =

(
∂F
∂x

)
(0) when the latter is nonzero (cases

with A = 0 are hopelessly complicated if the dimension is greater than one).
We start with the most important example and introduce the definition

of a resonance as a certain arithmetic (i.e., involving integer coefficients)
relation between complex numbers.
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Definition 4.2. An ordered tuple of complex numbers λ = (λ1, . . . , λn) ∈
Cn is called resonant , or, more precisely, additive resonance if there exist
nonnegative integers α = (α1, . . . , αn) ∈ Zn

+ such that |α| > 2 and the
resonance identity occurs,

λj = 〈α, λ〉 , |α| > 2. (4.1)

Here 〈α, λ〉 = α1λ1 + · · ·+αnλn. The natural number |α| is the order of the
resonance.

A square matrix is resonant, if the collection of its eigenvalues (with
repetitions if they are multiple) is resonant. A formal vector field F =
(F1, . . . , Fn) at the origin is resonant if its linearization matrix A =

(
∂F
∂x

)
(0)

is resonant.

Though resonant tuples (λ1, . . . , λn) can be dense in some parts of Cn

(see §5A), their measure is zero.

Theorem 4.3 (Poincaré linearization theorem). A nonresonant formal
vector field F (x) = Ax + · · · is formally equivalent to its linearization
F ′(x) = Ax.

The proof of this theorem is given in the sections §4B–§4C. In fact, it is
the simplest particular case of a more general statement valid for resonant
formal vector fields that appears in §4D.

4B. Induction step: homological equation. The proof of Theorem 4.3
goes by induction. Assume that the formal vector field F is already partially
normalized, and contains no terms of order less than some m > 2:

F (x) = Ax + Vm(x) + Vm+1(x) + · · · ,

where Vm, Vm+1, . . . are arbitrary homogeneous vector fields of degrees
m,m + 1, etc.

We show that in the assumptions of the Poincaré theorem, the term Vm

can be removed from the expansion of F , i.e., that F is formally equivalent
to the formal field F ′(x) = Ax + V ′

m+1 + · · · . Moreover, the corresponding
conjugacy can be in fact chosen as a polynomial of the form H(x) = x +
Pm(x), where Pm is a homogeneous vector polynomial of degree m. The
Jacobian matrix of this self-map is E +

(
∂Pm
∂x

)
.

The conjugacy H with these properties must satisfy the equation (1.26)
on the formal level. Keeping only terms of order 6 m from this equation
and using dots to denote the rest, we obtain(

E +
∂Pm

∂x

)
(Ax + Vm + · · · ) = A(x + Pm(x)) + V ′

m(x + Pm(x)) + · · · .



42 I. Normal forms and desingularization

The homogeneous terms of order 1 on both sides coincide. The next non-
trivial terms appear in the order m. Collecting them, we see that in order
to meet the condition V ′

m = 0, the vector of homogeneous terms Pm must
satisfy the commutator identity

[A, Pm] = −Vm, A(x) = Ax, (4.2)

where A = Ax is the linear vector field, the principal part of F , and the
homogeneous vector polynomials Pm and Vm are considered as vector fields
on Cn. The left hand side of (4.2) is the commutator, [A, P ](x) =

(
∂P
∂x

)
Ax−

AP (x).
Conversely, if the condition (4.2) is satisfied by Pm, the polynomial map

H(x) = x + Pm(x) conjugates F = A + Vm + · · · with the (formal) vector
field F ′(x) = A + · · · having no terms of degree m.

Definition 4.4. The identity (4.2), considered as an equation on the un-
known homogeneous vector field Pm, is called the homological equation.

4C. Solvability of the homological equation. Solvability of the homo-
logical equation depends on invertibility of the operator adA of commutation
with the linear vector field A.

Let Dm be the linear space of all homogeneous vector fields of degree m
(we will be interested only in the case m > 2). This linear space has the
standard monomial basis consisting of the fields

Fkα = xα ∂
∂xk

, k = 1, . . . , n, |α| = m. (4.3)

We shall order elements of this basis lexicographically so that xi precedes
xj if i < j, but ∂

∂xj
precedes ∂

∂xi
. To that end, we assign to each formal

variable x1, . . . , xn pairwise different positive weights w1 > · · · > wn that
are rationally independent. This assignment extends on all monomials and
monomial vector fields if the symbol ∂

∂xj
is assigned the weight −wj . Now

the monomial vector fields can be arranged in the decreasing order of their
weights: the independence condition guarantees that the only different vec-
tor monomials having the same weight can be xα ·xj

∂
∂xj

and xα ·xk
∂

∂xk
with

the same α and j 6= k. The order between these monomials is not essential
for future exposition.

The operator

adA : P 7→ [A, P ], (adA P )(x) =
(

∂P

∂x

)
·Ax−AP (x), (4.4)

preserves the space Dm for any m ∈ N.
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Lemma 4.5. If A is nonresonant, then the operator adA is invertible. More
precisely, if the coordinates x1, . . . , xn are chosen such that A has the upper-
triangular Jordan form, then adA is lower-triangular in the respective stan-
dard monomial basis ordered in the decreasing weight order.

Proof. The assertion of the lemma is completely transparent when A is a
diagonal matrix Λ = diag{λ1, . . . , λn}. In this case each Fkα ∈ Dm is an
eigenvector for adΛ with the eigenvalue 〈λ, α〉 − λk. Indeed, by the Euler
identity,

Fkα = xα




0
...
1
...
0




,

(
∂Fkα

∂x

)
= xα




0
...

α1
x1

. . . αn
xn

...
0




,

so that in the diagonal case ΛFkα = λkFkα, and
(

∂Fkα
∂x

)
Λx = 〈λ, α〉Fkα.

Being diagonal with nonzero eigenvalues, adΛ is invertible.
To prove the lemma in the general case where A is in the upper-triangular

Jordan form, we consider the weight introduced above.
The operator adΛ with the diagonal matrix Λ preserves the weights,

since all vector monomials are eigenvectors for it.
On the other hand, the monomial vector field Jj = xj

∂
∂xj+1

with the
upper-diagonal constant matrix Jj acts by increasing weight. Indeed,

[
xα ∂

∂xk
, xj

∂
∂xj+1

]
= xα

[
∂

∂xk
, xj

∂
∂xj+1

]
+ αj+1x

α xj

xj+1
· ∂

∂xk
.

The second term, if present, has higher weight than Fkα = xα ∂
∂xk

, since
wj > wj+1. The first term is nonzero only if j = k, and in this case reduces
to xα ∂

∂xk+1
, which also has higher weight than Fkα.

It remains to notice that an arbitrary matrix A in the upper-triangular
Jordan normal form is the sum of the diagonal part Λ and a linear combi-
nation of matrices J1, . . . , Jn−1. The operator adA linearly depends on A,
so adA is equal to adΛ modulo a linear combination of the weight-increasing
operators adJj . Therefore, if the monomial fields Fkα are ordered in the de-
creasing order of their weights, as in the standard basis, then the operator
adA is lower-triangular with the diagonal part adΛ. ¤

Proof of Theorem 4.3. Now we can prove the Poincaré linearization the-
orem. By Lemma 4.5, the operator adA is invertible and therefore the
homological equation (4.2) is always solvable no matter what the term
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V = Vm is. Repeating this process inductively, we can construct an infi-
nite sequence of polynomial maps H1,H2, . . . ,Hm, . . . and the formal fields
F1 = F , F2, . . . , Fm, . . . such that Fm = Ax+(terms of order m and more),
and the transformation Hm = id +(terms of order m and more) conjugates
Fm with Fm+1. Thus the composition H(m) = Hm ◦ · · · ◦H1 conjugates the
initial field F1 with the field Fm+1 without nonlinear terms up to order m.

It remains to notice that by construction of Hm+1 the composition
H(m+1) = Hm+1 ◦ H(m) has the same terms of order 6 m as H(m) itself.
Thus the limit

H = H(∞) = lim
m→∞H(m)

(the infinite composition) exists in the class of formal morphisms. By con-
struction, H∗F cannot contain any nonlinear terms and hence is linear, as
required. ¤

Remark 4.6. The formal map linearizing a nonresonant formal vector field
and tangent to the identity, is unique. Indeed, otherwise there would exist
a nontrivial formal map id+h which conjugates the linear field with itself,(

∂h

∂x

)
Ax = Ah(x), i.e., adA h = 0.

But in the nonresonant case the commutator adA is injective, hence h = 0.
Thus the only formal maps conjugating a linear field with itself, are

linear maps x 7→ Bx, with the matrix B commuting with A, [A,B] = 0.

4D. Resonant normal forms: Poincaré–Dulac paradigm. The in-
ductive construction linearizing nonresonant vector fields, can be used to
simplify the resonant ones.

In this resonant case the operator adA = [A, ·] of commutation with the
linear part may be no longer surjective and in general the condition V ′

m = 0,
meaning absence of terms of order m after the transformation, cannot be
achieved.

In the presence of resonances one can choose in each linear space Dm

a complementary (transversal) subspace Nm to the image of the operator
adA, so that

Dm = Nm + adA(Dm) (4.5)
(the sum should not necessarily be direct).

Theorem 4.7 (Poincaré–Dulac paradigm). If the subspaces Nm ⊂ Dm are
transversal to the image of the commutator adA as in (4.5), then any formal
vector field F (x) = Ax + · · · with the linearization matrix A is formally
conjugated to some formal vector field whose all nonlinear terms of degree
m belong to the subspace Nm.
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Proof. If the transformation Hm(x) = x + Pm conjugates the field F (x) =
Ax + · · · + Vm(x) + · · · with another field F ′(x) = Ax + · · · + V ′

m(x) + · · ·
with the same (m− 1)-jet on the level of terms of order m, then instead of
the homological equation (4.2) in the case V ′

m 6= 0, the correction term Pm

must satisfy the equation

adA Pm = V ′
m − Vm. (4.6)

If Nm satisfies (4.5), then (4.6) can always be solved with respect to Pm for
any Vm provided that V ′

m is suitably chosen from the subspace Nm.
The transform Hm does not affect the lower order terms and hence the

process can be iterated for larger values of m exactly as in the nonresonant
case. As a result, one can prove that any formal vector field F is formally
equivalent to a formal field containing only terms belonging to the “comple-
mentary” parts Nm for all m = 2, 3, . . . .

The rest of the proof of Theorem 4.7 is the same as that of the Poincaré–
Dulac theorem. ¤

The choice of the transversal subspaces Nm depends on adA, hence on
the matrix A itself.

Example 4.8. Assume that the matrix A = Λ = diag{λ1, . . . , λn} is diag-
onal. In this case the operator adΛ was already shown to be diagonal in the
vector monomial basis, eventually with some zeros among the eigenvalues.
For diagonal operators on finite-dimensional space the kernel and the image
are complementary subspaces, so one may choose Nm = ker adL ⊂ Dm. The
kernel of the diagonal operator adΛ can be immediately described.

Definition 4.9. A resonant vector monomial corresponding to the reso-
nance λk − 〈λ, α〉 = 0, is the monomial vector field Fkα = xα ∂

∂xk
; see (4.3).

The kernel ker adΛ consists of linear combinations of resonant monomi-
als. From the discussion above it follows immediately that a formal vector
field with diagonal linear part Λx is formally equivalent to the vector field
with the same linear part and only resonant monomials among the nonlinear
terms.

Actually, the assumption on diagonalizability is redundant. The follow-
ing statement is one of the most popular formal classification results.

Theorem 4.10 (Poincaré–Dulac theorem). A formal vector field is formally
equivalent to a vector field with the linear part in the Jordan normal form
and only resonant monomials in the nonlinear part.

Proof. Assume that the coordinates are already chosen so that the lin-
earization matrix A is Jordan upper-triangular.
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Choose the subspace Nm as the linear span of all resonant monomials,
Nm =

⊕
〈λ,α〉−λk=0

C · Fkα.

By Lemma 4.5, the operator Lm = adA |Dm is upper triangular with
the expressions 〈λ, α〉 − λk = 0 on the diagonal. By the choice of Nm,
whenever zero occurs on the diagonal of L, the corresponding basis vector
was included in Nm. This obviously means (4.5). The rest is the Poincaré–
Dulac paradigm. ¤

4E. Belitskii theorem. The choice of the “resonant normal form” (i.e., of
the family of subspaces Nm) in Theorem 4.10, is excessive in the sense that
the dimension of these spaces (the number of parameters in the normal form)
is not minimal. For example, if A is a nonzero nilpotent Jordan matrix, then
all monomials are resonant in the sense of Definition 4.9, whereas the image
of adA is clearly nontrivial. We describe now one possible minimal choice,
introduced by G. Belitskii [Bel79, Ch. II, §7].

Consider the standard Hermitian structure on the space Cn, so that the
basis vectors ej = ∂

∂xj
form an orthonormal basis.

For any natural m > 1 denote by Hm the complex linear space of all ho-
mogeneous polynomials of degree m. We introduce the standard Hermitian
structure in Hm in such a way that the normalized monomials ϕα = 1√

α!
xα

form an orthonormal basis,

(ϕα, ϕβ) = δαβ , ϕα = 1√
α!

xα, α, β ∈ Zn
+, |α| = |β| = m. (4.7)

Here, as usual, α! = α1! · · ·αn! for α = (α1, . . . , αn), 0! = 1 and δαβ is the
standard Kronecker symbol.

Then the linear space Dm of homogeneous vector fields of degree m can
be naturally identified with the tensor product Dm = Hm⊗CCn and inherits
the standard Hermitian structure for which the monomials ϕα⊗ek = 1√

α!
Fαk

form an orthonormal basis.
Given a matrix A ∈ Mat(n,C), denote by A∗ the adjoint matrix obtained

from A by transposition and complex conjugacy: a∗ij = āji. If A(x) = Ax is
the corresponding linear vector field on Cn and, respectively, A∗(x) = A∗x,
then both A,A∗ act as linear differential operators, A =

∑
aijxi

∂
∂xj

and

A∗ =
∑

ājixi
∂

∂xj
, on Hm. Furthermore, the commutation operators adA =

[A, ·] and adA∗ = [A∗, ·] are linear operators on Dm.
The following statement claims that the operators in each pair are mu-

tually adjoint (dual to each other) with respect to the standard Hermitian
structures on the respective spaces.
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Lemma 4.11.

1. The derivation A∗ : Hm → Hm is adjoint to the derivation A (with
respect to the standard Hermitian structure) and vice versa.

2. The commutator adA∗ = [A∗, ·] : Dm → Dm is adjoint to the com-
mutator adA = [A, ·] (with respect to the standard Hermitian structure) and
vice versa.

Proof. 1. The identity (Af, g) = (f,A∗g) for any pair of polynomials
f, g ∈ Hm “linearly” depends on the matrix A: if it holds for two matrices
A,A′ ∈ Mat(n,C), then it also holds for their combination λA + λ′A′ with
any two complex numbers λ, λ′ ∈ C.

Thus it is sufficient to verify the assertion for the monomial derivations
A = xi

∂
∂xj

and A∗ = xj
∂

∂xi
.

If i = j, then A = A∗ = xi
∂

∂xi
is diagonal in the orthonormal basis {ϕα}

with the real eigenvalues λα = αi = αj ∈ Z+, and hence is self-adjoint.
Otherwise both A and A∗ can be represented as permutations of the

basic vectors composed with the diagonal operators. If β is the multi-index
obtained from α by the operation

βk =





αk, k 6= i, j,

αi + 1, k = i,

αj − 1, k = j,

αk =





βk, k 6= i, j,

βi − 1, k = i,

βj + 1, k = j,

then β!/α! = (αi + 1)/αj = βi/αj and

Aϕα =
αj√
α!

xβ = αj

√
β!√
α!

ϕβ = αj

√
βi√
αj

ϕβ =
√

αjβi ϕβ.

Reciprocally, A∗ϕβ = βi x
α/
√

β! = · · · =
√

βiαj ϕα. But since the vectors
ϕα form an orthonormal basis,

(Aϕα, ϕβ) = (ϕα,A∗ϕβ) =
√

βiαj ∈ R
and all other matrix entries in the basis {ϕα} are zeros. Therefore the
derivations A and A∗ are mutually adjoint on Hm.

2. Using the structure of the tensor product Dm = Hm ⊗ Cn, one can
represent the commutators as follows:

adA = A⊗E − id⊗A.

Indeed, for any element ϕv, where ϕ ∈ Hm is a polynomial and v ∈ Cn a
vector considered as a constant vector field on Cn, by the Leibnitz rule

[A, ϕv] = (Aϕ)v + ϕ[A, v] = (Aϕ)v − ϕ Av.
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Obviously, because of the choice of the Hermitian structure on Hm ⊗ Cn,
the operator id⊗A is adjoint to id⊗A∗ whereas the adjoint to A⊗E is the
tensor product of the adjoint to A by the identity. By the first statement
of the lemma, the former is equal to A∗, so that the adjoint to [A, ·] is
A∗ ⊗ E − id⊗A∗ which coincides with [A∗, ·] = adA∗ . ¤

Theorem 4.12 (G. Belitskii [Bel79]; see also [Dum93, Van89]). A formal
vector field F (x) = Ax + V2(x) + · · · with the linearization matrix A is
formally equivalent to a vector field F ′(x) = Ax+V ′

2(x)+· · · whose nonlinear
part commutes with the linear vector field A∗(x) = A∗x:

[F ′ −A,A∗] = 0. (4.8)

If the vector field F is real (i.e., has only real Taylor coefficients, in par-
ticular, A is real), then both the formal normal form and the conjugating
transformation can be chosen real.

Proof. The proof is based on the following well-known observation: if L
is a linear endomorphism of a complex Hermitian or real Euclidean space
H into itself, then the image of L and the kernel of its Hermitian (resp.,
Euclidean) adjoint L∗ are orthogonal complements to each other:

(img L)⊥ = kerL∗.

It follows then that kerL∗ is complementary to img L in H.
Indeed, ξ ∈ (img L)⊥ if and only if (ξ, Lv) = 0 for all v ∈ H, which

means that any vector v is orthogonal to L∗ξ. This is possible if and only if
L∗ξ = 0.

Applying this observation to the operator Lm = adA restricted on
any space Dm and using Lemma 4.11, we see that the subspaces Nm =
ker adA∗ |Dm are orthogonal (hence complementary) to the image of Lm and
therefore satisfy the assumption (4.5) of Theorem 4.7. Therefore all nonlin-
ear terms V2, V3, . . . can be chosen to commute with A∗(x) = A∗x, which is
in turn possible if and only if their formal sum, equal to F −A, commutes
with A∗.

In the real case one has to replace the Hermitian spaces Hm, Cn and
Dm = Hm⊗CCn by their real (Euclidean) counterparts RHm, Rn and RDm =
RHm ⊗R Rn. Then for any real matrix A the image of the commutator adA

and the kernel of adA∗ , where A∗ is a transposed matrix, are orthogonal and
hence complementary. Then the homological equation adA Pm = V ′

m − Vm

can be solved with respect to Pm ∈ RDm and V ′
m ∈ ker adA∗ ∩RDm when

Vm ∈ RDm. The Poincaré–Dulac paradigm does the rest of the proof. ¤

This general statement immediately implies a number of corollaries.
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Example 4.13. If A is a diagonal matrix with the spectrum {λ1, . . . , λn},
then A∗ is also diagonal with the conjugate eigenvalues {λ̄1, . . . , λ̄n}. As was
already noted, restriction of adA∗ on Dm is diagonal with the eigenvalues〈
λ̄, α

〉−λ̄k = 〈λ, α〉 − λk. Its kernel consists of the same resonant monomials
as defined previously, so in this case Theorem 4.12 yields the usual Poincaré–
Dulac form.

Sometimes, diagonalization of the linear part is nonconvenient (espe-
cially for real vector fields). In such a case Theorem 4.12 may yield a simple
real normal form.

Example 4.14. If I = ( 0 1−1 0 ) = −I∗ is the matrix of rotation on the real
plane R2 with the coordinates (x, y), then ker adI∗ = ker adI and the entire
formal normal form, including the linear part, commutes with the rotation
vector field I = x ∂

∂y −y ∂
∂x . Any such rotationally symmetric real vector field

must necessarily be of the form

f(x2 + y2)
(
x ∂

∂x + y ∂
∂y

)
+ g(x2 + y2)

(
x ∂

∂y − y ∂
∂x

)
, (4.9)

where f(r), g(r) ∈ R[[r]] are two real formal series in one variable. Indeed,
A commutes with itself and the radial (Euler) vector field E = x ∂

∂x + y ∂
∂y

which form a basis at all nonsingular points; a linear combination fE + gI
with f, g scalar coefficients, commutes with I if and only if If = Ig = 0,
that is, if f and g are constants on all circles x2 + y2 = r2.

The linear part is of the prescribed form if f(0) = 0, g(0) = 1. Since g
is formally invertible, the normal form (4.9) is formally orbitally equivalent
to the formal vector field

F ′ = I + f(x2 + y2)E, f ∈ R[[u]], f(0) = 0,

I = x ∂
∂y − y ∂

∂x , E = x
∂

∂x
+ y

∂

∂y
,

(4.10)

with a formal series f(u) in the resonant monomial u = x2 + y2.
Note that the “standard” demonstration of this result via preliminary

diagonalization of A requires that all subsequent Poincaré–Dulac transfor-
mations be preserving the complex conjugacy, which is an additional inde-
pendent condition.

The same observation explains why the normal form is so often explicitly
integrable.

Corollary 4.15. Assume that the matrix A 6= 0 is normal, i.e., it commutes
with the adjoint matrix A∗. Then the vector field can be formally transformed
to a field which commutes with the (nontrivial) linear vector field A∗. ¤
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Indeed, in this case from (4.8) and [A,A∗] = 0 it follows that [F,A∗] = 0.
This observation allows us to decrease the dimension of the system; cf. with
§4J.

Remark 4.16. We wish to stress that there is no distinguished Hermitian
structure on Cn. One can choose this structure arbitrarily and only then the
standard Hermitian structure appears on Hm and Dm. Thus the assumption
of this corollary is not restrictive, in particular, it always holds whenever A
is diagonalizable.

4F. Parametric case. The Poincaré–Dulac method of normalization of
any finite jet or the entire Taylor series, involves only the polynomial (ring)
operations (additions, subtractions and multiplications) with the Taylor co-
efficients of the original field, except for inversion of the operator adA. This
allows us to construct formal normal forms depending on parameters.

Definition 4.17. A formal series f ∈ C[[x]] is said to depend polynomi-
ally on finitely many parameters λ = (λ1, . . . , λm) ∈ Cn, if each coefficient
depends polynomially on λ,

f =
∑
α

cαxα, cα ∈ C[λ].

No assumption on the degrees deg cα is made.
The formal series f =

∑
cαxα ∈ C[[x]] depends (strongly) analytically

on the parameters in a domain λ ∈ U , if each coefficient cα of this series
depends on the parameters analytically in the common domain U ⊆ Cm,
cα ∈ O(U).

The formal series f =
∑

cαxα weakly analytically depends on the pa-
rameters λ ∈ (Cm, 0), if each coefficient cα is a germ of analytic function,
cα ∈ O(Cm, 0). In contrast to the previously defined analytic dependence,
intersection of all domains where representatives of the germs cα are defined,
can reduce to the single point λ = 0.

We will use the common name semiformal series to denote elements
from the algebras A[[x]] in the above three cases when A = C[λ], A = O(U)
and A = O(Cn, 0) respectively.

Theorem 4.18 (Formal normal form with parameters).
1. If the vector field (holomorphic or formal) F = F (·, λ) = A(λ) +

F2(λ) + · · · depends weakly analytically on parameters λ ∈ (Cm, 0), then by
a formal transformation one can bring the field to the formal normal form
F ′ satisfying the condition

[F ′ −A,A∗(0)] = 0, (4.11)
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where A(0) is the linear vector field corresponding to λ = 0, and A∗(0) its
adjoint linear field. Both the formal normal form F ′ and the transformation
H reducing F to F ′ can be chosen weakly analytically depending on the
parameters λ ∈ (Cm, 0) in the sense of Definition 4.17. If F was real, then
also F ′ and H can be chosen real.

2. If the linear part A(λ) ≡ A(0) ≡ A is constant (does not depend on
λ) and the field itself depends polynomially or strongly analytically on the
parameters λ ∈ U , then both the normal form (4.11) and the correspond-
ing normalizing transformation can be chosen polynomially (resp., strongly
analytically) depending on the parameters in the same domain.

Proof. We start with a very general observation, basically, a geometrical
reformulation of the Implicit Function theorem.

If L : X → Y is a linear map between vector spaces, which is transversal
to a subspace Z ⊆ Y , then for any analytic or polynomial map y : λ 7→ y(λ),
λ ∈ U or λ ∈ Cn, one can find two maps x : λ 7→ x(λ) ∈ X and z : λ 7→
z(λ) ∈ Z, such that Lx(λ) + z(λ) = y(λ). If in addition L also depends on
λ and is transversal to Z for λ = 0, then the solutions still can be found,
but only locally for the parameter values λ ∈ (Cm, 0) sufficiently close to
the origin. In this case analyticity of x(λ), z(λ) in the larger domain U or
polynomiality in general may fail.

This observation can be applied to the homological operator L = adA

acting in the space X = Dm, and the subspace Y = Nm of homogeneous
vector fields commuting with A∗(0). Holomorphic (polynomial) solvabil-
ity of the homological equation on each step guarantees the possibility of
transforming the field to the normal form with the required properties. ¤
Remark 4.19 (Warning). The difference between constant and nonconstant linearization
matrices is rather essential in what concerns the size of the common domain of analyticity
of all Taylor coefficients of the normal form and/or conjugating transformation.

Suppose that all coefficients of the analytic family F (λ) of formal vector fields are
defined and holomorphic in some common domain U (e.g., the field is analytic in D × U ,
where D is a small polydisk).

If the linearization matrix of F (λ) does not depend on the parameters, then by the
second assertion of Theorem 4.18, one may remove from the expansion of F all terms that
are nonresonant (i.e., the terms that do not commute with the linear field A∗ which is
independent of the parameters). All coefficients of all series (the normal form and the
conjugacy) will be holomorphic in the maximal natural domain U .

All the way around, if the linearized field A(λ) depends on parameters, then by
a formal transformation one can eliminate all terms that are resonant with respect to
A(0). The coefficients of the normal form and the transformation will still be analytically
dependent on λ, but their domains should be expected to shrink as the degree of the
corresponding terms grow.

Indeed, assume that the linear field A(0) is nonresonant. Then the formal normal
form guaranteed by the first assertion of Theorem 4.18 is linear, F ′ = A(λ). Yet clearly
for some values of the parameter λ which are arbitrarily close to λ = 0, the spectrum of
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the matrix A(λ) can become resonant, hence it will be impossible to eliminate completely
all terms of the corresponding order. The apparent contradiction is easily explained: the
domain of analyticity of the coefficient of a high order cannot be so large as to include
values of the parameter corresponding to resonances of that order. Note that if A(0) is
nonresonant, then the possible order of resonances occurring for A(λ) necessarily grows
to infinity as λ → 0.

4G. Formal classification of self-maps. Besides formal vector fields,
formal isomorphisms act also on themselves by conjugacy: if

G(x) = Mx + V2(x) + · · · ∈ Diff[[Cn, 0]], detM 6= 0, (4.12)

is a formal self-map, then another formal self-map H ∈ Diff[[Cn, 0]] trans-
forms G to G′ = H ◦G ◦H−1. In the same way as before, one may ask if all
nonlinear terms V2, V3, . . . can be removed from the expansion by applying
a suitable formal conjugacy.

The strategy is the same as described in §4B. The polynomial trans-
formation H(x) = x + Pm(x) with a vector homogeneous nonlinearity
Pm of degree m conjugates G(x) as in (4.12) with a self-map G′(x) =
G(x) + Rm(x) + · · · , in which Rm is a homogeneous vector polynomial of
order m, implicitly defined by the identity

G(x) + Pm(G(x)) = G(x + Pm(x)) + Rm(x + Pm(x)) + · · · . (4.13)

After collection of terms of order m this yields the equation

P (Mx)−MP (x) = R(x), P = Pm, R = Rm, (4.14)

which we can attempt to solve with respect to P . This is the multiplicative
analog of the homological equation (4.2). The operator

SM : Dm → Dm, P (x) 7→ MP (x)− P (Mx), (4.15)

can be studied by methods similar to the operator adA. If M is a diagonal
matrix with the diagonal entries µ1, . . . , µn, then all monomials Fkα of the
standard basis in Dm are eigenvectors for SM with the eigenvalues µj−µα =
µj − µα1

1 · · ·µαn
n . If all these expressions are nonzero, the operators SM

will always be invertible and hence the formal self-map G will be formally
linearizable. If some of the expressions µj − µα are zeros, then one can
transform G to a nonlinear normal form. All these results can be obtained
in exactly the same way as for the formal vector fields.

Definition 4.20. A multiplicative resonance between nonzero complex
numbers µ = (µ1, . . . , µn) ∈ (C∗)n is an identity of the form

µj − µα = 0, |α| > 2, j = 1, . . . , n. (4.16)

A nondegenerate matrix M ∈ GL(n,C) and a formal self-map G(x) =
Mx + · · · ∈ Diff[[Cn, 0]] are nonresonant if there are no multiplicative reso-
nances between the eigenvalues of M . A multiplicative resonant monomial
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corresponding to the resonance (4.16), is the vector whose jth component
is xα and all others are zeros.

Theorem 4.21 (Poincaré–Dulac theorem for self-maps). Any invertible for-
mal self-map is formally equivalent to a formal self-map whose linear part is
in the Jordan normal form, and the nonlinear part contains only resonant
monomials with complex coefficients. In particular, a nonresonant formal
self-map is formally conjugated to the linear map G′(x) = Mx. ¤

Rather obviously, Theorem 4.21 can be further elaborated and an analog
of Belitskii Theorem 4.12 established. However, we will not deal with these
matters and concentrate from now on on vector fields and automorphisms
in low dimension (2 for fields, 1 for self-maps) which will be the principal
tool in the rest of the book.

* * *

4H. Cuspidal points. One important case where Theorem 4.12 is con-
siderably stronger than the Poincaré–Dulac Theorem 4.10 is that of vector
fields with nilpotent linear parts, which are “maximally nondiagonalizable”.
In this case all monomials will be resonant and Theorem 4.10 is void. We
will only consider the planar case where the linear part is the vector field
J = y ∂

∂x ∈ Mat(2,R) (the linearization matrix is a nilpotent Jordan cell
of size 2). From Theorem 4.12 we can immediately derive the following
corollary.

Theorem 4.22. A vector field on the plane with the linear part J = y ∂
∂x is

formally equivalent to the vector field

J + b(x)E + a(x) ∂
∂y , a, b ∈ C[[x]], E = x ∂

∂x + y ∂
∂y , (4.17)

with the formal series a, b ∈ C[[x]] in one variable x starting with terms of
order 2 and 1 respectively.

Proof. We need only to describe the kernel of the operator adJ∗ , where
J∗ = x ∂

∂y is the “adjoint” vector field. The kernel of the operator adJ∗ =
[x ∂

∂y , · ] restricted on Dm can be immediately computed. Indeed,

[x ∂
∂y , u ∂

∂x + v ∂
∂y ] = xuy

∂
∂x + (xvy − u) ∂

∂y ,

and the commutator vanishes only if both u and hence vy depend only on
x. Since both u, v must be homogeneous of degree m, we conclude that

ker adJ∗
∣∣
Dm

= β(xm ∂
∂x + xm−1y ∂

∂y ) + αxm ∂
∂y = βxm (x ∂

∂x + y ∂
∂y ) + αxm ∂

∂y

for some constants α = αm and β = βm which will be the coefficients of the
respective series a, b. ¤
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Yet the complementary subspaces Nm may be chosen in a different way,
not necessary as prescribed by Theorem 4.12. This may be more convenient
for some applications.

Theorem 4.23. The planar formal vector field with the linear part J = y ∂
∂x ,

is formally equivalent to the vector field

J + [yb(x) + a(x)] ∂
∂y , (4.18)

where a(x) and b(x) are two formal series of orders 2 and 1 respectively.

Proof. We reduce this assertion directly to the general Poincaré–Dulac par-
adigm. The image of adJ in Dm can be complemented by the 2-dimensional
space N′

m of vector fields (αxm + βxm−1y) ∂
∂x , as noted in [Arn83, §35 D].

Indeed, the condition [y ∂
∂x , f ∂

∂x + g ∂
∂y ] = u ∂

∂x + v ∂
∂y takes the form of the

system of linear partial differential equations

yfx − g = u, ygx = v.

While it can be not solvable for some u, v, the system of equations

yfx − g = u, ygx + αxm + βxm−1y = v (4.19)

can be always resolved for any pair of homogeneous polynomials u, v ∈
C[x, y] of degree m and the constants α, β. To see this, apply y ∂

∂x to the
first equation:

y2fxx = yux + v − αxm − βxm−1y.

The equation y2fxx = w is uniquely solvable for any monomial w divisible
by y2. On the other hand, the constants α, β can be found to guarantee
that the terms proportional to xm and xm−1y in the right hand side of
this equation vanish. This choice automatically guarantees solvability of the
second equation in (4.19) as well. The constants found in this way, appear
as coefficients of the respective series a, b. ¤

4I. Vector fields with zero linear parts. If the formal vector field F
starts with kth order terms, F (x) = Vk(x) + Vk+1(x) + · · · , k > 2, then
application of the formal transformation H(x) = x + P2(x) conjugates F
with the vector field F ′(x) = Vk + V ′

k+1 + · · · with the same (nonlinear)
principal part Vk, if

Vk(x)+Vk+1(x)+
(

∂P2

∂x

)
Vk(x)+ · · · = Vk(x+P2(x))+V ′

k+1(x+P2(x))+ · · ·

which after collecting the homogeneous terms of order k + 1 yields

[Vk, P2] = Vk+1 − V ′
k+1.

If this equation is resolved for a suitably chosen V ′
k+1 (e.g., equal to zero

if that is possible), one can pass to terms of order k + 2 by applying a
transform of the form H(x) = x + P3(x) which does not affect the terms of
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order Vk and Vk+1 and so on. As a result, one has to resolve in each order
the homological equation

adVk
Pm = Vm+k−1 − V ′

m+k−1 (4.20)

with respect to the homogeneous vector field Pm of degree m. As before,
complete elimination of all nonprincipal terms of orders k + 1 and more,
is possible if the operator adVk

is surjective, otherwise it will be necessary
to introduce the “normal subspaces” Nm+k−1 ⊂ Dm+k−1 complementary to
the image adVk

(Dm) ⊆ Dm+k−1 and choose the components V ′
m+k−1 of the

formal normal form from these subspaces.
In contrast to the case k = 1 discussed earlier, the operator adVk

in-
creases the degrees, i.e., acts between different spaces, the dimension of the
target space in general being higher than that of the source space. Thus
the number of parameters in the normal form will be infinite. A notable
exception is the one-dimensional case dimx = 1.

Theorem 4.24. A nonzero formal vector field from D[[C, 0]] is formally
equivalent to one of the vector fields of the form

(
xk+1 + ax2k+1

)
∂
∂x , k ∈ N, a ∈ C. (4.21)

Proof. Any nonzero formal vector field on C1 starts with the term
ak+1x

k+1 ∂
∂x , ak+1 6= 0. One can make ak+1 equal to 1 by a linear transfor-

mation x 7→ cx, if the ground field is C.
In this case all spaces Dm are one-dimensional, and the commutator

with the principal term xk+1 ∂
∂x can be immediately computed:

[
xk+1 ∂

∂x , xm ∂
∂x

]
= (k −m + 1)xk+m ∂

∂x . (4.22)

This operator is surjective for all m 6= k + 1. Thus only the term x2k+1 ∂
∂x

cannot be eliminated. ¤

Note that over the field of reals R the normal form is different: if k is
even, then by the real homothety one can make the principal coefficient only
±1, (± xk+1 + ax2k+1

)
∂
∂x , k ∈ N, a ∈ R.

For odd k the fields with different signs are equivalent (transformed into
each other by the symmetry x 7→ −x).

Remark 4.25. In fact, the above arguments show that any two formal
vector fields on the line having a zero of multiplicity k + 1 at the origin and
common (2k + 1)-jet, are formally equivalent.
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It is sometimes more convenient instead of the polynomial normal form
(4.21) to use the rational formal normal form

xk+1

1− axk
· ∂

∂x
, k ∈ N, a ∈ C. (4.23)

This (rational) field is analytically equivalent to the field (4.21) with the
same a. On the other hand, two vector fields in the normal form (4.23) with
different values of a cannot be equivalent, as will be shown in §6B2.

Theorem 4.26. Any self-map x 7→ x + xk+1 + . . . , k ∈ N, tangent to
identity, is formally equivalent to:

(1) the time one map of the polynomial vector field (4.21),
(2) the time one map of the rational vector field (4.23),
(3) the polynomial map x 7→ x + xk+1 + ax2k+1,

with the same complex parameter a ∈ C which is the formal invariant of the
classification together with the order k + 1.

Proof. One can prove this result in exactly the same way as Theorem 4.24,
namely, modifying the Poincaré–Dulac paradigm for the equation (4.13) and
using the computation from Proposition 6.11 below.

Yet one can circumvent this parallel construction by reference to the for-
mal embedding Theorem 3.17. Indeed, any formal self-maps from Diff[[C, 0]]
tangent to the identity with some order k + 1 can be represented as a time
one formal flow of a formal vector field from D[[C, 0]]. This field in turn
can be brought to one of the two formal normal forms or to the formal
(nonpolynomial!) field generating the polynomial normal form. ¤

4J. Formal normal forms of elementary singular points on the real
plane. In this section we summarize the (orbital) formal normal forms for
all planar (i.e., for n = 2) real vector fields with nonzero linear parts. Re-
call that two formal vector fields F, F ′ ∈ D[[R2, 0]] are called orbitally for-
mally equivalent, if there exist an invertible real formal series ϕ ∈ R[[x, y]],
ϕ(0, 0) 6= 0, such that F is formally equivalent to ϕ · F ′, and the corre-
sponding formal self-map has all real coefficients, i.e., belongs to the group
Diff[[R2, 0]]. We use everywhere the term singularity to denote jets or germs
of analytic vector fields or formal vector fields at the origin, depending on
the context.

Definition 4.27. A singularity of the planar vector field is elementary , if
at least one of the eigenvalues λ1,2 of its linearization matrix is nonzero.

The only nonelementary singularity that has nonzero linearization ma-
trix with both zero eigenvalues, is called cuspidal, or nilpotent singularity.
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Real elementary points can be of several types that exhibit essentially
different properties.

Definition 4.28. An elementary singularity is a resonant node, if the ratio
of its eigenvalues is a natural or inverse natural number. The singularity is
a resonant saddle, if both eigenvalues are real and their ratio is negative ra-
tional. A singularity is elliptic, if λ1,2 = ±iω, ω > 0. Finally, the singularity
is a saddle-node, if exactly one eigenvalue is zero.

Proposition 4.29 (Formal normal forms of planar singularities). By a real
orbital formal transformation from the group Diff[[R1, 0]]×Diff[[R2, 0]] any
real formal vector field D[[R2, 0]] appearing in Table I.1, can be brought to
the normal form from the right column of this table.

Proof. Most of these results are particular cases of the general results
proved earlier for the ground field C, modulo the following obvious remark.
If the linear part of the vector field can be brought into its Jordan normal
form by a real linear transformation, then all results of the formal classifi-
cation remain valid if the ground field is replaced by R. The only nontrivial
case where a real matrix cannot be normalized over R is that of the elliptic
singular points whose linear part is linear rotation ωx ∂

∂y − ωy ∂
∂x , with the

eigenvalues ±iω. From the complex point of view this is a resonant saddle,
yet diagonalization of this matrix requires enlarging the ground field. The
alternative treatment of the elliptic case is explained in Example 4.14.

The assertion concerning saddle-nodes is a combination of the Poincaré–
Dulac theorem and Theorem 4.24. While the condition λ2 = 0 is not a
resonance, it implies infinitely many resonances λj = λj +m for any m ∈ N.
By the Poincaré–Dulac theorem, the field is formally equivalent to the field
xf(y) ∂

∂x +yg(y) ∂
∂y with f(0) 6= 0 and g(0) = 0 (otherwise the singular point

cannot be elementary degenerate). Dividing by the invertible series f(y) one
can assume that f ≡ 1 and the variables (formally) separate. It remains to
make the formal change of the variable y which puts the one-dimensional
vector field g(y) ∂

∂y into the normal form (4.21).

The saddle case is analyzed similarly: the identity 〈λ,m〉 = 0 itself is
not a resonance, but its integer multiple can be added to the right hand side
of each of the identities λ1 = λ1 or λ2 = λ2, thus producing infinitely many
resonances. Without loss of generality we assume that λ1 = −p, λ2 = q,
p, q ∈ N. Clearly, there are no other resonances and the Poincaré–Dulac
normal form looks like −pxf(u) ∂

∂x + qy g(u) ∂
∂y , f(0) = g(0) = 1, where

u = xpyq is the resonant monomial. Passing to an orbitally equivalent
system, one can assume that f ≡ 1.
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Type Conditions Formal normal form

Nonresonant [λ1 : λ2] /∈ Q or λ1 =
λ2 6= 0

Linear

Resonant
node

[λ1 : λ2] = [r : 1],
r ∈ N, r > 2

ẋ = rx + ayr,
ẏ = y

a ∈ C formal invariant.

Resonant sad-
dle (orbital)

[λ1 : λ2] = −[p : q],
p, q ∈ N, not formally
orbitally linearizable

ẋ = −px,
ẏ = qy(1± ur + au2r),
u = xqyp,

r ∈ N, a ∈ R formal orbital
invariants

Elliptic points
(orbital)

λ1,2 = ±iω, not for-
mally orbitally lineariz-
able

ẋ = y ± x(ur + au2r),
ẏ = −x± y(ur + au2r),

u = x2 + y2, a ∈ R formal
orbital invariant

Saddle-node
(orbital classi-
fication)

λ1 6= 0, λ2 = 0,
formally isolated singu-
larity

ẋ = x,
ẏ = ±yr+1 + ay2r+1,

r ∈ N, a ∈ R formal orbital
invariants

Cuspidal
(nilpotent)
point (nonele-
mentary)

Nonvanishing lineariza-
tion matrix with two
zero eigenvalues

ẋ = y,
ẏ = a(x) + yb(x),

a, b ∈ R[[x]] two formal se-
ries, ord a > 2, ord b > 1.

One-
dimensional
degenerate
vector field

λ = 0, formally isolated
singularity

ẋ = ±xr+1 + ax2r+1,

or ẋ = ± xr+1

1− axr
,

r ∈ N, a ∈ C formal invari-
ants

Table I.1. Formal normal forms for real vector fields. All rows of the
table, except the last one, refer to planar formal vector fields and give
orbital formal normal forms.

The field in the Poincaré–Dulac normal form admits the projection R2 →
R1, (x, y) 7→ u = xpyq ∈ R1. The projected system has the form

u̇ = uF (u), F (u) = g(u)− 1, (4.24)



4. Formal normal forms 59

called the quotient equation. By a suitable formal transformation u 7→ u′ =
u(1 + h(u)), h(0) = 0, the quotient vector field can be brought to the form
(4.21), corresponding to g(u) = 1 + uk−1 + au2k−1. It remains to observe
that any formal transformation of the variable u 7→ u[1 + h(u)], h(0) = 0,
can be “covered” by the transformation (x, y) 7→ (x′, y′(x, y)), where

x′ = x, y′ = y[1 + h(xpyq)]1/q ∈ R[[x, y]],

re-expanding the invertible series in square brackets into the binomial series.
This transformation brings the initial field into the required formal normal
form.

The same construction almost literally applies to the elliptic case: the
infinite formal normal form (4.10) admits projection onto the u-axis with
u = x2 + y2, and the quotient equation takes the form u̇ = 2uf(u). We
leave it as an exercise to prove that any formal line transformation u 7→
u[1 + h(u)], h(0) = 0, can also be “covered” by a suitable real plane formal
transformation. ¤

Remark 4.30. If necessary, the polynomial normal forms from Table I.1
can be replaced by rational normal forms involving the rational normal form
for one-dimensional quotient vector fields.

Note also that all normal forms of elementary singularities from this
table are integrable: the quotient equation can be explicitly integrated in
quadratures (especially easily if it has the rational normal form (4.23)). Af-
ter this integration the variables x and y always separate. This integrability
will be repeatedly used in the rest of the book to produce explicit compu-
tations with normal forms.

The cuspidal normal form is the famous Liénard system, corresponding
to one of the simplest nonlinear and nonintegrable vector fields for which
questions on the number of limit cycles is highly nontrivial. The Liénard
system is sometimes written under the form

ẋ = y − f(x), ẏ = −g(x),

or as a second order scalar differential equation.

Remark 4.31. The dynamic (full, nonorbital) formal normal form contains more para-
meters than indicated in Table I.1. For instance, for the saddle-node the formal normal
form is (

ẋ = x(λ1 + b1y + · · ·+ bkyk),

ẏ = yk+1k + ay2k+1, λ1, b1, . . . , bk, a ∈ C.
(4.25)

To prove this formula, we reduce the vector field to the form xf(y) ∂
∂x

+ g(y) ∂
∂y

as above

and then by a suitable change of the variable y only put g into the standard form g(y) =

yk+1 +ay2k+1. The function f(x) can be further simplified by transformations of the form
(x, y) 7→ (h(y)x, y), h(0) 6= 0, preserving the second component: one immediately verifies
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that such a transformation results in replacing the series f = f(y) ∈ C[[y]] by another
series

f ′ = f +
g

y
· dh

dy
= f + (yk+1 + ay2k+1)

d

dy
ln h.

Since g begins with terms of order k + 1, the difference between f and f ′ is necessarily
k-flat (the logarithmic derivative d

dy
ln h in the above formula is a well defined formal

series from C[[y]] since h(0) is nonvanishing). On the other hand, if the difference f − f ′

is divisible by yk+1, the quotient can be represented as the logarithmic derivative of a
suitable series h ∈ C[[y]]. Thus all terms of order k + 1 and above can be eliminated from
f by the formal transformation.

A similar result can be formulated for resonant saddles and elliptic singularities.

Exercises and Problems for §4.
A complex tuple λ = (λ1, . . . , λn) ∈ Cn is called single-resonant, if all reso-

nances between the components of this tuple follow from a single integer identity

〈α, λ〉 = 0, α ∈ Zn
+, α 6= 0. (4.26)

Problem 4.1. Describe the formal normal form of a vector field with a single-
resonant spectrum of the linearization matrix. Show that this normal form is inte-
grable in quadratures.

Problem 4.2. Describe all linear maps that preserve the formal normal form in
Problem 4.1.

Problem 4.3. Describe the real formal normal forms for vector fields in R3 with
the spectrum 0,±iω.

Problem 4.4. The same question for fields in R4 with the spectrum ±iω1, ±iω2,
if the ratio ω1/ω2 is irrational.

Problem 4.5. Describe symmetries of the formal normal forms in the Problems 4.3
and 4.4.

Exercise 4.6. Prove that if F is a resonant formal vector field, then exp tF is a
multiplicative resonant formal self-map for any t 6= 0. Is the inverse true?

Problem 4.7. Construct a formal normal form for vector fields in C3 with the
nilpotent Jordan linear part J = y ∂

∂x + z ∂
∂y .

Answer: J + a(x, u)E + b(x, u)F + c(x, u)F ′, where E = x ∂
∂x + y ∂

∂y + z ∂
∂z is

the Euler field in three dimensions, F = x ∂
∂y + y ∂

∂z , F ′ = ∂
∂z , and u = u(x, y, z) =

2xz − y2.

Exercise 4.8. Find a formal normal form for a saddle-nodal self-map with the
spectrum (1, µ), |µ| 6= 1, in two dimensions.

Problem 4.9. Give a complete proof of the Poincaré–Dulac theorem for self-maps
(Theorem 4.21).

Problem 4.10. Prove that the formal normal form of any vector field in the
Poincaré domain is integrable in quadratures.
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5. Holomorphic normal forms

5A. Poincaré and Siegel domains. To linearize a given (say, nonreso-
nant) vector field, on each step of the Poincaré–Dulac process one has to
compute the inverse of the operator adA = [A, · ] on the spaces of homoge-
neous vector fields. To that end, one has to divide the Taylor coefficients
by the denominators, expressions of the form λj − 〈α, λ〉 ∈ C with α ∈ Zn

+,
|α| > 2, that may a priori be small even in the nonresonant case where
adA is invertible. These denominators associated with the spectrum λ of
the linearization matrix A, behave differently as |α| grows to infinity, in the
following two different cases.

Definition 5.1. The Poincaré domain P ⊂ Cn is the collection of all tuples
λ = (λ1, . . . , λn) such that the convex hull of the point set {λ1, . . . , λn} ⊂ C
does not contain the origin inside or on the boundary.

The Siegel domain S is the complement to the Poincaré domain in Cn.
The strict Siegel domain is the set of tuples for which the convex hull

contains the origin strictly inside.

Sometimes we say about tuples, spectra or even germs of vector fields at
singular points as being of Poincaré (resp., Siegel) type.

Proposition 5.2. If λ is of Poincaré type, then only finitely many denom-
inators λj − 〈α, λ〉, α ∈ Zn

+, |α| > 2, may actually vanish.
Moreover, nonzero denominators are bounded away from the origin: the

latter is an isolated point of the set of all denominators {λj − 〈α, λ〉 |j =
1, . . . , n, |α| > 2}.

On the contrary, if λ is of Siegel type, then either there are infinitely
many vanishing denominators, or the origin 0 ∈ C is their accumulation
point (these two possibilities are not mutually exclusive).

Proof. If the convex hull of {λ1, . . . , λn} ⊂ C does not contain the origin, by
the convex separation theorem there exists a real linear functional ` : C2 → R
such that `(λj) 6 −r < 0 for all λj , and hence `(〈α, λ〉) 6 −r|α|. But then
for any denominator we have

`(λj − 〈α, λ〉) > `(λj) + |α|r → +∞ as |α| → ∞.

Since ` is bounded on any small neighborhood of the origin 0 ∈ C, the first
two assertions are proved.

To prove the last assertion, notice that in the Siegel case there are either
two or three numbers, whose linear combination with positive (real) coeffi-
cients is zero, depending on whether the origin lies on the boundary or in
the interior of the convex hull. We give the proof in the second case, more
difficult and more generic (the proof for the first case is simpler).
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If the origin lies inside a triangle formed by the eigenvalues, then modulo
their re-enumeration and a (nonconformal) affine transformation of the com-
plex plane R2 ∼= C, we may assume without loss of generality that λ1 = 1,
λ2 = +i and −λ3 ∈ R2

+ = R+ + iR+. In this case all “fractional parts”
−Nλ3 mod Z + iZ of natural multiples of −λ3 either form a finite subset
of the 2-torus R2/Z2 (in which case all points of this set correspond to in-
finitely many vanishing denominators), or are uniformly distributed along
some 1-torus, or dense. In both latter cases the point (0, 0) ∈ R2/Z2 is the
accumulation point of the “fractional parts” which are affine images of the
denominators. ¤

Corollary 5.3. If the spectrum of the linearization matrix A of a formal
vector field belongs to the Poincaré domain, then the resonant formal normal
form for this field established in Theorem 4.10, is polynomial. ¤

Remark 5.4. Resonant tuples λ ∈ Cn are dense in the Siegel domain S

and not dense in the Poincaré domain P. The proof of this fact can be
found in [Arn83].

5B. Holomorphic classification in the Poincaré domain. In the
Poincaré domain, the normalizing series reducing vector fields or holomor-
phic maps to their Poincaré–Dulac normal forms, always converge.

Theorem 5.5 (Poincaré normalization theorem). A holomorphic vector
field with the linear part of Poincaré type is holomorphically equivalent to
its polynomial Poincaré–Dulac formal normal form.

In particular, if the field is nonresonant, then it can be linearized by a
holomorphic transformation.

We prove this theorem first for vector fields with a diagonal nonresonant
linear part Λ = diag{λ1, . . . , λn}. The resonant case will be addressed later
in §5C. The classical proof by Poincaré was achieved by the so-called majo-
rant method. In the modern language, it takes a more convenient form of the
contracting map principle in an appropriate functional space, the majorant
space.

Definition 5.6. The majorant operator is the nonlinear operator acting on
formal series by replacing all Taylor coefficients by their absolute values,

M :
∑

α∈Z+
n

cα zα 7→
∑

α∈Z+
n

|cα| zα.

The action of the majorant operator naturally extends on all formal objects
(vector formal series, formal vector fields, formal transformations, etc.).
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Definition 5.7. The majorant ρ-norm is the functional on the space of
formal power series C[[z1, . . . , zn]], defined as

dcfdcρ = sup
|z|<ρ

|M f(z)| = |Mf(ρ, . . . , ρ)| 6 +∞. (5.1)

For a formal vector function F = (F1, . . . , Fn) the majorant norm is

dcF dcρ = dcF1dcρ + · · ·+ dcFndcρ . (5.2)

The majorant space Bρ is the subspace of formal (vector) functions from
C[[x]] having finite majorant ρ-norm.

Proposition 5.8. The space Bρ with the majorant norm dc·dcρ is complete.

Proof. If ρ = 1, this is obvious: B1 is the space of infinite absolutely con-
verging sequences {cα}, and hence is isomorphic to the standard Lebesgue
space `1 which is complete. The general case of an arbitrary ρ follows from
the fact that the correspondence f(ρx) ↔ f(x) is an isomorphism between
Bρ and B1. ¤

Remark 5.9. The space Bρ is closely related but not coinciding with the
space Aρ = A(Dρ) of functions, holomorphic in the polydisk Dρ = {|z| < ρ},
continuous on its closure and equipped with the usual sup-norm ‖f‖ρ =
max|z|<ρ |f(z)|.

Clearly, Bρ ⊂ Aρ, since a series from Bρ is absolutely convergent on the
closed polydisk Dρ. Conversely, if f is holomorphic in Dρ and continuous
on the boundary, then by the Cauchy estimates, the Taylor coefficients cα

of f satisfy the inequality

|cα| 6 ‖f‖ρ · ρ−|α|, α ∈ Zn
+.

Though the series dcfdcρ =
∑ |cα| ρ|α| may still diverge, any other norm

dcfdcρ′ with ρ′ < ρ, will already be finite:

dcfdcρ′ 6 ‖f‖ρ ·
∑

α∈Zn
+

δ|α| < C ‖f‖ρ, C = C(δ, n), δ = ρ′/ρ < 1.

To construct a counterexample showing that indeed Aρ % Bρ, consider
a convergent but not absolutely convergent Fourier series

∑
k∈Z+

cke
ikt in

one real variable t and let f(z) =
∑

ckz
k. Such a series converges at all

points of the boundary |z| = 1 and represents a function from A(D1), but
by construction its 1-norm is infinite. Details can be found in [Edw79,
§10.6]

The important properties of the majorant spaces and norms concern
operations on functions. We will use the notation f ¿ g for two vector
series from Cn[[x]] with positive coefficients, if each coefficient of f is no
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greater than the corresponding coefficient of g. In a similar way the notation
x ¿ y will be used to denote the componentwise set of inequalities between
two vectors x, y ∈ Rn. If f ∈ Rn[[x]] is a (vector) series with nonnegative
coefficients, then it is monotonous: f(x) ¿ f(y) if x ¿ y.

Lemma 5.10. 1. For any two series f, g ∈ C[[x]] and any ρ,

dcfgdcρ 6 dcfdcρ · dcgdcρ , (5.3)

provided that all norms are finite.
2. If G ¿ G′, are two formal series from Rn[[x]] and F is a series with

nonnegative coefficients, then F ◦G ¿ F ◦G′.
3. If F, G ∈ Cn[[z1, . . . , zn]] are two formal vector series, F (0) = G(0) =

0, then for their composition we have

dcF ◦Gdcρ 6 dcF dcσ , σ = dcGdcρ . (5.4)

Proof. The first two statements are obvious: all Taylor coefficients of the
product or composition are obtained from the coefficients of entering terms
by operations of addition and multiplication only. In particular, M(fg) ¿
M f ·M g. Evaluating both parts at ρ = (ρ, . . . , ρ) proves the first statement.

Since all binomial coefficients are nonnegative (in fact, natural numbers),
we have M(F ◦ G) ¿ (MF ) ◦ (MG). Evaluating at ρ = (ρ, . . . , ρ) yields
MG(ρ) = y ¿ σ = (σ, . . . , σ), where σ = dcGdcρ. By monotonicity, ‖F ◦
G‖ρ =

(
(MF ) ◦ (MG)

)
(ρ) ¿ MF (y) ¿ MF (σ) = dcF dcσ. The last

statement is proved. ¤

Lemma 5.11. If Λ ∈ Mat(n,C) is a nonresonant diagonal matrix of
Poincaré type, then the operator adΛ has a bounded inverse in the space
of vector fields equipped with the majorant norm.

Proof. The formal inverse operator ad−1
Λ is diagonal,

ad−1
Λ :

∑

k,α

ckαxα ∂

∂xk
7−→

∑

k,α

ckα

λk − 〈α, λ〉 xα ∂

∂xk
.

In the Poincaré domain the absolute values of all denominators are bounded
from below by a positive constant ε > 0, therefore any majorant ρ-norm is
increased by no more than ε−1:

⌈⌋
ad−1

Λ

⌈⌋
ρ

6
(

inf
j,α
|λj − 〈α, λ〉 |

)−1

< +∞.

This proves that adΛ has the bounded inverse. ¤

Remark 5.12. A diagonal operator of the form
∑

α cαzα 7→ ∑
µαcαxα with

bounded entries, supα |µα| < +∞, which is always defined and bounded in
the majorant norm, may be not defined or defined but unbounded on the
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holomorphic space A(Dρ); see Remark 5.9. The “real” counterexample is
even simpler: the operator which multiplies odd coefficients by −1, sends
the series 1 − x2 + x4 − · · · , converging and bounded on [−1, 1], into an
unbounded function.

Let F = (F1, . . . , Fn) ∈ D(Cn, 0) be a holomorphic vector function de-
fined in some polydisk near the origin. The operator of argument shift is
the operator

SF : h(x) 7→ F (x + h(x)), (5.5)
acting on holomorphic vector fields h ∈ D(Cn, 0) without the free term,
h(0) = 0. We want to show that SF is in some sense strongly contracting.
The formal statement looks as follows.

Consider the one-parameter family of majorant Banach spaces Bρ as in
Definition 5.7 indexed by the real parameter ρ ∈ (R+, 0). We consider Bρ′ as
a subspace in Bρ for all 0 < ρ < ρ′ (the natural embedding idρ′,ρ : Bρ′ → Bρ

is continuous).
Let S be an operator defined on all of these spaces for all sufficiently

small values of ρ, considered as a family of operators Sρ : Bρ → Bρ which
commute with the “restriction operators” idρ′,ρ for any ρ < ρ′, but we will
omit the subscript in the notation of Sρ = S.

Definition 5.13. The operator S ∼= {Sρ} is strongly contracting , if

(1) dcS(0)dcρ = O(ρ2) and

(2) S is Lipschitz on the ball Bρ = {dchdcρ 6 ρ} ⊂ Bρ of the majorant
ρ-norm (with the same ρ), with the Lipschitz constant no greater
than O(ρ) as ρ → 0.

Note that any strongly contracting operator takes the balls Bρ strictly
into themselves, since the center of the ball is shifted by O(ρ2) and the
diameter of the image S(Bρ) does not exceed 2ρO(ρ) = O(ρ2).

The involved definition of strong contraction intends to make the for-
mulation of the following claim easy.

Lemma 5.14. Assume that the germ F : (Cn, 0) → (Cn, 0) is holomorphic
and its linearization is zero,

(
∂F
∂x

)
(0) = 0.

Then the operator of argument shift (5.5) is strongly contracting.

Proof. First note that SF takes h = 0 into F (x); the latter function has ρ-
norm O(ρ2) for all sufficiently small ρ, since F begins with quadratic terms.

Next we compute the Lipschitz constant for S = SF restricted on the
ball Bρ ⊆ Bρ. If h, h′ ∈ Cn[[x1, . . . , xn]] are two vector fields, then the
difference

g = Sh− Sh′ = F ◦ (id+h)− F ◦ (id+h′)
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can be represented as the integral

g(x) =
∫ 1

0

(
∂F

∂x

) (
x + τh(x) + (1− τ)h′(x)

) · (h(x)− h′(x)) dτ.

By Lemma 5.10, since τ ∈ [0, 1], we have

dcgdcρ 6
⌈⌋

∂F
∂x

⌈⌋
σ
· ⌈⌋h− h′

⌈⌋
ρ
, σ =

⌈⌋
x + τh(x) + (1− τ)h′(x)

⌈⌋
ρ
.

The norm σ is no greater than dcxdcρ + max(dchdcρ , dch′dcρ) = (n + 1)ρ if both
h, h′ are from the ρ-ball Bρ. On the other hand, if F is a holomorphic vector
function without free and linear terms, its Jacobian matrix is holomorphic
without free terms and hence its σ-norm is no greater than Cσ for all suf-
ficiently small σ > 0. Collecting everything together, we see that SF is
Lipschitz on the ρ-ball Bρ, with the Lipschitz constant (contraction rate)
not exceeding (n + 1)Cρ, so SF is strongly contracting. ¤

Proof of Theorem 5.5 (nonresonant case). Now we can prove that a
holomorphic vector field with diagonal nonresonant linearization matrix Λ
of Poincaré type is holomorphically linearizable in a sufficiently small neigh-
borhood of the origin. The proof serves as a paradigm for a more technically
involved proof required for the resonant case.

A holomorphic transformation H = id +h conjugates the linear vector
field Λx (the normal form) with the initial nonlinear field Λx + F (x), if and
only if

Λh(x)− (
∂h
∂x

)
Λx = F

(
x + h(x)

)
. (5.6)

Using the operators introduced earlier, this can be rewritten as the identity

adΛ h = SF h, SF h = F ◦ (id+h), adΛ = [Λ, · ]. (5.7)

We will show in an instant that the operator ad−1
Λ ◦SF restricted on the

space Bρ has a fixed point h, if ρ > 0 is sufficiently small,

h =
(
ad−1

Λ ◦SF

)
(h), h ∈ Bρ. (5.8)

Applying to both parts the operator adΛ, we conclude that h solves (5.7)
and therefore id +h conjugates the linear field Λx with the nonlinear field
Λx + F (x) in the polydisk {|x| < ρ}.

Consider this operator ad−1
Λ ◦SF in the space Bρ with sufficiently small

ρ. The operator ad−1
Λ is bounded by Lemma 5.11; its norm is the reciprocal

to the smallest small divisor and is independent of ρ. On the other hand, the
argument shift operator SF is strongly contracting with the contraction rate
(Lipschitz constant) going to zero with ρ as O(ρ). Thus the composition will
be contracting on the ρ-ball Bρ in the ρ-majorant norm with the contraction
rate O(1) · O(ρ) = O(ρ) → 0. By the contracting map principle, there
exists a unique fixed point of the operator equation (5.8) in the space Bρ
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which is therefore a holomorphic vector function. The corresponding map
H = (id +h)−1 linearizes the holomorphic vector field. ¤

5C. Resonant case: polynomial normal form. Modification of the
previous construction allows us to prove that a resonant holomorphic vector
field in the Poincaré domain can be brought into a polynomial normal form.

Consider a holomorphic vector field F (x) = Ax+V (x) with the lineariza-
tion matrix A having eigenvalues in the Poincaré domain, and nonlinear part
V of order > 2 (i.e., 1-flat) at the origin. Without loss of generality (passing,
if necessary, to an orbitally equivalent field cF , 0 6= c ∈ C), one may assume
that the eigenvalues of A satisfy the condition

1 < Reλj < r ∀j = 1, . . . , n (5.9)

with some natural r ∈ N.

Theorem 5.15 (A. M. Lyapunov, H. Dulac). If the eigenvalues of the lin-
earization matrix A of a holomorphic vector field F (x) = Ax + V (x) satisfy
the condition (5.9) with some integer r ∈ N, then the holomorphic vector
field F (x) is locally holomorphically equivalent to any holomorphic vector
field with the same r-jet.

Proof. A holomorphic conjugacy H = id +h between the fields F and F +g
satisfies the functional equation

(
∂H
∂x

)
F = (F +g)◦H which can be expanded

to (
∂h

∂x

)
Ax−Ah = (V ◦ (id+h)− V ) + g ◦ (id+h)−

(
∂h

∂x

)
V. (5.10)

Consider the three operators,

TV : h 7→ V ◦ (id+h)− V, Sg : h 7→ g ◦ (id+h), Ψ: h 7→
(

∂h

∂x

)
V.

Using these three operators, the differential equation (5.10) can be written
in the form

adA h = Th + Sh + Ψh, (5.11)
where T = TV , S = Sg and, as before in (5.7), adA is the commutator with
the linear field A(x) = Ax. The key difference with the previous case is
two-fold: first, because of the resonances, the operator adA is not invertible
anymore, and second, since the field F is nonlinear, the additional operator
Ψ occurs in the right hand side. Note that this operator is a derivation of
h, thus is unbounded in any majorant norm dc·dcρ.

Let Bm,ρ = {f : jmf = 0} ∩ Bρ be a subspace of m-flat series in the
Banach space Bρ, equipped with the same majorant norm dc·dcρ. Since V is
1-flat, all three operators T, S, Ψ map the subspace Bm,ρ into itself for any
m > 1.
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Moreover, by Lemma 5.14, the argument shift operator S is strongly
contracting, regardless of the choice of m. The “finite difference” operator
TV differs from the argument shift, SV by the constant operator V = T (0)
which does not affect the Lipschitz constant. Since dcV dcρ = O(ρ2), the
operator T is also strongly contracting.

The operator adA preserves the order of all monomial terms and hence
also maps Bm,ρ into itself for all m, ρ, and is invertible on these spaces if m
is sufficiently large. Indeed, if |α| > r +1, then by (5.9) Re(〈α, λ〉−λj) > 0,
and all denominators in the formula

ad−1
A

∣∣
Bm,ρ

:
∑

|α|>m

ckα xα ∂

∂xj
7−→

∑

|α|>m

ckα

〈α, λ〉 − λj
xα ∂

∂xj
(5.12)

are nonzero if m > r + 1, and the restriction of ad−1
A on Bm,ρ is bounded.

Moreover, ⌈⌋
ad−1

A h
⌈⌋

ρ
6 O(1/m) dchdcρ (5.13)

uniformly over all h ∈ Bm,ρ of order m > r + 1.

Thus the two compositions, ad−1
A ◦S and ad−1

A ◦T , are strongly contract-
ing. To prove the theorem, it remains to prove that the linear operator
ad−1

A ◦Ψ: Bm,ρ → Bm,ρ is strongly contracting when m is larger than r + 1.

Consider the dc·dcρ-normalized vectors hkβ = ρ−|β|xβ ∂
∂xk

for all k =
1, . . . , m and all |β| > m spanning the entire space Bm,ρ. We prove that

⌈⌋
ad−1

A Ψhkβ

⌈⌋
ρ

= O(ρ) as ρ → 0 (5.14)

uniformly over |β| > m and all k. Since ad−1
A ◦Ψ is linear, this would imply

that ad−1
A ◦Ψ is strongly contracting.

The direct computation yields

Ψhkβ =
n∑

i=1

ρ−|β|
βi

xi
xβ Vi

∂

∂xk
.

Since V is 1-flat, dcVidcρ = O(ρ2); substituting this into the definition of the
majorant norm, we obtain

dcΨhkβdcρ 6
∑

i

βi ρ
−1O(ρ2) = βi O(ρ),

where O(ρ) is uniform over all β. Since the order of the products xβ

xi
Vi is at

least |β|+ 1, by (5.13) we have
⌈⌋
ad−1

A Ψhkβ

⌈⌋
ρ

6 βi

|β| O(ρ) = O(ρ)

uniformly over all β with |β| > m > r + 1. Thus the last remaining com-
position ad−1

A ◦Ψ is also strongly contracting, which implies existence of a
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solution for the fixed point equation

h = ad−1 ◦(T + S + Ψ)h

equivalent to (5.11), in a sufficiently small polydisk {|x| < ρ}. ¤

Now one can easily complete the proof of the holomorphic normalization
theorem in the Poincaré domain in the resonant case.

Proof of Theorem 5.5 (resonant case). By the Poincaré–Dulac nor-
malization process, one can eliminate all nonresonant terms up to any finite
order m by a polynomial transformation. By Theorem 5.15, m-flat holo-
morphic terms can be eliminated by a holomorphic transformation if m is
large enough (depending on the spectrum of the linearization matrix). ¤

Remark 5.16. In the Poincaré domain one can prove an even stronger
claim: if a holomorphic vector field depends analytically on finitely many
additional parameters λ ∈ (Cm, 0) and belongs to the Poincaré domain for
λ = 0, then by a holomorphic change of variables holomorphically depend-
ing on parameters, the field can be brought to a polynomial normal form
involving only resonant terms. In such a form this assertion is formulated in
[Bru71]. The proof can be achieved by minor adjustment of the arguments
used in the demonstration of Theorem 5.15.

5D. Holomorphic normal forms for self-maps. In the same way as the
formal theory for vector fields D[[Cn, 0]] and maps Diff[[Cn, 0]] are largely
parallel (see §4G), the analytic theory of vector fields and biholomorphisms
are also parallel.

The additive resonance conditions λj−〈α, λ〉 6= 0 correspond to the mul-
tiplicative resonance conditions µ−1

j µα 6= 1. The additive Poincaré condition
(Definition 5.1) requires that (eventually after a rotation) all eigenvalues λj

of the vector field lie to one side of the imaginary axis. Its multiplicative
counterpart requires that all eigenvalues µj of the map must be to one side
of the unit circle. Such maps are automatically contracting or expanding,
and admit at most finitely many multiplicative resonance relations between
the eigenvalues.

The result parallel to the Poincaré Theorem 5.5 takes the following form.
Let M ∈ GL(n,C) be a matrix in the upper triangular Jordan normal form
with the eigenvalues µ1, . . . , µn ∈ C∗. The Poincaré–Dulac normal form is a
map

f : Cn → Cn, x 7→ f(x) = Mx +
∑

α∈Z+, |α|>2
µj=µα

xαej , (5.15)
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where ej ∈ Cn is the jth basis vector. If M is in the multiplicative Poincaré
domain, i.e., if the eigenvalues are all of modulus less than one or all of mod-
ulus greater than one, then the normal form (5.15) is polynomial (contains
finitely many terms).

The general result for holomorphic self-maps in the Poincaré domain has
the following form.

Theorem 5.17. A holomorphic invertible map f ∈ Diff(Cn, 0) with the
spectrum µ1, . . . , µn inside the unit disk, 0 < |µj | < 1, j = 1, . . . , n, is
analytically equivalent to its polynomial Poincaré–Dulac formal normal form
(5.15). ¤

In the important particular case of one-dimensional maps, the multi-
plicative Poincaré condition holds automatically if the map is hyperbolic,
i.e., if its multiplicator µ has modulus different from one. This automat-
ically guarantees that resonances are impossible, and hence the Poincaré–
Dulac normal form (5.15) is linear. The corresponding result was proved by
E. Schröder (1870) and A. Kœnigs (1884).

Theorem 5.18. A holomorphic germ f : (C, 0) → (C, 0), f(x) = µx +
O(x2), is analytically linearizable if |µ| 6= 1.

If f = ft depends analytically on additional parameter t ∈ U ⊆ Cp, the
linearizing chart can also be chosen analytically depending on this parameter
as soon as the respective multiplier µt remains off the unit circle.

Because of its importance, we will give an independent proof of this
result by the path method in §5F below. Yet another (shortest known)
proof is outlined in Problem 5.6.

5E. Linearization in the Siegel domain: Siegel, Brjuno and Yoccoz
theorems (micro-survey). In the Siegel domain the denominators λj −
〈α, λ〉 are not separated from zero, hence even in the nonresonant case the
operator adA = [A, · ] of commutation with the linear part of the field has
unbounded inverse ad−1

a . Yet since the operator SF is strongly contracting,
the equation (5.7) can be solved with respect to h by Newton-type iterations,
provided that the small denominators |λj−〈α, λ〉 | do not approach zero too
fast as |α| → ∞.

The corresponding technique is known under the general name of
KAM theory (after A. Kolmogorov, V. Arnold and J. Moser). The issue
is very classical; accurate formulations and proofs can be found in many ex-
cellent sources, e.g., [CG93, Arn83]. We formulate only the basic results.

Definition 5.19. A tuple of complex numbers λ ∈ Cn from the Siegel
domain S is called Diophantine, if the small denominators decay no faster
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than polynomially with |α|, i.e.,

∃C, N < +∞ such that ∀α ∈ Zn
+, |λj − 〈α, λ〉 |−1 6 C |α|N . (5.16)

Otherwise the tuple (vector, collection) is called Liouvillean.

Liouvillean vectors are scarce: the set of points λ ∈ Cn satisfying vi-
olating the condition 5.16 with a given N , has Lebesgue measure zero in
S ⊂ Cn if N > (n− 2)/2; see [Arn83].

Theorem 5.20 (Siegel theorem). If the linearization matrix Λ of a holomor-
phic vector field is nonresonant of Siegel type and has Diophantine spectrum,
then the field is holomorphically linearizable.

Thus the majority (in the sense of Lebesgue measure) of germs of holo-
morphic vector fields are analytically linearizable. Yet one may further relax
sufficient conditions for convergence of linearizing series in the Siegel domain.

Definition 5.21. A nonresonant collection λ ∈ Cn is said to satisfy the
Brjuno condition, if the small denominators decrease sub-exponentially,

|λj − 〈α, λ〉 |−1 6 Ce|α|
1−ε

, as |α| → ∞, (5.17)

for some finite C and positive ε > 0.

Theorem 5.22 (Brjuno theorem). A holomorphic vector field with nonres-
onant linearization matrix of Siegel type satisfying the Brjuno condition, is
holomorphically linearizable.

On the other hand, if the denominators |λj − 〈α, λ〉 | accumulate to
zero too fast, e.g., super-exponentially, then the corresponding germs are in
general nonlinearizable (cf. with Remark 5.33 below).

Analogs of the Siegel and Brjuno theorems hold for holomorphic germs.
The most important case is that of one-dimensional conformal germs from
the group Diff(C1, 0). Such germs belong to the Siegel domain if and only
if their multiplicator µ belongs to the unit circle, µ = exp 2πil, with some
l ∈ R; they are nonresonant if l is an irrational number. The Diophantine
and Brjuno conditions translate for this case as assumptions that this ir-
rational number l ∈ R r Q does not admit abnormally accurate rational
approximations.

For instance, if the complex number µ = exp 2πil, l ∈ R, satisfies the
multiplicative Brjuno condition

|µk − 1|−1 < Cek1−ε
, C < +∞, ε > 0, (5.18)

then any holomorphic map (C, 0) → (C, 0), z 7→ µz + z2 + · · · , is holomor-
phically linearizable. The sufficient arithmetic condition (5.18) turns out to
also be necessary in the following sense.
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Theorem 5.23 (J.-C. Yoccoz [Yoc88, Yoc95]). If the complex number
µ = exp 2πil, l ∈ R, violates the multiplicative Brjuno condition (5.18),
then there exists a nonlinearizable holomorphic germ (C, 0) → (C, 0), z 7→
µz + f(z), f(z) = z2 + · · · .

In fact, in the assumptions of this theorem for almost all complex num-
bers w ∈ C the germ fw(z) = µz + wf(z) is analytically nonlinearizable;
cf. with Theorem 5.29 below and [PM01].

Remark 5.24. The condition on the rate of convergence of small denom-
inators can be reformulated in terms of the growth rate of coefficients of
decomposition of the irrational number l ∈ RrQ into the continuous frac-
tion. This is a more standard way of formulating the Brjuno condition in
the recent literature.

If a resonance occurs in the Siegel case, then the situation turns out to
be even more complicated: a resonant conformal germ f ∈ Diff(C, 0) with
multiplicator µ ∈ exp 2πiQ is almost never analytically equivalent to its
polynomial Poincaré–Dulac formal normal form described in Theorem 4.26.
This result and its numerous developments are explained in detail in §21.

A two-dimensional analytic orbital classification of Siegel resonant vec-
tor fields (saddle-nodes and resonant saddles from Table I.1) is at least as
difficult as the analytic classification of resonant germs from Diff(C, 0). In-
deed, in §7 we will show that the corresponding foliations have leaves with
nontrivial (infinite cyclic) fundamental group, whose holonomy is generated
by Siegel resonant germs from Diff(C, 0). The details can be found in Chap-
ter IV; see §22.

Somewhat unexpectedly, the cuspidal points behave better than their
less degenerate brethren. In [SZ02] H. ŻoÃla̧dek and E. Stróżyna proved that
one can always reduce a holomorphic planar vector field near a cuspidal sin-
gular point to a holomorphic normal form (4.17) (i.e., with converging series
a(x), b(x) ∈ O(C, 0)) by a biholomorphic transformation. The direct and
difficult proof from [SZ02] was recently replaced by beautiful geometric ar-
guments by F. Loray [Lor06]. This proof, based on nonlocal uniformization
technique, is split into a series of problems in §23 (Problems 23.6–23.13).

5F. Path method. In this section we outline another very powerful an-
alytic method of reducing holomorphic vector fields and self-maps to their
normal forms. This method is called path method (méthode de chemin,
homotopy method) since it consists of connecting the initial object (field,
self-map) with its normal form by a path (usually a line segment) and then
looking for a flow of a nonautonomous vector field that would conjugate
with each other all objects in this parametric family.
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We illustrate the path method by proving two relatively simple results,
analytic reducibility of one-dimensional holomorphic vector fields (cf. with
Theorem 4.24) and one-dimensional hyperbolic self-maps to their normal
form. Both results, however, can be proved by shorter arguments; see Prob-
lems 5.5 and 5.6 below.

Theorem 5.25. Any analytic vector field F (x) = xk+1(1+· · · ) ∂
∂x ∈ D(C, 0)

is analytically conjugate to its polynomial formal normal form F0(x) =
(xk+1 + ax2k+1) ∂

∂x .

Proof. Without loss of generality we may assume from the beginning, that the jet of F
of any specified order is already reduced to the normal form. Thus we can assume that
the field F = F1 is given as F0(x) + R(x) ∂

∂x
, where R is as flat at the origin, as necessary.

It will be sufficient to require that the function R(x) has zero of multiplicity 2k + 2 at
the origin, R(x) = x2k+2S(x), S ∈ O(C, 0). We want to show that for all values of an
auxiliary complex parameter z from some domain U ⊆ C containing the segment [0, 1],
the vector fields Fz(x) = F0(x) + zR(x) ∂

∂x
are holomorphically equivalent to each other.

This, in particular, would imply that F0 and F1 are holomorphically equivalent, which
would immediately imply the assertion of the theorem.

Consider the planar domain (C, 0)× U and the vector field on it,

F = F0 + zR(x) · ∂
∂x

+ 0 · ∂
∂z

, F0 = (xk+1 + ax2k+1) ∂
∂x

, (5.19)

which is the suspension of the above parametric family of vector fields on the line.

Consider another planar vector field H ∈ Diff
�
(C1, 0) × U

�
, U ⊆ C, which has the

form
H = h(x, z) ∂

∂x
+ 1 · ∂

∂z
, h(0, z) ≡ 0. (5.20)

Lemma 5.26 (Path method paradigm). If there exists a holomorphic vector field H ∈
Diff

�
(C1, 0)× U

�
of the form (5.20) which commutes with F,

[F,H] = 0, (5.21)

then all germs of vector fields Fz ∈ D(C1, 0) are holomorphically equivalent to each other
for all values of z ∈ U .

Proof. If the vector fields F and H commute, then the flow of the vector field H commutes
with the flow of F and hence the flow maps of H are symmetries of the field F.

Because of the special structure of H, its flow sends the lines {z = const} into each
other, each time fixing the origin {x = 0}. Thus the flow expH maps {z = 0} into
{z = 1}, is defined in some neighborhood of the origin and conjugating F|z=0 = F0 with
F|z=1 = F1. ¤

Now we can complete the proof of Theorem 5.25, showing that in the assumptions
of the theorem, such a vector field H indeed exists. The homological equation (5.21) is
equivalent to a partial differential equation on the function H,

f · ∂h

∂x
− h · ∂f

∂x
= −R, f(x, z) = xk+1 + ax2k+1 + zR(x). (5.22)

Yet in fact this equation can be considered as a linear first order ordinary (with respect
to the x-variable) nonhomogeneous differential equation analytically depending on the
parameter z ∈ U . The solution of the corresponding homogeneous equation is immediate,
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h0(x, z) = f(x, z), using the ansatz h(x, z) = s(x, z)h0(x, z) we obtain the equation (recall

that R = x2k+2S),

f2 · ∂s

∂z
= −R(x), i.e.

∂s

∂x
= − S(x)�

1 + axk + xk+1S(x)
�2 . (5.23)

Integration of the right hand side with the initial condition s(0, z) = 1 yields a solution
s = s(x, z) holomorphic at x = 0 for all z ∈ U . The vector field H = s(x, z)F + 1 · ∂

∂z
satisfies all conditions imposed by Lemma 5.26 and allows us to construct a holomorphic
conjugacy between F0 and F1. ¤

Obviously, the polynomial normal form (4.21) can be replaced by the rational normal
form (4.23).

Remark 5.27. Besides holomorphic differential vector fields, one may consider mero-
morphic differential 1-forms on the complex line (or, more precisely, their germs at the
origin): the set of all such forms is naturally denoted by Λ1(C, 0)⊗M(C, 0).

The group Diff(C, 0) acts on such forms, so one can establish normal forms. Yet
instead of developing parallel theory, one can use duality: a 1-form ω ∈ Λ1(C, 0) and a
vector field F ∈ D(C, 0) are called dual, if ω(F ) ≡ 1. Holomorphic transform of a dual
pair is again a dual pair.

Meromorphic (i.e., with a pole at the origin) 1-forms have two obvious invariants that
cannot be changed by holomorphic transformations: the order of the pole and the residue
at this point.

The form dual to the rational vector field (4.23) is dx
xk+1−a dx

x
, and the formal invariant

a ∈ C is the residue of this form (modulo the sign). This observation explains the role of
the formal invariant.

As yet another application of the path method, we give an independent proof of the
Schröder–Kœnigs Theorem 5.18.

Consider the analytic self-map f ∈ Diff(C, 0), f(x) = µx+r(x), with the multiplicator
µ ∈ C∗, |µ| < 1 and analytic nonlinearity r(x) = O(x2).

As before, we embed f into an analytic one-parameter deformation fz(x) = µx+zr(x)
with a complex parameter z ∈ U ⊆ C, [0, 1] ⊆ U , and suspend it to the planar self-map
f ∈ Diff(C2, 0),

f : (x, z) 7→ (µx + zr(x), z), (x, z) ∈ (C1, 0)× U. (5.24)

The following lemma is a reformulation of the main paradigm of the path method
(Lemma 5.26) for the current context.

Lemma 5.28. If a vector field H as in (5.20) is preserved by the self-map f , i.e.,

f∗ ·H = H ◦ f , f∗ =
∂f(x, z)

∂(x, z)
, (5.25)

then all self-maps fz for all z ∈ U , are analytically equivalent, in particular, f1 = f is
analytically equivalent to the linear map f0. The conjugacy is achieved by the flow of the
field H restricted on the lines {z = const}. ¤

The proof of Lemma 5.28 almost literally reproduces that of Lemma 5.26 and is
skipped. In order to prove Theorem 5.18, we need only to show that the homological
equation (5.25) is solvable.
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Alternative proof of Theorem 5.18. The identity (5.25) reduces to a single scalar
linear nonhomogeneous functional equation

∂fz(x)

∂x
· h(x, z)− h(fz(x), z) = r(x). (5.26)

This equation can be solved in two steps, solving first the corresponding homogeneous
equation ( ∂f

∂x
)u− u ◦ f = 0, and then looking for a solution of (5.26) in the form h = su,

similar to the way the equation (5.22) was solved.

The homogeneous equation can be rewritten as a fixed point statement,

h =

�
∂f

∂x

�−1

· (h ◦ f), f = fz ∈ Diff(C, 0). (5.27)

It has a trivial (zero) solution, yet we can restrict the operator occurring in the right hand
side, on the subspace of functions tangent to identity, h(x) = x + O(x2).

Without loss of generality we may assume (passing to a sufficiently small neighborhood
of the origin which is rescaled to the unit disk) that all maps fz satisfy the inequalities����∂f

∂z

���� > µ−, |f(x)| < µ+|x|, ∀x ∈ D1 = {|x| 6 1},

0 < µ− < |µ| < µ+ < 1.

(5.28)

Here µ± are two positive constants which can be assumed to be arbitrarily close to |µ| < 1.

First we show that the operator Φ : h 7→ ( ∂f
∂x

)−1 · (h ◦ f) restricted on the subspace

M = {u ∈ A(D1) : u(0) = 0, du
dx

= 1}
of holomorphic functions tangent to the identity at the origin, is contracting in the sense
of the usual supremum-norm ‖u‖ = maxx∈D1 |u(x)|. Clearly, Φ(M) ⊆ M.

Indeed, since Φ is linear, it is sufficient to show that ‖Φq‖ < λ‖q‖ for any q ∈ A(D1)
having a second order zero at the origin and some λ strictly between 0 and 1. Note that
for any such function q(x), we have the inequality |q(x)| 6 ‖q‖·|x|2: it is sufficient to apply
the maximum modulus principle to the holomorphic ratio q(x)/x2. Then from (5.28) it
immediately follows that

‖Φq‖ 6 max
|x|61

1

µ−
‖q‖ · |f(x)|2 6 µ2

+

µ−
· max
|x|61

‖q‖ |x|2 6 µ2
+

µ−
· ‖q‖.

Since the ratio µ2
+/µ− can be made arbitrarily close to |µ| < 1, the operator Φ restricted

on M is contracting and hence has a holomorphic fixed point u analytically depending on
z and any additional parameters (if present).

Now a solution of the nonhomogeneous equation can be found using the ansatz h = su.
Substituting this ansatz into the equation (5.26), we obtain the Abel-type equation

s− s ◦ f = −R(x), R = Rz(x) =
r(x)

( ∂f
∂z

) · u(x, z)
, f = fz(x). (5.29)

The function Rz(x) is holomorphic and vanishes at the origin x = 0 for all values of x,
since fz has a simple zero and r(x) has a double zero at the origin.

The formal solution of the equation (5.29) is given by the series

s = −
∞X

k=0

R ◦ f◦k, s = s(·, z), f = fz, R = Rz, (5.30)
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which is well defined because f is contracting. Moreover, since R vanishes at the origin,
we have |Rz(x)| < C|x| for some C < ∞ and all x ∈ D1. Combining this with the uniform

bounds |f◦k(x)| 6 µk
+|x| implied by (5.28), we conclude that the series (5.30) converges

uniformly on D1 and hence its sum is a holomorphic function vanishing at x = 0. The
holomorphic vector field H = s(x, z)u(x, z) ∂

∂x
+ 1 · ∂

∂z
solves the equation (5.25).

The alternative proof of Theorem 5.18 is complete. ¤

* * *

5G. Divergence dichotomy. As follows from the Poincaré, Siegel and
Brjuno theorems, for most linear parts the linearizing series converges, and
in the remaining cases the linearizing series may diverge. On the other
hand, no matter how “bad” the linearization and its eigenvalues are, there
are always nonlinear systems that can be linearized (e.g., linear systems
in nonlinear coordinates). It turns out that in some precise sense for a
given linear part, the convergence/divergence pattern is common for most
nonlinearities.

Consider a parametric nonlinear system

ẋ = Ax + z f(x), x ∈ Cn, z ∈ C, (5.31)

holomorphic in some neighborhood of the origin with the nonresonant lin-
earization matrix A and the nonlinear part linearly depending on the aux-
iliary complex parameter z ∈ C. For such systems for each value of
the parameter z ∈ C there is a unique (by Remark 4.6) formal series
Hz(x) = x + hz(x) ∈ Diff[[x, z]] linearizing (5.31). This series may con-
verge for some values of z while diverging for the rest. It turns out that
there is a strict alternative: either the linearizing series converges for all
values of z without exception, or on the contrary the series Hz diverges for
all z outside a rather small exceptional set K b C.

The exceptional sets are small in the sense that their (electrostatic)
capacity is zero. The notion of capacity is formally introduced below in
§5H, where some of its basic properties are collected. We mention here only
that zero capacity implies zero Lebesgue measure for any compact set.

Theorem 5.29 (Divergence dichotomy, Yu. Ilyashenko [Ily79a], R. Perez
Marco [PM01]). For any nonresonant linear family (5.31) one has the fol-
lowing alternative:

(1) Either the linearizing series Hz ∈ Diff[[Cn, 0]] converges for all
values of z ∈ C in a symmetric polydisk {|x| < r} of a positive
radius r = r(z) > 0 decreasing as O(|z|−1) as z →∞, or

(2) The linearizing series Hz diverges for all values of z except for a
set Kf b C of capacity zero.
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The proof is based on the following property of polynomials, which can
be considered as a quantitative uniqueness theorem for polynomials. If K
is a set of positive capacity and p ∈ C[z] a polynomial vanishing on K, then
by definition p vanishes identically. One can expect that if p is small on K,
then it is also uniformly small on any other compact subset, in particular,
on all compact subsets of C.

Theorem 5.30 (Bernstein inequality). If K b C is a set of positive capac-
ity, then for any polynomial p ∈ C[z] of degree r > 0,

|p(z)| 6 ‖p‖K exp(rGK(z)), (5.32)

where ‖p‖K = maxz∈K |p(z)| is the supremum-norm of p on K, and GK(z)
is the nonnegative Green function of the complement CrK with the source
at infinity; see (5.36).

We postpone the proof of this theorem until §5H and proceed with
deriving Theorem 5.29 from the Bernstein inequality.

Lemma 5.31. Formal Taylor coefficients of the formal series linearizing
the field (5.31) are polynomial in z.

More precisely, every monomial xα, |α| > 2, enters into the vector series
hz with the coefficient which is a polynomial of degree 6 |α| − 1 in z.

Proof. The equation determining h = hz is of the form(
∂hz

∂x

)
(Ax + z f(x)) = Ahz(x). (5.33)

Collecting the terms of degree m in x, we obtain for the corresponding mth
homogeneous (vector) components h

(m)
z , f (l), the recurrent identities(

∂h
(m)
z

∂x

)
Ax−Ah(m)

z = −z
∑

k+l=m, l>2

(
∂h

(k+1)
z

∂x

)
f (l).

From these identities it obviously follows by induction that each h
(m)
z is a

polynomial of degree m−1 in z for all m > 1 (recall that f does not depend
on z). ¤

Proof of Theorem 5.29. Assume that the formal series Hz(x) = x+hz(x)
linearizing the field Fz(x) = Ax + z f(x) converges for values of z belonging
to some set K∗ ⊂ C of positive capacity.

Consider the subsets Kcρ b C, ρ > 0, c < +∞, defined by the condition

z ∈ Kcρ ⇐⇒ |h(m)
z (0)| 6 cρ−m ∀m ∈ N.
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By this definition, K∗ =
⋃

c,ρ Kcρ, since a Taylor series converges if and only
if satisfies some Cauchy-type estimate. Each of the sets Kcρ obviously is a
compact subset of C, being an intersection of semialgebraic compact sets.

The compacts Kcρ are naturally nested: Kc′ρ′ ⊆ Kcρ if ρ′ > ρ and
c′ < c. Passing to a countable sub-collection, one concludes that the set K of
positive capacity is a countable union of compacts Kcρ. By Proposition 5.35
(see below), one of these compacts must also be of positive capacity. Denote
this compact by K = Kcρ; by its definition,

|h(m)
z | 6 cρ−m, ∀z ∈ K, ∀m ∈ N.

Since the capacity of K is positive, Theorem 5.30 applies. By this theorem
and Lemma 5.31, the polynomial coefficients of the series hz for any z ∈ C
satisfy the inequalities

|h(m)
z | 6 cρ−m exp[(m− 1)GK(z)] 6 c(ρ/ expGK(z))−m, ∀z ∈ C, ∀m ∈ N.

This means that the series hz converges for any z ∈ C in the symmetric
polydisk {|x| < ρ/ expGK(z)}. Together with the asymptotic growth rate
GK(z) ∼ ln |z|+O(1) as z →∞ (see (5.36)) this proves the lower bound on
the convergence radius of Hz. ¤

The dichotomy established in Theorem 5.29 may be instrumental in con-
structing “nonconstructive” examples of diverging linearization series. Con-
sider again the nonresonant case where the homological equation adA g = f
is always formally solvable.

Theorem 5.32 ([Ily79a]). Assume that the formal solution g ∈ D[[Cn, 0]]
of the homological equation adA g = f is divergent.

Then the series linearizing the vector field Fz(x) = Ax+z f(x), diverges
for most values of the parameter z, eventually except for a zero capacity set.

Proof. Assume the contrary, that the linearizing series Hz converges for a
positive capacity set. By Theorem 5.29, it converges then for all values of z,
in particular, hz is holomorphic in some small polydisk {|x| < ρ′, |z| < ρ′′}.

Differentiating (5.33) in z, we see that the derivative g(x) = ∂hz(x)
∂z

∣∣
z=0

is a converging solution of the equation ( ∂g
∂x)Ax − Ag = f , contrary to the

assumption of the theorem. ¤

Remark 5.33. The divergence assumption appearing in Theorem 5.32 can
be easily achieved. Assume that A is a diagonal matrix with the spectrum
{λj}n

1 such that the differences |λj − 〈λ, α〉 | decrease faster than any geo-
metric progression ρ|α| for any nonzero ρ. Assume also that the Taylor
coefficients of f are bounded from below by some geometric progression.
Then the series ad−1

A f diverges.
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It remains to observe that a set of positive measure is necessarily of
positive capacity (Proposition 5.35), hence divergence guaranteed in the as-
sumptions of Theorem 5.32, occurs for almost all z in the measure-theoretic
sense, as stated in [Ily79a].

5H. Capacity and Bernstein inequality. The brief exposition below is based on
[PM01] and the encyclopedic treatise [Tsu59].

Recall that the function ln |z− a|−1 = − ln |z− a| is the electrostatic potential on the
z-plane C ∼= R2, created by a unit charge at the point a ∈ C and harmonic outside a. If µ
is a nonnegative measure (charge distribution) on the compact K b C, then its potential
is the function represented by the integral uµ(z) =

R
K

ln |z− a|−1 dµ(a) and the energy of
this measure is

Eµ(K) =

ZZ
K×K

ln |z − w|−1 dµ(z) dµ(w).

This energy can be either infinite for all measures, or Eµ(K) < +∞ for some nonnegative
measures. In the latter case one can show that among all nonnegative measures normalized
by the condition µ(K) = 1, the (finite) minimal energy E∗(K) = infµ(K)=1 Eµ(K) is
achieved by a unique equilibrium distribution µK . The corresponding potential uK(z) is
called the conductor potential of K.

Definition 5.34. The (harmonic, electrostatic) capacity of the compact K is either zero
(when Eµ = +∞ for any charge distribution on K) or exp(−E∗(K)) > 0 otherwise;

κ(K) =

8<:0, if ∀µ Eµ(K) = +∞,

sup
µ(K)=1, µ>0

exp(−Eµ(K)), otherwise. (5.34)

Proposition 5.35. Capacity of compact sets possesses the following properties :

(1) Countable union of zero capacity sets also has capacity zero.

(2) κ(K) >
p

mes(K)/πe, where mes(K) is the Lebesgue measure of K, in partic-
ular, if K is a set of positive measure, then κ(K) > 0.

(3) If K is a Jordan curve of positive length, then κ(K) > 0.

Proof. All these assertions appear in [Tsu59] as Theorems III.8, III.10 and III.11 re-
spectively. ¤
Proposition 5.36. For compact sets of positive capacity, the conductor potential is har-
monic outside K, and

uK 6 κ−1(K), uK |K = κ−1(K) a.e.,

uK(z) = − ln |z|+ O(|z|−1) as z →∞.
(5.35)

Proof. [Tsu59, Theorem III.12] ¤

As a corollary, we conclude that for sets of the positive capacity there exists the Green
function

GK(z) = κ−1(K)− uK(z) = ln |z|+ κ−1(K) + o(1) as z →∞, (5.36)

nonnegative on CrK, vanishing on K and asymptotic to the fundamental solution of the
Laplace equation with the source at infinity.
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Proof of Theorem 5.30 (Bernstein inequality). Since the assertion is invariant by
multiplication by scalars, it is sufficient to prove for monic polynomials only.

Let p(z) = zr + · · · be a monic polynomial of degree r. Consider the function

g(z) = ln |p(z)| − ln ‖p‖K − rGK(z), z ∈ CrK.

We claim that this function is nonpositive, g 6 0 outside K. Indeed, g is negative near
infinity since g(z) = − ln ‖p‖K − rκ−1(K) + o(1) as z → ∞ by (5.36). On K we have
the obvious inequality ln |p(z)| 6 ln ‖p‖K , and the Green function Gk has zero limit on
K by (5.35). By construction, the function g is harmonic in C rK outside the isolated
zeros of p where it tends to −∞. By the maximum principle, the function g is nonpositive
everywhere, ln |p(z)| 6 ln ‖p‖K + rGK(z) for all z ∈ C rK. After passing to exponents
this nonpositivity proves the theorem. ¤
Example 5.37. Assume that K = [−1, 1] is the unit segment. Its complement is con-
formally mapped into the exterior of the unit disk D = {|w| < 1} by the function

z = 1
2
(w + w−1), w = z +

√
z2 − 1. The Green function GD of the exterior is ln |w|.

Thus we obtain the explicit expression for GK ,

GK = ln
���z +

p
z2 − 1

��� ,
which implies the classical form of the Bernstein inequality,

|p(z)| 6
���z +

p
z2 − 1

���deg p

max
−16z6+1

|p(z)|. (5.37)

Exercises and Problems for §5.

Problem 5.1. Prove that if h is a solution for the homogeneous homological equat-
ion (5.27) with a hyperbolic map f , then H = h(x) ∂

∂x ∈ D(C, 0) is a vector field that
only by a constant factor differs from the generator of the self-map f : f = exp cH,
for some c ∈ C.

Problem 5.2. Supply a detailed proof of the Poincaré theorem for self-maps (The-
orem 5.17).

Exercise 5.3. Let l ∈ R be an irrational number whose rational approximations
have only sub-exponential accuracy,

|l − p
q | > Ce−q1−ε

for some C, ε > 0, (5.38)

and µ = exp 2πil. Prove that for any holomorphic right hand side f the homological
equation

h ◦ µ− µh = f, f ∈ O(C, 0), (5.39)

has an analytic (convergent) solution h ∈ O(C, 0).

Exercise 5.4. Let l ∈ R be an irrational number which admits infinitely many
exponentially accurate rational approximations p/q such that |l − p

q | < e−q. Prove
that for some right hand sides f the homological equation (5.39) has only divergent
solutions (cf. with Remark 5.33).
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Problem 5.5. Let F = F (x)x ∂
∂x ∈ D(C1, 0) be the germ of a holomorphic vector

field at a singular point of multiplicity k+1 > 2 at the origin, F (x) = xk+1(1+o(1)),
and F′ = F + o(x2k+1) ∈ D(C1, 0) is another such germ with the same 2k + 1-jet.
(i) Prove that these two germs are analytically equivalent if and only if two mero-
morphic 1-forms ω and ω′, dual to F and F′ respectively, are holomorphically
equivalent (cf. with Remark 5.27).
(ii) Show that in the assumptions of the problem, the orders of the poles and the
Laurent parts of the 1-forms ω and ω′ coincide so that the difference ω − ω′ is
holomorphic.
(iii) Passing to the primitives and denoting by ak, . . . , a1, a0 the common Laurent
coefficients of the forms ω, ω′, prove that the equation

ak

yk
+ · · ·+ a1

y
+ a0 ln y + O(y) =

ak

xk
+ · · ·+ a1

x
+ a0 ln x + O(z)

with holomorphic terms O(y) and O(x), admits a holomorphic solution y = y(x)
tangent to identity (substitute y = ux and apply the implicit function theorem to
the function u(x) with u(0) = 1).

Problem 5.6 (Yet another proof of Schröder–Kœnigs theorem; cf. with [CG93]).
Let f ∈ Diff(C, 0) be a contracting hyperbolic holomorphic self-map, f(z) = λz +
· · · , |λ| < 1, and g(z) = λz its linearization (the normal form).

Prove that the sequence of iterations hn = g−◦n ◦ f◦n is defined and converges
in some small disk around the origin. The limit h = lim hn conjugates f and g.

Problem 5.7. Prove Theorem 5.5 along the same lines (M. Villarini).

6. Finitely generated groups of conformal germs

Thus far we have studied classification and certain dynamic properties of
single germs of vector fields and biholomorphisms. However, in §2C we
introduced an important invariant of foliation, the holonomy group of a leaf
L ∈ F with nontrivial fundamental group π1(L, a), a ∈ L. By construction,
the holonomy is a representation of π1(L, a) by conformal germs Diff(τ, a),
where τ is a cross-section to L at a, and the holonomy group G is identified
with the image of that representation. Usually if the fundamental group of
a leaf of a holomorphic foliation is finitely generated, then so is the group
G. We will consider only the case of holomorphic foliations on complex 2-
dimensional surfaces, thus dealing only with finitely generated subgroups of
the group Diff(C, 0) of conformal germs.

In this section we study classification problems for finitely generated
groups of conformal germs and their dynamic properties, focusing on the
properties which will be later used in §11 and §28. In much more detail the
theory is treated in the recent monograph [Lor99].
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Problem 6.3. Compute all holonomy maps of an integrable foliation {du = 0},
u ∈ O(C2, 0), if u =

∏
u

pj

j is the primary decomposition of the holomorphic germ
u with irreducible factors uj and natural exponents pj ∈ N.

Problem 6.4. Prove that a formally integrable holomorphic self-map (or a finitely
generated group G of holomorphic germs of self-maps from Diff(C, 0)) is also ana-
lytically integrable; cf. with Theorem 6.8.

Suggestion. Use the formal chart in which û(z) = zm.

Problem 6.5. Prove that an (orbital) symmetry of a holomorphic vector field on
(C, 0) is necessary holomorphic itself.

Problem 6.6. Construct a finitely generated subgroup G ⊂ Diff(C, 0), whose
orbits are dense in each of the two half-planes {± Im z > 0} separately, yet both
half-planes are invariant by G.

Generalize this example and find a group whose orbits are dense in each of 2p
invariant sectors in (C, 0) for any p > 1 (cf. with Theorem 6.53).

Problem 6.7 (formal rigidity of generic groups). Assume that two finitely gener-
ated subgroups G,G′ ⊆ Diff(C, 0) are formally equivalent and one of these groups
contains a hyperbolic germ. Prove that in such case G and G′ are holomorphically
equivalent, moreover, any formal conjugacy between them is necessarily holomor-
phic (convergent).

7. Holomorphic invariant manifolds

In this short section we show that under rather weak conditions one can
eliminate enough nonresonant terms to ensure existence of holomorphic in-
variant (sub)manifolds. Recall that a holomorphic submanifold W ⊂ (Cn, 0)
is invariant for a holomorphic vector field F , if the vector F (x) is tangent to
W at any point x ∈ W . Traditionally the prefix ‘sub’ is omitted, though it
plays an important role: in §14 we will discuss invariant analytic subvarieties
that are not submanifolds because of their singularity.

7A. Invariant manifolds of hyperbolic singularities. Suppose that
the spectrum S ⊂ C of linearization matrix A of a holomorphic vector field
consists of two parts S± ⊂ C separated by a real line (i.e., each part belongs
to an open half-plane bounded by the line). In this case no eigenvalue from
one part can be equal to a linear combination of eigenvalues from the other
part with nonnegative coefficients,

λ−j −
∑

αiλ
+
i 6= 0, λ+

i −
∑

αjλ
−
j 6= 0,

λ+
i ∈ S+, λ−j ∈ S−, αi, αj ∈ Z+,

(7.1)

(we say that there are no cross-resonances between the two parts). Without
loss of generality A can be assumed to be in the block diagonal form. By
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the Poincaré–Dulac theorem, there exists a formal transformation eliminat-
ing all nonresonant terms corresponding to the nonzero cross-combinations
(7.1). The corresponding formal normal form has two invariant manifolds
coinciding with the corresponding coordinate subspaces.

Moreover, all denominators (7.1) are obviously bounded from below.
Therefore one can expect that the corresponding transformation converges
and the invariant manifolds will exist in the analytic category. This is indeed
the case, though the accurate proof is organized along different lines.

Theorem 7.1 (Hadamard–Perron theorem for holomorphic flows). Assume
that the linearization operator of a holomorphic vector field Ax + F (x) has
a transversal pair of invariant subspaces L± such that the spectra of A re-
stricted on these subspaces are separated from each other.

Then the vector field has two holomorphic invariant manifolds W± tan-
gent to the subspaces L±.

However, the proof of this result is indirect. We start by formulating
and proving a counterpart of Theorem 7.1 for biholomorphisms.

Definition 7.2. A holomorphic self-map H ∈ Diff(Cn, 0), x 7→ Mx + h(x),
h(0) = ∂h

∂x(0) = 0, is said to be hyperbolic if no eigenvalue of the linearization
matrix M ∈ GL(n,C) has modulus 1.

For a matrix M without eigenvalues on the unit circle, we denote
L± ⊆ Cn two invariant subspaces such that the restriction M |L− is contract-
ing (in a suitable Hermitian metric) and M |L+ expanding (i.e., M−1|L+ is
contracting).

To define invariant manifolds for biholomorphisms we need to be careful
and replace sets by their germs at the fixed points. Otherwise it would be
necessary to give different definitions for expanding and contracting sub-
manifolds.

Definition 7.3. A holomorphic submanifold W passing through a fixed
point of a biholomorphism H : (Cn, 0) → (Cn, 0) is invariant, if the germ of
H(W ) at the origin coincides with the germ of W .

Theorem 7.4 (Hadamard–Perron theorem for biholomorphisms). A hyper-
bolic holomorphism in a sufficiently small neighborhood of the fixed point at
the origin has two holomorphic invariant submanifolds W+ and W−.

These manifolds pass through the origin, transversal to each other and
are tangent to the corresponding invariant subspaces L± of the linearized
map x 7→ Mx.
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The dimensions of the invariant manifolds are necessarily equal to the
dimension of the corresponding subspaces. The manifold W+ is called un-
stable manifold, whereas W− is referred to as the stable manifold, because
the restriction of H on these manifolds is unstable and stable respectively.

Proof. The linearization matrix M of a holomorphic biholomorphism
H : (Cn, 0) → (Cn, 0) can be put into the block diagonal form. Choosing ap-
propriate system of local holomorphic coordinates (x, y) ∈ (Ck, 0)× (Cl, 0),
k + l = n, one can always assume that the map H has the form

H :
(

x
y

)
7−→

(
Bx + g(x, y)
Cy + h(x, y)

)
, (x, y) ∈ (Ck, 0)× (Cl, 0). (7.2)

Here the square matrices B, C and the nonlinear terms g, h of order > 2
satisfy the conditions

|B| 6 µ, |C−1| 6 µ, µ < 1,

|f(x, y)|+ |g(x, y)| < |x|2 + |y|2, for |x| < 1, |y| < 1.
(7.3)

with some hyperbolicity parameter µ < 1.
It is sufficient to prove the existence of the stable manifold only; the

unstable manifold for H is the stable manifold of the inverse map H−1

which is also hyperbolic.
The stable manifold W+ tangent to L+ = {(x, 0)} is necessarily the

graph of a holomorphic vector function ϕ : {|x| 6 ε} → {|y| 6 ε} defined in
a sufficiently small polydisk, ϕ(0) = 0, ∂ϕ

∂x (0) = 0. For this manifold to be
invariant, the function ϕ must satisfy the functional equation

ϕ
(
Bx + g(x, ϕ(x))

)
= Cϕ(x) + h(x, ϕ(x)). (7.4)

This equation can be transformed to the fixed point form as follows:

ϕ = Hϕ, (Hϕ)(x) = C−1ϕ
(
Bx + g(x, ϕ(x))

)− h(x, ϕ(x)). (7.5)

All assertions of Theorem 7.4 follow from the contracting map principle and
the following Lemma 7.5. ¤

The “linearization” (removal of all nonlinear terms of order 2 and higher)
of the operator H at the “point” ϕ = 0 results in the operator

ϕ(x) 7→ C−1ϕ(Bx), |B|, |C−1| 6 µ < 1,

which is obviously contracting. Lemma 7.5 shows that nonlinear terms do
not affect this property.

Denote by Aε the Banach space of functions holomorphic in the open
disk of radius ε > 0 and continuous on the closure.

Lemma 7.5. Under the assumptions (7.3), the nonlinear operator H has
the following properties:
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(1) H is well defined for ϕ in the ball Bε = {ϕ : sup|x|<ε |ϕ(x)| < ε}
inside the space Aε, and takes this ball into itself,

(2) the subset B1
ε of functions in Bε with the Lipschitz constant 6 1,

is preserved by H,
(3) the operator H is contracting on B1

ε,

provided that the value ε > 0 is sufficiently small.

Proof. To prove the first assertion, note that |Bx + g(x, ϕ(x))| < µ|x| +
|x|2 + |ϕ|2 < µε + 2ε2 < ε for |x| < ε, if ε is sufficiently small. Thus the
composition occurring in the definition of H makes perfect sense and Hϕ
is well defined. For the same reason, |ϕ| never exceeds µε + 2ε2 < ε which
means that Bε is taken by H into itself.

The Jacobian matrix J(x) = ∂ϕ
∂x is transformed into J ′ = C−1J(· · · )(B+

∂g
∂x+ ∂g

∂yJ)+(∂h
∂x + ∂h

∂y J). Since the terms g, h are of order > 2, their derivatives
vanish at the origin and therefore the Jacobian is no greater (in the sense of
the matrix norm) than (µ2 + O(ε))|J |. As µ < 1, this proves the assertion
about the Lipschitz constant.

To prove the last assertion that H is contractive, notice that the operator
ϕ(x) 7→ h(x, ϕ(x)) is strongly contracting:

|h(x, ϕ1(x))− h(x, ϕ2(x))| 6 ∣∣∂h
∂y

∣∣ |ϕ1(x)− ϕ2(x)| 6 O(ε)‖ϕ1 − ϕ2‖ε. (7.6)

Consider the operator ϕ 7→ Gϕ = ϕ(Bx + g(x, ϕ)) and the difference of the
values it takes on two functions ϕ1, ϕ2 ∈ B1

ε: by the triangle inequality,
|Gϕ1(x)− Gϕ2(x)| = |ϕ1(Bx + g1(x))− ϕ2(Bx + g2(x))|

6 |ϕ1(Bx + g2(x))− ϕ2(Bx + g2(x))|
+ |ϕ1(Bx + g1(x))− ϕ1(Bx + g2(x))|,

where we denoted gi(x) = g(x, ϕi(x)) for brevity. The first term does not ex-
ceed ‖ϕ1−ϕ2‖ε. Since the vector function ϕ1 ∈ B1

ε has Lipschitz constant 1,
the second term does not exceed |g1(x)−g2(x)| = |g(x, ϕ1(x))−g(x, ϕ2(x))|.
Similarly to (7.6), this part is no greater than O(ε)‖ϕ1 − ϕ2‖ε. Finally, we
conclude that G is Lipschitz on B1

ε: ‖Gϕ1 − Gϕ2‖ε 6 (1 + O(ε))‖ϕ1 − ϕ2‖.
Adding all terms together for H = C−1G − h(x, ·), we conclude that if

ϕ1,2 ∈ B1
ε, then

‖Hϕ1 −Hϕ2‖ε 6 (µ + O(ε)) ‖ϕ1 − ϕ2‖ε.

Since µ < 1, the operator H is contracting on the closed subset B1
ε of the

complete metric space Bε ⊂ Aε. ¤

Remark 7.6. Characteristically for the proofs based on the contracting
map principle, the germs of invariant manifolds are automatically unique.
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Now we can derive Theorem 7.1 from Theorem 7.4.

Proof. Passing if necessary to an orbitally equivalent field, one may assume
that the linearization A = diag{A+, A−} is block diagonal with the spectra
of the blocks are separated by the imaginary axis.

Consider the flow maps Φt = exp tF : (Cn, 0) → (Cn, 0) for t = 1/k,
k = 1, 2, . . . . Each of them is a biholomorphism with the linear part x 7→
exp tAx whose eigenvalues are the corresponding exponentials {exp tλi : λi ∈
S} separated by the unit circle {|λ| = 1}. In the assumptions of the theorem,
each flow map Φt is hyperbolic for the specified values of t ∈ 1/N. By
Theorem 7.4, the map Φt has a pair of invariant manifolds W±

t , tangent to
the corresponding invariant subspaces L± common for all t ∈ R.

Apriori, the invariant subspaces W±
t do not have to coincide. However,(

Φ1/k
)k = Φ1, therefore manifolds invariant for Φ1/k, are invariant also for

Φ1. Since the invariant manifolds for the latter map are unique, we conclude
that all the maps Φ1/k leave the pair W± = W±

1 invariant.
In other words, an analytic trajectory x(t) of the vector field which

begins on, say, W−, x(0) ∈ W−, remains on W− for t = 1/k. Since isolated
zeros of analytic functions cannot have accumulation points, x(t) is on W−

for all (sufficiently small) values of t ∈ (C, 0). Then W− is invariant for the
vector field Ax + F (x). The proof for W+ is similar. ¤
Remark 7.7. Intersection of invariant manifolds is again an invariant man-
ifold. This observation allows us to construct small-dimensional invariant
manifolds for holomorphic vector fields. For instance, if the linearization
matrix Λ has a simple eigenvalue λ1 6= 0 such that λ1/λj /∈ R+ for all other
eigenvalues λj , j = 2, . . . , n, then the vector field has a one-dimensional
holomorphic invariant manifold (curve) tangent to the corresponding eigen-
vector.

The Hadamard–Perron theorem for holomorphic flows, as formulated
above, is the nearest analog of the Hadamard–Perron theorem for smooth
flows in Rn. There are known stronger results in this direction; see [Bib79].

7B. Hyperbolic invariant curves for saddle-nodes. Consider a holo-
morphic vector field on the plane (C2, 0) with the saddle-node at the origin.
Recall that by Definition 4.28, this means that exactly one of the eigenvalues
is zero, while the other eigenvalue must be nonzero. The null space (line)
of the linearization operator is called the central direction. The direction of
eigenvector with the nonzero eigenvalue is referred to as hyperbolic.

The nonzero eigenvalue cannot be separated from the null one, thus the
Hadamard–Perron theorem cannot be applied. However, the invariant man-
ifold (smooth holomorphic curve) tangent to the eigenvector with nonzero
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eigenvalue, exists and is unique in this case as well. As before, we start with
the case of biholomorphisms with one contracting eigenvalue |µ| < 1 and
the other eigenvalue equal to 1. For obvious reasons, such maps are called
saddle-node biholomorphisms.

Any saddle-node biholomorphism H : (C2, 0) → (C2, 0) can be brought
into the form

H :
(

x
y

)
7−→

(
µx + g(x, y)

y + y2 + h(x, y)

)
, µ ∈ (0, 1) ⊂ R, (7.7)

with g, h holomorphic nonlinear terms of order > 3, by a suitable holo-
morphic choice of coordinates x, y. Indeed, all other quadratic terms are
nonresonant and can be removed (Exercise 4.8).

Theorem 7.8. The biholomorphism (7.7) has a unique holomorphic invari-
ant manifold (curve) tangent to the eigenvector (1, 0) ∈ C2.

Proof. The manifold W = graphϕ is invariant for the saddle-node self-map
H of the form (7.7) if the function ϕ satisfies the functional equation

ϕ(µx + g(x, ϕ(x))) = ϕ(x) + ϕ2(x) + h(x, ϕ(x)). (7.8)

This equation can be represented under the fixed point form Hϕ = ϕ using
the operator H defined as follows:

(Hϕ)(x) = ϕ
(
µx + g(x, ϕ(x))

)− ϕ2(x)− h(x, ϕ(x)). (7.9)

This operator is no longer contracting: its linearization at ϕ = 0 is the
operator ϕ(x) 7→ ϕ(µx) which keeps all constants fixed. To restore the
contractivity, we have to restrict this operator on the subspace of functions
vanishing at the origin, with the norm ‖ϕ‖′ = supx6=0

|ϕ(x)|
|x| . Technically it

is more convenient to substitute ϕ(x) = xψ(x) into the functional equation
(7.8) and bring it back to the fixed point form. As a result, we obtain the
equation

(µx + g(x, xψ(x)) · ψ(
µx + g(x, xψ(x))

)
= xψ(x) + x2ψ2(x) + h(x, xψ(x)),

which yields the nonlinear operator H′,

(H′ψ)(x) =
(
µ+g′(x, ψ(x))

)·ψ(
µx+g(x, xψ(x))

)−xψ2(x)−h′(x, ψ). (7.10)

Here the holomorphic functions g′(x, y) = g(x, xy)/x, h′(x, y) = h(x, xy)/x
are of order > 2 at the origin.

The proof of Lemma 7.5 carries out almost literally for the operator
H′ as in (7.10), proving that it is contractible on the space of functions
ψ : {|x| < ε} → {|y| < ε} with respect to the usual supremum-norm on
sufficiently small discs. ¤
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Completely similar to derivation of Theorem 7.1 from Theorem 7.4 in
the hyperbolic case, Theorem 7.8 implies the following result concerning
holomorphic saddle-nodes.

Theorem 7.9. A holomorphic vector field on the plane (C2, 0) having a
saddle-node singularity (one eigenvalue zero, another nonzero) at the origin,
admits a unique holomorphic nonsingular invariant curve passing through
the singular point and tangent to the hyperbolic direction. ¤

This curve is called the hyperbolic invariant manifold.
It is important to conclude this section by the explicit example showing

that the other invariant manifold, the central manifold tangent to the central
direction, may not exist in the analytic category. Note, however, that the
formal invariant manifold always exists and is unique: this follows from the
formal orbital classification of saddle-nodes (Proposition 4.29).

Example 7.10 (L. Euler). The vector field

x2 ∂
∂x + (y − x) ∂

∂y (7.11)

has vertical hyperbolic direction ∂
∂y and the central direction ∂

∂x + ∂
∂y . The

central manifold, if it exists, must be represented as the graph of the function
y = ϕ(x), ϕ(x) = x +

∑
k>2 ckx

k. However, this series diverges, as was
noticed already by L. Euler. Indeed, the function ϕ must be the solution to
the differential equation

dϕ

dx
=

ϕ(x)− x

x2

which implies the recurrent formulas for the coefficients,

k ck = ck+1, k = 1, 2, . . . , c1 = 1.

The factorial series with ck = (k− 1)! has zero radius of convergence, hence
no analytic central manifold exists.

However, sufficiently large “pieces” of the central manifold for the saddle-
node can be shown to exist; see §22I.

Exercises and Problems for §7.

Exercise 7.1. Prove that a nonresonant hyperbolic self-holomorphism is analyti-
cally linearizable on its holomorphic invariant manifolds W+ and W−.

Problem 7.2. Prove that if a hyperbolic self-map analytically depends on addi-
tional parameters (and remains hyperbolic for all values of these parameters), then
the invariant manifolds W± also depend analytically on the parameters.

Problem 7.3. Formulate and prove a parallel statement for a saddle-node.

Exercise 7.4. Describe possible number and relative position of analytic separa-
trices of elementary planar singularities of holomorphic vector fields.
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24. Nonaccumulation theorem for hyperbolic polycycles

[What can be said about ] the maximal number of and position of
Poincaré’s boundary cycles (cycles limites) for a differential equation

of the first order and degree of the form dy
dx

= Y
X

, where X and Y are
rational integral functions of nth degree in x and y?

D. Hilbert, 1901, reprinted from [Hil00]

This second part of Hilbert’s sixteenth problem appears to be one of
the most elusive in his famous list [Hil00], second only to the Riemann ζ-
function Conjecture. In the introductory subsection §24A based on [Ily02],
we briefly describe the current status of this problem.

The body of the section is devoted to investigation of limit cycles of
analytic vector fields6. The central result of this section, Theorem 24.24 on
finiteness of limit cycles of analytic vector fields having only nondegenerate
singular points, was proved by Yu. Ilyashenko in [Ily84].

24A. Legends and truth on the limit cycles. As most problems from
the Hilbert’s list, the sixteenth problem is formulated very broadly and can
be made precise in a variety of ways.
24A1. Various flavors of Hilbert’s sixteenth. By different placement of quan-
tifiers the Hilbert’s question can be transformed into three problems in in-
creasing order of strength as follows.

Problem I. Is it true that a planar polynomial vector field may have only
finitely many limit cycles?

Problem II. Can the number of limit cycles be bounded by a constant de-
pending only on the degree n of the vector field?

Assuming the affirmative answer to Problem II, denote by H(n) the
Hilbert number , the conjectural bound for the number of limit cycles that a
polynomial vector field of degree n may exhibit. Linear vector fields have no
limit cycles, hence H(1) = 0. Finiteness of H(2) is already an open problem.

Problem III. Give an upper bound for H(n).

Only Problem I is solved now. The affirmative answer was proved inde-
pendently in [Ily91] and [Eca92].

To separate analytic and algebraic aspects of the Hilbert problem, we
will consider the following two questions concerning real analytic rather than
polynomial vector fields.

6Recall that the limit cycle of a vector field is an isolated compact leaf of the real foliation
defined by the vector on the real plane, real 2-sphere or the projective plane RP 2; cf. with
Definition 9.11
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Problem IV. Is it true that a real analytic vector field on the 2-sphere S2

has only a finite number of limit cycles?

The “purely analytic” counterpart of Problem II has the following form.

Problem V. Given a parametric family of real analytic vector fields on the
2-sphere, analytically depending on finitely many parameters varying over a
compact subset in the parameter space, is it true that the number of limit
cycles in this family is uniformly bounded?

An affirmative answer in Problem V implies solutions of the Problems I,
II and IV, since polynomial vector fields can be extended as real analytic
foliations of the 2-sphere, and constitute a finite-parametric family para-
meterized by the coefficients of the vector fields varying over the projective
space (see §25A for detailed explanations). In fact, it is the solution of
Problem IV that is achieved in [Eca92] and [Ily91]. In other words, the
known individual finiteness of limit cycles for polynomial vector fields has
analytic rather than algebraic nature.

Clearly, all these questions reformulated literally for C∞-smooth rather
than real analytic vector fields, have negative answers; see §9F. Yet some-
what surprisingly there are meaningful questions which are reasonable
“smooth analogs” of the above analytic problems. The following formu-
lation is an implicit conjecture that the exotic smooth vector fields with
infinitely many limit cycles constitute a subset of infinite codimension in
the total space of C∞-smooth vector fields on the sphere.

Problem VI (Hilbert–Arnold problem). Given a generic n-parametric fam-
ily of C∞-smooth vector fields on the 2-sphere, smoothly depending on para-
meters varying over a compact subset in the parameter space, is it true that
the number of limit cycles in this family is uniformly bounded?

A restricted version of this problem (under the additional assumption on
the types of singular points that are allowed to occur in the family) is solved
in [IY95]. We wish to stress that this formulation is unrelated (neither
implies nor is implied by) to any of the algebraic/analytic Problems I to V.
24A2. Historical sketch. As is typical for most of the problems from
Hilbert’s list, the sixteenth problem lies on the crossroads of many different
directions and served as a motivation for many developments. Yet its own
history is rather dramatic: several times it was believed to be proved only
to later discover gaps.

Before Hilbert, Henri Poincaré considered polynomial vector fields in the
plane, in the framework of his geometric theory of differential equations. He
introduced the notion of limit cycle and proved that a planar polynomial
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vector field without saddle connexions has only a finite number of limit
cycles.

In 1923, Dulac [Dul23] claimed a solution of Problem I in full generality.
In the mid-fifties of the twentieth century, Petrovskii and Landis published a
solution to Problem III [PL55, PL57]. They claimed that H(n) is bounded
by a certain polynomial of degree 3 in n, and H(2) = 3. In the early sixties
a severe error in the arguments by Petrovskii and Landis was revealed by
S. Novikov and Yu. Ilyashenko. Later quadratic vector fields with 4 limit
cycles were explicitly constructed in [CW79, Shi80b].

In 1981, a ruinous gap was found in Dulac’s solution of Problem I
(cf. [Ily85]): Dulac was operating with asymptotic series as if they were
convergent. Thus after eighty years of intense efforts our knowledge on
Hilbert’s sixteenth problem was still almost the same as at the time when
the problem was formulated.
24A3. Some recent progress on the Hilbert’s sixteenth problem. The princi-
pal achievement is the general theorem solving Problems I and IV.

Theorem 24.1 (Individual finiteness theorem, [Ily91, Eca92] ). A poly-
nomial vector field in the plane has only a finite number of limit cycles. The
same is true for analytic vector fields on the 2-sphere.

After some preliminary work described in §24B–§24D, the Finiteness
Theorem 24.1 follows from the Nonaccumulation Theorem 24.23 formulated
below. It is the Nonaccumulation theorem that is the most difficult result,
whose proof occupies hundreds of pages. We will not discuss it, though the
analytic normal forms for parabolic singularities and saddle resonant vector
fields obtained in §21–§22 play the key role in this analysis. Ecalle’s theory
of resurgent functions is presented in [Eca85, Eca92].

The infinitesimal Hilbert’s sixteenth problem deals with limit cycles that
appear by perturbation of Hamiltonian vector fields that do not have limit
cycles at all. Its main tool is investigation of Abelian integrals considered
as analytic multivalued functions of complex parameters. These questions
are discussed in detail in §26 below.

Bifurcation theory is intimately related to Hilbert’s sixteenth. Indeed,
the function “number of limit cycles of the equation” has points of disconti-
nuity corresponding to equations whose perturbations generate limit cycles
via bifurcations. Limit cycles may bifurcate from separatrix polygons, also
known as polycycles (defined in §24C). The cyclicity of a polycycle in a fam-
ily of equations is the maximal number of limit cycles that may bifurcate
from the polycycle in this family, very much like cyclicity of singular point
introduced in §12A, p. 201. Using the notion of cyclicity, one can formulate
the Hilbert-type problems in the language of bifurcations theory.
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Problem VII. Is it true that a polycycle occurring in a finite parameter
family of planar analytic vector fields has only finite cyclicity?

Problem VIII. Is it true that a polycycle occurring in a generic k-
parameter family of smooth planar vector fields may generate only a finite
number of limit cycles, with an upper bound depending on k only? (This
latter quantity is denoted by B(k).)

The affirmative answer in Problem VII would imply a solution of Prob-
lem II and existence of the Hilbert number H(n) for any finite n (without
giving the slightest idea of how this number can be computed). The af-
firmative answer in Problem VIII would lead to an instant solution of the
Hilbert-Arnold Problem VI. These implications are proved by using simple
compactness arguments due to R. Roussarie [Rou98]. Both Problems VII
and VIII remain unsolved, yet the latter seems to be easier than the former,
in light of the recent achievements.

More precisely, denote by E(k) the maximal cyclicity of a polycycle
that can occur in a generic k-parameter family of smooth vector fields,
under the additional assumption that all singular points on this polycycle
are elementary.

Theorem 24.2 (Ilyashenko and Yakovenko [IY95]). For any k, the number
E(k) is finite and bounded from above by an elementary function of k.

As a corollary, one can immediately conclude that the Hilbert–Arnold
problem has the affirmative answer if restricted on the smooth vector fields
having only elementary singularities on the 2-sphere.

The proof of Theorem 24.2 is constructive and yields an algorithmic
expression for the upper bound. Further elaborating this construction,
V. Kaloshin in [Kal03] obtained a simple explicit upper bound,

E(k) 6 225k2
. (24.1)

The Kaloshin bound is apparently very much excessive, yet it is one of the
first Hilbert-type numbers (bounds pertinent to the number of limit cycles)
obtained during the hundred years of quest.

In the rest of this section we illustrate the power of the analytic normal
forms theory and prove the Individual Finiteness Theorem 24.1 under the
additional assumption that all singular points of the vector field and nonde-
generate saddles. To present the complete proof, we have to go back to the
early times of the geometric theory of differential equations.

24B. Poincaré–Bendixson theory revisited. One of the highlights of
the geometric theory of real planar vector fields is the Poincaré–Bendixson
theorem. It describes the limit behavior of phase trajectories of vector fields
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without singular points in domains on the 2-sphere using purely topologi-
cal arguments. In the next three subsections we apply similar methods to
describe limit sets of aperiodic trajectories for spherical vector fields with
singularities and the accumulation sets for their periodic trajectories.

Here and below we consider smooth real vector fields on the sphere and
their trajectories parameterized by real values of the time. Since the sphere
is compact, any such trajectory can be extended for all values of the time
t ∈ R. Let v ∈ D(S2) be a vector field and ϕ : R→ S2 its trajectory.

Definition 24.3. An ω-limit set of a trajectory ϕ is the set of all points y ∈
R2 which are limits of sequences of points ϕ(tn) corresponding to sequences
of time tn →∞. An α-limit set of a trajectory ϕ(t) is the ω-limit set of the
trajectory ϕ(−t), i.e., after the time reversal.

We will denote these limits by ω(ϕ) and α(ϕ) respectively.

Remark 24.4. The definition of an ω- (resp., α-) limit set can be modified
for noncomplete vector fields or for fields defined in noninvariant domains.
It is sufficient to require that ϕ be defined for all sufficiently large positive
(resp., negative) values of time.

One can give an alternative description for ω(ϕ). For any T > 0 denote
by ϕT the restriction of the phase curve on the semi-interval [T, +∞). This
is a forward invariant set whose closure ϕT ⊂ S2 is also forward invariant
(forward invariance is invariance by the real flow maps Φt = exp tv of the
field v ∈ D(S2) for nonnegative times t ∈ R+). These sets form a family
of nested connected compacts on the sphere, whose intersection, as one can
easily see, coincides with ω(ϕ):

∅ 6= ω(ϕ) =
⋂

T>0

ϕT b S2. (24.2)

From the description (24.2) one can easily derive the following properties
of limit sets on the sphere.

Proposition 24.5. The ω-limit set of a trajectory of the spherical vector
field is a closed connected set invariant by both positive and negative flow of
the field. ¤

Remark 24.6. The same definitions can be given for a vector field on the
plane R2, but in this case the sets ϕT can be unbounded, ϕT noncompact
and, as a result, the ω-limit set can be empty or nonconnected.

Example 24.7. The phase portraits sketched on Fig. IV.5 show that ω-
limits of trajectories on the sphere can be singular points, cycles (periodic
orbits) or more complicated objects which consist of several singular points
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nonisolated
singular points

(d)
(c)(b)

(e)

(a)

infinite 
number of 
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not
monodromic

(f)

(h)

not monodromic
without the loop
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Figure IV.5. Zoo of limit periodic sets. (a) Isolated singular point.
(b) Periodic orbit. (c) Separatrix loop. (d) Curve of nonisolated singular
points. (e) Monodromic polycycle. (f) Singular point with infinitely
many homoclinic trajectories. (g) Part of a polycycle is a polycycle but
not monodromic. (h) Oriented but not monodromic saddle-node loop

 Trap

Figure IV.6. Bendixson trap

together with several orbits which are bi-asymptotic to these singular points
as t → ±∞.

In order to describe ω-limit sets, we introduce a simple but powerful
construction designed by Bendixson.

Definition 24.8. A Bendixson trap for a vector field v on the sphere is a
closed oriented piecewise-smooth curve which consists of two smooth parts:

(1) a piece of nonperiodic phase trajectory γ oriented by the field and
thus defining the orientation of the trap, and

(2) a smooth arc τ transversal to the field at all its points.
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By the Jordan theorem, any Bendixson trap divides the sphere into two
connected domains, one of them invariant by the flow of v in the forward
time (it will be referred to as interior to justify the term “trap”), the other
(“exterior”) invariant in the reverse time. Note that the orientation of the
trap can be opposite to the orientation of the boundary of the interior part.

Lemma 24.9. No point on the transversal arc of a Bendixson trap can
belong to an ω-limit set of any trajectory.

In particular, the invariant arc of the trap cannot be an ω-limit set.

Proof of the lemma. Any orbit starting on the transversal arc enters the
interior domain either immediately, or at worst after traversing the invariant
arc of the trap, and never leaves it since that moment. In particular, it can
never return to a sufficiently small neighborhood of the arc τ . ¤

As an immediate consequence, we can prove that a trajectory accumu-
lates to its ω-limit set from one side only.

Proposition 24.10. If γ = ω(f) contains a nonsingular point a and
τ : (R1, 0) → S2 is a cross-section to γ at a, then all intersections of ϕ
with τ occur only on one side of the cross-section.

Proof. If ϕ intersects τ at two points p and q on two different sides of τ ,
then the closed line formed by the arc ϕ|qp of ϕ from p to q and the arc τ |pq of
τ from q to p is a trap. The point a ∈ τ |pq is hence a point of a limit set which
lies on the transversal arc of a trap, in contradiction with Lemma 24.9. ¤

The following result constitutes the most familiar part of the Poincaré–
Bendixson theory.

Theorem 24.11 (H. Poincaré, 1886, I. Bendixson, 1901). An ω-limit set
which does not contain singular points of the field, is necessarily a periodic
orbit.

Proof. Let γ = ω(ϕ) be the limit set and a ∈ γ a nonsingular point on it.
Consider a cross-section τ to γ at a as in Proposition 24.10. The trajectory ϕ
crosses τ infinitely many times. Consider the positive orbit ψ ⊆ γ starting
at a. It must intersect τ some time in the future. Indeed, otherwise the
closure ψ(t)|[1,+∞) would be a compact subset of the sphere disjoint from
τ , and since the orbit ϕ must remain in a neighborhood of this compact, it
would be unable to cross τ infinitely many times.

Hence ψ crosses τ again. If this intersection occurs at a point b different
from a, then the closed curve formed by ψ|ba and τ |ab would be a trap in
contradiction with Lemma 24.9.
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The only remaining possibility is that ψ crosses τ at the same point
a ∈ τ ∩ ψ. Then ψ and hence γ is a periodic orbit of v. ¤

In the presence of singular points the limit sets can be more complicated,
as mentioned in Example 24.7. Still these limit sets admit a rather simple
description.

A trajectory ϕ of a vector field is called bi-asymptotic to two points a, b
if {a} = α(ϕ), {b} = ω(ϕ). Clearly, in such a case both a and b must be
singular points; the case a = b is not excluded.

Theorem 24.12. Any limit set of a vector field on the sphere consists of
singular points and entire trajectories of the field, bi-asymptotic to some of
these singular points.

To prove this theorem, we reformulate it in the language of iterated
limit sets. Being invariant, an ω-limit set of any orbit ϕ consists of entire
trajectories of the field. This allows us to iterate the construction of limit
sets.

Definition 24.13. The iterated limit set ω2(ϕ) is the union of ω-limit sets
of all trajectories forming ω(ϕ).

If γ is a singular or periodic orbit, then ω(γ) = ω2(γ) = γ. The set ω2(ϕ)
is also closed and invariant by the flow, but may well be nonconnected.

In the same way higher iterated ω-limit sets can be defined inductively
as unions of limit sets of all trajectories forming a previous iteration. By
construction, they constitute a sequence of nested compacts. Yet it turns
out that on the plane this generalization does not lead to anything new. The
core statement of the Poincaré–Bendixson theory asserts that the iterated ω-
limit sets on the sphere in fact stabilize from the second step. The following
statement has no analogs for vector fields on higher-dimensional manifolds.

Lemma 24.14. For any vector field with isolated singular points on the
sphere, the ω2-limit of any trajectory is either a periodic orbit, or a collection
of singular points.

Proof. Suppose that Γ = ω2(ϕ) contains a nonsingular point a of the field,
and let τ be a cross-section to Γ at a. This means that some invariant
trajectory γ from ω(ϕ) must cross τ infinitely many times. But the contour
formed by an arc of γ between two subsequent crossings and a segment of
the cross-section will be a Bendixson trap unless γ is periodic. This would
contradict Lemma 24.9. ¤

Proof of Theorem 24.12. By Lemma 24.14, both α- and ω-limit sets of
any nonconstant trajectory γ ⊆ ω(ϕ) are singular points. ¤
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We conclude this section by an example showing that on surfaces other
than the sphere (with its simple topological properties), Theorem 24.12 fails
completely.

Example 24.15. The constant vector field dy/dx = α, α ∈ R on the 2-
torus T2 = (R mod Z)2 has all trajectories periodic for α ∈ Q. However, if
α /∈ Q is irrational, the ω-limit of any orbit coincides with the entire torus
T2.

24C. Polycycles, monodromy, correspondence maps. Without fur-
ther assumptions on the vector field it is difficult to describe more precisely
possible limit sets of trajectories on the sphere.

From this moment on we will assume that all vector fields satisfy the
following two finiteness assumptions:

(1) the field has only isolated singular points on the sphere, and
(2) each singular point has only finitely many hyperbolic sectors

(cf. Definition 9.2).

These assumptions are automatically satisfied for real analytic vector fields.
By Theorem 24.12, in these assumptions the ω-limit set Γ of any tra-

jectory ϕ is a planar (more accurately, spherical) finite graph consisting
of finitely many vertices (singular points) connected by edges (trajectories
bi-asymptotic to these vertices).

This graph is co-oriented: by Proposition 24.10, every edge γ ⊂ Γ has
a “positive” side, from which the trajectory ϕ accumulates to Γ , and the
“negative” side. Therefore among the connected components of S2rΓ (faces
of the spherical graph) there is a distinguished component Ω containing ϕ;
see Fig. IV.7. Each connected component C of the boundary ∂Ω ⊆ Γ is
an “almost circle”, i.e., the image of the circle S1 = R/Z by a continuous
map ι : S1 → C bijective except finitely many points that are mapped into
singular points of v. Since the curve ϕ cannot (again by Jordan theorem)
approach any point from ∂Ω r Γ , we conclude that ∂Ω = Γ and hence ∂Ω
must be connected, ∂Ω = C. In other words, Γ = ω(ϕ) which is not a
singular point or a cycle, is a closed continuous curve bounding a spherical
domain, whose self-intersections can occur only at singularities. Such an
object is called a polycycle.

Definition 24.16. A polycycle of a vector field is a finite oriented spherical
graph Γ such that:

(1) topologically Γ is a continuous image of the circle S1,
(2) vertices of Γ are at the singular points of the field,
(3) edges of Γ are infinite trajectories of the field.
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Figure IV.7. The continuous “almost one-to-one” image of the circle
Γ bounding the connected domain Ω

Note that among the singular points (also cyclically enumerated) repe-
titions are allowed whereas the edges are all distinct.

Let τ+ : (R1
+, 0) r {0} → (S2, a) be a semi-section, the restriction of a

cross-section τ at a nonsingular point a ∈ Γ , on the “positive” open semi-
interval (i.e., such that ϕ ∩ τ+ is nonvoid).

Proposition 24.17. There is a well-defined first return map (also called
monodromy map) ∆Γ : τ+ → τ+ such that for any point p ∈ τ+ the orbit of
v starting at p, intersects τ+ for the first time again at ∆Γ (p).

Proof. Consider the infinite sequence of points x1, x2, . . . , which are sub-
sequent intersections of the trajectory ϕ with the semi-section τ+; this se-
quence converges to the base point a of the semi-section.

Consider the trap T formed by the arc of ϕ from x1 to x2 and a piece
of τ+ between these points. The trajectory ϕ starting from the point x2

entirely belongs to the annulus T r Ω, where Ω is the spherical domain
containing ϕ. Without loss of generality we may assume that this annulus
contains no singular points of the field other than belonging to the polycycle
(recall that singularities of v are isolated).
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Figure IV.8. Correspondence maps

Consider the strip Π formed by two arcs ϕ′ = ϕ|x2
x1

and ϕ′′ = ϕ|x3
x2

of
the trajectory ϕ and two segments τ ′ = τ+|x2

x1
and τ ′′ = τ+|x3

x2
on the cross-

section. We claim that any other trajectory ψ starting on τ ′, crosses τ ′′ at
some time in the future.

Indeed, ψ cannot cross the arcs ϕ′, ϕ′′ as they are phase curves of the
field. If ψ does not cross τ ′′, then its ω-limit must be nonvoid. Since
Π does not contain singular points, the ω-limit set must be a cycle by
the Poincaré–Bendixson Theorem 24.11. But by the Poincaré–Hopf index
theorem, each cycle must contain a singular point in its interior, leading
again to the contradiction.

Therefore the first return map ∆Γ is well defined on τ ′ and takes values
on τ ′′. For the same reasons ∆Γ is well defined on any segment τ+|xn+1

xn ⊂
τ+. Since these segments together cover the entire semi-section τ+, the
proposition is proved. ¤

Remark 24.18 (terminological). Note that the first return map ∆Γ con-
structed in the proof of Proposition 24.17, possesses the following property:
for all points p ∈ τ+ sufficiently close to a, the orbit connecting p with ∆Γ (p)
remains in an arbitrarily small neighborhood of the polycycle. This condi-
tion excludes some polycycles, e.g., those sketched on Fig. IV.5 (g), (h),
from being limit sets of trajectories. In the future we will call a polycycle
Γ monodromic, if it admits the first return map along orbits that remain in
an arbitrarily small neighborhood of Γ .

Consider a singular point a ∈ Γ on a monodromic polycycle Γ , and
let γ+, γ− ⊆ Γ be two trajectories such that ω(γ+) = a = α(γ−) (the
loop case where γ+ = γ− is not excluded). Let τ± be two semi-sections
to the curves γ± at two points a± respectively, from the “positive” side of
each of them. The same arguments as in the proof of Proposition 24.17
show that each trajectory starting on τ+ sufficiently close to a+, crosses
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also τ− somewhere near a−. This allows us to define the correspondence
map ∆a : τ+ → τ− associated with the singular point a ∈ Γ . This map,
in general, not analytically extendable to the point a+, remains continuous
after setting ∆a(a+) = a−. By this construction, ∆a is defined modulo
the freedom in choosing the cross-sections τ±, i.e., modulo a conjugacy by
analytic germs h± ∈ Diff(R1, 0) from left and right, h− ◦∆a ◦ h+.

We will summarize the results of this section as follows.

Theorem 24.19. Assume that a smooth vector field on the sphere has only
isolated singular points, each of them having at most finitely many hyperbolic
sectors.

Then an ω-limit set of any orbit of this field is either a singular point,
or a cycle (periodic orbit) or a finite monodromic polycycle Γ .

In the latter case the first return map of this polycycle ∆Γ is well defined
on any semi-section τ+ to Γ at a nonsingular point of the latter, and expands
as a finite composition of the form

∆Γ = hn ◦∆an ◦ hn−1 ◦∆an−1 ◦ · · · ◦ h1 ◦∆a1 ◦ h0. (24.3)

Here ∆ai are correspondence maps associated with the singular points ai ∈
Γ , and hi are some real analytic maps. ¤

24D. Accumulation of limit cycles. Recall (see Definition 9.11) that a
limit cycle is an isolated periodic trajectory of a vector field.

As the first step towards the solution of Problem I (finiteness problem
for limit cycles) we will describe possible accumulation sets for limit cycles
of smooth vector fields. Such fields may indeed have an infinite number of
limit cycles, but these cycles must accumulate to a monodromic polycycle.
To make this statement precise, we need the notion of the Hausdorff distance.

Definition 24.20. Let A,B be two subsets of a metric space M . The
Hausdorff distance between them is the nonnegative number

dist(A,B) = max[sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)], (24.4)

where dist(x, Y ) = infy∈Y dist(x, y) is the distance between a point x and
any subset Y ⊂ M .

One can easily verify (see [BBI01, Chapter 7]) that the Hausdorff dis-
tance satisfies the triangle inequality and defines a metric on the space of
closed subsets: if A,B are closed and dist(A,B) = 0, then A = B.

A sequence of subsets A1, A2, . . . , An, · · · ⊆ M converges in the sense of
Hausdorff distance to a limit A, if every point of a ∈ A is the limit of a
sequence of points a1, a2, . . . such that ai ∈ Ai. An alternative description
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of the limit is similar to (24.2)

A =
∞⋂

n=1

∞⋃

i=n

Ai;

see [BBI01, Exercise 7.3.4]. The following result is elementary but very
useful.

Theorem 24.21 (W. Blaschke). If the metric space M is compact, then the
space of compact subsets of M equipped with the Hausdorff distance is also
compact.

Proof. See [BBI01], Theorem 7.3.8. ¤

Theorem 24.22. Assume that a smooth vector field on the sphere S2 has
only isolated singular points, each of them having at most finitely many
hyperbolic sectors.

If this field has infinitely many limit cycles, then there exists an infinite
sequence of these cycles {γi}∞i=1 ⊂ S2 converging in the sense of the Haus-
dorff distance to a singular point, a cycle (periodic orbit) or a monodromic
polycycle Γ .

In the latter case if ∆Γ : τ+ → τ+ is the monodromy map of the polycycle,
then the intersection points pi = γi ∩ τ+ are isolated fixed points for ∆Γ

accumulating to the base point of the semi-section τ+.

Proof. By Blaschke Theorem 24.21, an infinite number of limit cycles on
the compact 2-sphere must contain an infinite sequence of cycles that accu-
mulates in the sense of the Hausdorff distance to a compact subset Γ ⊆ S2.
We show that if Γ contains a nonsingular point of v, then Γ is either a cycle
or a monodromic polycycle.

To do this, one can modify slightly the arguments leading to the proof
of Theorem 24.19. Yet we can reduce Theorem 24.22 to Theorem 24.19
directly, using a plug as on Fig. IV.9.

Let a ∈ Γ be a nonsingular point. Consider two close semi-sections
τ+, τ ′+ at the points a 6= a′ to the trajectory γ passing through a, and
denote by pi, p

′
i the corresponding intersection points between the cycles γi

with these cross-sections.
Consider the narrow strip Π (“plug”) bounded by γ|a′a and the two semi-

sections τ+, τ ′+ (the outer bound can be chosen rather arbitrarily). Let w be
a C∞-smooth vector field which coincides with v everywhere outside of Π
and on the boundary τ+ ∪ τ ′+ ∪ γ|a′a of the latter, such that its orbits which
begin at pi pass through Π and end at p′i+1.
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Figure IV.9. The plug: modification of a vector field in a small strip
Π between two semi-sections

Then all cycles γi of the initial field v belong to the single trajectory ψ
of the field w. Obviously, the ω-limit set of ψ coincides with the Hausdorff
limit set Γ for the sequence of the limit cycles γi. By Theorem 24.19, the
former is a cycle or a monodromic polycycle. ¤

Finiteness Theorem 24.1 for limit cycles of planar and spherical ana-
lytic vector fields follows now from a purely analytic local property of the
monodromy map of polycycles of such fields.

Theorem 24.23 (General finiteness theorem, Yu. Ilyashenko [Ily91],
J. Écalle [Eca92]). The monodromy map of a polycycle of an analytic vector
field in the plane cannot have an infinite number of isolated fixed points.

We will prove here this theorem under a simplifying assumption that
the polycycle is hyperbolic, i.e., it carries only nondegenerate saddles at the
vertexes. This implies the following theorem which is the main result of this
section.

Theorem 24.24 (Easy finiteness theorem). A real analytic vector field on
the 2-sphere, having only nondegenerate singular points, may have only fi-
nitely many limit cycles.

The proof is based on investigation of the individual correspondence
maps for analytic hyperbolic saddles and their compositions with holomor-
phic germs.

24E. Almost regular germs and monodromy of hyperbolic poly-
cycles. Developing the ideas of Dulac [Dul23], we introduce a class of
germs with two competing properties. On one hand, this class is large
enough as to include monodromy transformations of hyperbolic polycycles
∆Γ : (R1

+, 0) → (R1
+), z 7→ ∆Γ (z), which are in general not analytic at z = 0.
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On the other hand, this class is so close to the class of analytic functions that
germs of this class are uniquely determined by their asymptotic expansions.

In this section we will mostly work in the logarithmic chart ζ = − ln z:
in this chart the interval z ∈ (0, ε) becomes a neighborhood of infinity,
ζ ∈ (1

ε ,+∞).

Definition 24.25. A standard (quadratic) domain ΩC is the image of the
right half-plane C+ = {Re ζ > 0} by the map

ϕC : ζ 7→ ζ + C
√

1 + ζ, C > 0. (24.5)

The constant C is a parameter determining the “size” of the standard do-
main ΩC .

Definition 24.26. An exponential series, or Dulac series, is the formal
series

S = αζ + β +
∞∑

j=1

pj(ζ) exp(−νjζ), α, β ∈ R, pj ∈ R[ζ], (24.6)

in which

α > 0, 0 < ν1 < ν2 < · · · < νn < · · · , lim νj = +∞.

No assumptions on convergence of the series (24.6) is made.
A function f defined in some standard domain ΩC is said to admit an

expansion in the Dulac series (24.6) (to be expandable, for short), if for any
order ν > 0 there exists a partial sum Sν of this series, such that

|f(ζ)− Sν(ζ)| = o
(
exp(−νζ)

)
as |ζ| → ∞ in ΩC . (24.7)

Definition 24.27. The germ of a real analytic map f : (R1
+, 0) → (R1

+, 0) is
called almost regular , if in the logarithmic chart the germ − ln f(exp

(−ζ)
)

has a representative that can be extended as a biholomorphic map between
two standard domains and expanded in a Dulac exponential series there.

Remark 24.28. Apriori in the Definition 24.27 one can allow dependence of the Dulac
series on the order ν to which it approximates the almost regular germ f . Yet the asymp-
totic series (24.6), if it exists, is unique, and this is proved exactly like the uniqueness of
the Taylor asymptotic series. Assume that for any ν there exists a Dulac polynomial Sν(ζ)
(a finite sum of the form (24.6) with positive exponents νj not exceeding ν) such that the
difference f − Sν is decreasing as o

�
exp(−νζ)

�
. Then all polynomials Sν are necessarily

truncations of a single Dulac series S as in (24.6) which is an asymptotic series for the
function f . Indeed, if ν′ > ν, then Sν is a truncation of Sν . Otherwise their difference
cannot be decreasing as o

�
exp(−ν′ζ)

�
as ζ →∞ in ΩC .

The condition of almost regularity is weaker than analyticity at the point
z = 0. Indeed, any converging Taylor series f(z) = a1z + a2z

2 + · · · in the
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logarithmic chart becomes a uniformly convergent Dulac series

− ln f(ζ) = ln a1 + ζ + ln
(
1 + a2

a1
exp(−ζ) + a3

a1
exp(−2ζ) + · · · )

= ζ + β + (Dulac series without affine part).

Yet the following property means that in some respects almost regular
germs are similar to analytic germs which were called regular in the old-
fashioned language of the nineteenth century (this explains the choice of the
term “almost regular”).

Theorem 24.29. An almost regular germ is uniquely determined by its
asymptotic Dulac series: two almost regular germs with the same series
coincide identically in their common domain.

In other words, not only the Dulac asymptotic series is uniquely defined
by an almost regular germ as Remark 24.28 notes, but the germ itself is
completely determined by its series.

It turns out that the class of almost regular germs is large enough for
our purposes.

Theorem 24.30. The germ of the monodromy map of a hyperbolic polycycle
is almost regular.

The Nonaccumulation Theorem 24.24 is an almost direct consequence
of these two theorems, as the following argument shows.

Proof of Theorem 24.24. Suppose that limit cycles accumulate to a hy-
perbolic polycycle Γ . Then the monodromy map ∆ = ∆Γ : (R1

+, 0) → (R1
+)

has an infinite number of isolated fixed points accumulating to z = 0, as
explained in §24D.

By Theorem 24.30, in the logarithmic chart ζ = − ln z the monodromy
map f(ζ) = − ln∆(exp−ζ) admits an exponential asymptotic series S of
the form (24.6) and has infinitely many real fixed points accumulating to
ζ = +∞. We claim, following Dulac [Dul23], that this series is in fact an
identity, S = ζ.

Indeed, consider the difference S − ζ which also admits the exponential
series (24.6). If this difference is nonzero, then its leading term is either affine
(α − 1)ζ + β, or exponential p1(ζ) exp(−ν1ζ). In both cases the difference
between the monodromy map f(ζ) itself and the identity ζ has the form
g(ζ)(1+o(1)), where g(ζ) is a real analytic function on R+ with only finitely
many (real) zeros, which contradicts the assumption that these zeros are
accumulating to infinity. Hence the series S must be identical, S = ζ.

Thus the asymptotic series S of the map f is identity. On the other
hand, ∆ is almost regular by Theorem 24.30. Theorem 24.29 implies that
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in this case the map f itself is identity, f(ζ) ≡ ζ, and hence ∆(z) ≡ z. Thus
∆ cannot have isolated fixed points at all. The contradiction proves the
Nonaccumulation Theorem 24.24. ¤

Remark 24.31. In [Dul23] Dulac tacitly assumed that the monodromy
map with the identical Dulac series, is itself identity, circumventing The-
orem 24.29. However, this assertion is wrong in absence of hyperbolicity
of the polycycle. In [Ily84] one can find an example of a (nonhyperbolic)
polycycle whose monodromy differs from identity by a flat (decaying faster
than any exponential of ζ) nonzero function.

The rest of this section is devoted to the proof of the two key facts:
Theorem 24.29 is proved in §24G, while the proof of Theorem 24.30 is post-
poned until subsection §24H. In order to carry out the proofs, we need some
elementary properties of almost regular maps.

24F. Elementary properties of almost regular maps. The class of
almost regular germs is rather natural. As was already noted, it contains
all germs regular at z = 0.

Example 24.32. The power map z 7→ czλ for λ > 0 is almost regular.
Indeed, in the logarithmic chart this map becomes affine, ζ 7→ λζ + β,
β = − ln c. The corresponding Dulac series is finite, and it remains only
to verify that it maps any standard domain into another standard domain.
One can easily verify that the image of the standard domain ΩC belongs to
the standard domain ΩC′ if C ′ = α1/2C + C0 for C0 sufficiently large.

Rather expectedly, the class of almost regular germs is closed by com-
position.

Lemma 24.33. Composition of two almost-regular germs is again an almost
regular germ.

Proof. It is convenient to treat separately the affine germs of the form
ζ 7→ αζ + β, α > 0, β ∈ C, and the parabolic almost regular germs whose
Dulac series starts with the identical term,

S = ζ +
∑

ν>0

pν(ζ) exp(−νζ). (24.8)

Let us check that if f(ζ) is a function holomorphic in a standard domain
ΩC and admits there an estimate |f(ζ) − ζ| < exp(−εζ) for some ε > 0,
then the image of ΩC by f contains a standard domain ΩC′ for C ′ suffi-
ciently large. Indeed, the exponential small “perturbation” cannot change
the asymptotic behavior of the curve

Re ζ = C | Im ζ|2 + O(1), Im ζ → ±∞ (24.9)
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which is the boundary ∂ΩC . Preservation of the class of standard domains
under action of affine maps is discussed in Example 24.32.

Thus composition of almost regular germs is defined (after analytic con-
tinuation) in some standard domain and takes it into another standard do-
main. It remains to verify the existence of an asymptotic Dulac expansion
for a composition of two almost regular maps.

Note that if R =
∑

ν>0 pν(ζ) exp(−νζ) is a Dulac series without the
affine part (with only positive exponents), then all its powers R2, R3, . . .
and any product exp(−µζ)R, µ > 0, are also of the same form. Therefore
the formal exponent

exp(−µR) = 1 +
∑

k>0

(−µR)k/k!

is also a well-defined Dulac series. The direct substitution now shows im-
mediately that the composition of two parabolic series

(ζ + R′) ◦ (ζ + R) = (ζ + R) +
∑

µ>0

pµ(ζ + R) exp(−µζ) exp(−µR) = ζ + R′′

is a parabolic Dulac series.
It remains only to notice that composition of a parabolic Dulac series

with an affine map a : ζ 7→ αζ +β (in any order) is obviously a Dulac series,
and moreover, parabolic germs constitute a normal subgroup: if f(ζ) = ζ+R
is a parabolic germ, then a−1 ◦ f ◦ a is again a parabolic germ. ¤

Remark 24.34. Since the maps holomorphic at infinity are automatically
almost regular, the definition of the almost regular maps does not depend
on the coordinate chart: by Lemma 24.33, the composition g−1 ◦ f ◦ g is
again a map defined in a standard domain and asymptotic to a Dulac series
there.

24G. Phragmén–Lindelöf principle for almost regular germs. In
this subsection we prove Theorem 24.29. It is a purely analytic fact closely
related to the enhanced version of the maximum modulus principle known
as the Phragmen–Lindelöf principle.

Recall that the maximum modulus principle asserts that a function f =
f(z) holomorphic in a (bounded) domain z ∈ D and continuous on the
boundary achieves the maximal value of its modulus |f(z)| somewhere on
the boundary ∂D. If the continuity assumption fails at a single point of the
boundary, the function may well be unbounded.

Example 24.35. The function f(z) = exp(1/z) is holomorphic in the disk
|z − 1| < 1 and continuous on its boundary except the single point {z = 0}.
Yet this function is unbounded in D, despite the fact that its modulus is



460 IV. Functional moduli and applications

constant on the boundary ∂Dr{1}. The latter fact becomes obvious in the
conformal chart ζ = 1/z which transforms the function f into the exponent
exp ζ and the domain into the half-plane Re ζ > 1/2. The restriction of f
on the boundary has constant modulus m = exp 1

2 .

This example illustrates the phenomenon that lies at the core of the
Phragmén–Lindelöf principle: the maximum modulus principle may fail if
the boundary of the domain contains a point a near which f is unbounded,
but only if the growth of f when approaching such a point is sufficiently
fast; the “critical threshold” for the growth rate depends on the geometry
of the boundary ∂D near a.

For our applications it is sufficient to consider only domains on the Rie-
mann sphere, bounded by two circular arcs. In a suitable chart they become
sectors with the vertex at the origin with an opening angle 2π/α, symmetric
with respect to the real ray R1

+ ⊂ C.

Theorem 24.36 (Phragmén–Lindelöf, 1908). Assume that a function f(z)
is holomorphic in the sector Sα = {z : |Arg z| < π

2α} for some α > 1 and is
continuous and bounded on the boundary of this sector,

|f(z)| 6 M for all z such that Arg z = ± π
2α . (24.10)

If the growth of f admits a uniform apriori bound

|f(z)| = O(exp |z|β), |z| → ∞, z ∈ Sα, (24.11)

for some β < α, then in fact f is bounded in Sα by the same constant,
|f(z)| 6 M for all z ∈ Sα.

Proof. Consider, following [Tit39, §5.6], the auxiliary function g(z) =
exp(−εzγ) · f(z) with an arbitrary small positive ε > 0 and some γ be-
tween α and β. We have

|g(z)| = exp
(−ε|z|γ · cos(γ Arg z)

) |f(z)|.
Since γ < α, we have cos(πγ

2α ) > 0 and hence

|g(z)| 6 M ∀z ∈ ∂Sα = {Arg z = ± π
2α}.

On the circular arcs {|z| = r} ∩ Sα by the growth assumption on f we have
the estimates

|g(z)| 6 exp
(−εrγ cos γπ

2α

) · |f(z)| 6 C exp
(
rβ − εrγ cos γπ

2α

)
.

As γ > β and ε > 0, the latter expression tends to zero as r →∞, hence the
maximum modulus principle applied to the bounded sector Sα ∩ {|z| < r}
for all sufficiently large r yields the inequality |g(z)| 6 M there. Since r can
be arbitrarily large, |g(z)| 6 M everywhere in Sα.
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The last inequality, transformed to the form |f(z)| 6 M exp(ε|z|γ), for
any finite z ∈ Sα admits passing to the limit as ε → 0+, yielding the
inequality |f(z)| 6 M in Sα. ¤

To apply this result to the half-plane C+ corresponding to α = 1, we
would have to require that f grows subexponentially as |z| → ∞. Yet this
growth condition can be relaxed if f is controlled along the real axis.

Lemma 24.37. Let f be a function holomorphic in the half-plane C+ and
continuous and bounded on the imaginary axis iR = ∂C+. Assume that
f grows at most exponentially in C+, i.e., |f(z)| 6 C exp(µ|z|) for some
µ > 0.

Then under this apriori growth assumption:

(1) if f is bounded on the real axis R+ ⊂ C+, then f is bounded every-
where in C+ and the maximum of its absolute value is achieved
somewhere on the boundary ;

(2) if f decreases faster than any exponent along the real axis {z > 0},
|f(z)| 6 Cρ exp(−ρz) for any large ρ > 0, then f is identically zero,
f ≡ 0.

Moreover, these assumptions hold if the half-plane C+ is replaced by the
standard domain ΩC .

Proof. By Theorem 24.36 applied with α = 2, β = 1 to each of the quarter-
planes C+ ∩ {± Im z > 0}, we conclude that f is bounded in each of them,
proving thus the first assertion of the lemma.

To prove the second assertion, consider the family of functions fε(z) =
f(z) exp(z/ε) for arbitrarily small ε > 0. Any such function still has expo-
nential growth in C+. Since the exponent has modulus equal to 1 on iR for
any ε > 0, the maximum absolute value M achieved by fε on the boundary,
does not depend on ε. Finally, if f decreases faster than any exponent along
R+, so does each fε. Applying the first assertion of the lemma to fε, we
arrive at the inequality |fε(z)| 6 M for all z ∈ C+ and all ε > 0. Rewriting
this inequality in the form |f(z)| 6 M | exp(−z/ε)| and passing to the limit
as ε → 0+, we conclude that f(z) must vanish identically in C+.

Finally, if f satisfies the assumptions of the lemma in a standard domain
ΩC , then f ◦ ϕC obviously satisfies the same assumptions in C+, where
ϕC : C+ → ΩC is the map (24.5) occurring in the definition of the standard
domain. ¤

Proof of Theorem 24.29. Theorem 24.29 is an immediate corollary to
Lemma 24.37.
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If two almost regular germs g and h have the same asymptotic expan-
sions (24.6), then their difference germ g−h has zero asymptotic expansion.
Let f be a representative of this difference. By Definition 24.27, it can
be holomorphically extended to some standard domain ΩC , and grows no
faster than a linear function there. On the other hand, f decays at infinity
faster than any exponential, since its asymptotic series is identically zero.
By Lemma 24.37, f ≡ 0, hence, g ≡ h. ¤

24H. Correspondence map of a hyperbolic saddle. The proof of The-
orem 24.30 rests upon the following result.

Theorem 24.38. The correspondence map of a hyperbolic saddle is almost
regular.

To prove this theorem, we first note that the correspondence map of
a hyperbolic saddle in the formal normal form (22.3) is almost regular;
moreover, in this case the corresponding Dulac series is convergent.

If the normal form is linear, then the correspondence map is a pure
power, w = czλ, which becomes affine ζ 7→ λζ + ln c, in the logarithmic
charts. Thus only a nonlinear normal form should be studied.

Consider the saddle vector field in the formal normal form, defined by
the ordinary differential equations{

ẇ = −λw(1 + q(u)),

ż = z,

u(z, w) = zmwn,

λ = m
n ,

q(u) =
up+1

1 + αup
. (24.12)

Let τ+ and τ− be the cross-sections {w = 1} and {z = 1} to the vector field
(24.12) with the charts z and w on them respectively. The correspondence
map ∆: τ+ → τ− is well defined for z > 0 and takes positive values.

Proposition 24.39. The correspondence map ∆ between the cross-sections
τ+ and τ− for the vector field (24.12) in the formal normal form, is almost
regular.

Moreover, the corresponding Dulac series in this case is convergent:
there exists a real analytic function G ∈ O(R2, 0) such that

− ln∆(ζ) = λζ + G
(
exp(−mζ), ζ exp(−mζ)

)
, ζ = − ln z. (24.13)

Proof. The assertion follows from integrability of the vector field (24.12)
which allows us to compare the value of the resonant monomial on the
intersections (z, 1) and (1, w) of an arbitrary integral trajectory of (24.12)
with the cross-sections τ±. One has to prove that the solution of the initial
value problem for the quotient differential equation

du

dt
= −nλ

up+2

1 + αup
, u(0) = zm,
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Figure IV.10. Integration of the quotient equation via blow-down

evaluated at the moment t = − ln z, is (after extracting of the mth order
root) an almost regular function w(z) of z. The proof can be achieved
by explicit integration and investigation of the resulting algebraic relation
between z, ln z and w.

Yet one can avoid intermediate calculations applying the following geo-
metric construction (a particular nonparametric case of [IY91, Lemma 11]).
The quotient equation can be coupled with the trivial equation ṫ = 1, re-
sulting in a vector field in the positive quadrant of the (t, u)-plane,{

u̇ = u[−nλ q(u)],

ṫ = 1,
t, u > 0. (24.14)

Suppose that a trajectory γ of the initial field (24.12) crosses τ+ at the point
(1, z) corresponding some value u0 = zm. Then the travel time necessary to
reach τ− is equal to − ln z = − 1

m lnu0.

Consider on the (t, u)-plane the curve τ = {t = − 1
m ln u}; the value u

at the moment of intersection between γ and τ− is the u-coordinate of the
intersection of the respective trajectory of (24.14) with τ (Fig. IV.10).

The system (24.14) admits a simple blow-down of the t-axis: after pass-
ing to the coordinates u and v = tu, we obtain

u̇ = u
(−nλ q(u)

)
, v̇ = u + v

(−nλ q(u)
)

= u

(
1− nλ

vup

1 + αup

)
(24.15)

(we use the fact that q(u) is divisible by u). After division by u we obtain
a nonsingular vector field V in a neighborhood of the origin on the (u, v)-
plane, tangent to the v-axis. The curve τ blows down to the curve σ defined
by the equation v = − 1

mu ln u which tends to the origin as u → 0+.
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The vector field V , being transversal to the u-axis and tangent to the
v-axis, admits a real analytic first integral Φ(u, v) = uF (u, v), F (0, 0) = 1,
uniquely defined by the Cauchy boundary data Φ(u, 0) ≡ u. From the above
description of the correspondence map, we conclude that the u-value u1 at
the moment when the trajectory crosses the exit section τ−, is equal to the
value of Φ restricted on σ, i.e., u1 = u0F (u0,− 1

mu0 ln u0).

Returning to the coordinates z = u
1/m
0 and w = u

1/n
1 , we conclude that

the correspondence map for the saddle in the formal normal form can be
expressed as

w = [zmF (zm,−zm ln z)]1/n

= zλG(zm, zm ln z),

G ∈ O(R2, 0),

G(0, 0) = 1,
(24.16)

where the function G = F 1/n is real analytic in its two variables since
F (0, 0) = 1.

In the logarithmic chart ζ = − ln z the correspondence map − ln w de-
fined by the expressions (24.16) becomes a convergent Dulac series. ¤

For a saddle not in the formal normal form, we can no longer claim
that the correspondence map is represented by a convergent Dulac series;
for instance, this is impossible for formally linearizable but analytically non-
linearizable saddles (for more examples see [Tri90]). Nevertheless, we will
show that this map extends analytically into sufficiently large domain in the
logarithmic chart and admits an asymptotic Dulac series there.

Lemma 24.40. The correspondence map of a saddle in the logarithmic
chart extends to a standard domain ΩC for a sufficiently large C > 0.

Proof. The meromorphic nonlinear differential equation
dw

dz
= −λ

w

z
· (1 + Ψ(z, w)), z, w ∈ C, (24.17)

in the logarithmic chart takes the form
dw

dζ
= −λw(1 + ψ(w, ζ)). (24.18)

The function ψ holomorphic in the product C+×{|w| < 1} can without loss
of generality be assumed uniformly arbitrarily small there, in particular, it
is sufficient if |ψ| < λ/2.

Consider the function W (ζ, η) of two complex variables, which is initially
only locally defined near the diagonal {ζ = η} as the solution of the equation
(24.18) with the initial condition W (η, η) = 1.

An oriented path γ = γ(η) in the ζ-half-plane C+, connecting the point
ζ = η with the point ζ = 0 will be called admissible, if W ( · , η) can be
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Figure IV.11. Analytic continuation of saddle correspondence map

analytically continued along this path from its initial value W (η, η) = 1,
and this continuation satisfies the restriction

∣∣W ( · , η)|γ
∣∣ 6 1 along this

path.
If γ is an admissible path, then it defines the germ at ζ = η of some

branch ∆(η) = W (0, η) of the complexified correspondence map; here the
right hand side is obtained by the above continuation along γ.

If η+ ∈ R+ is a point on the real axis, then the path γ(η+) = [η+, 0]
(the real segment) is admissible, since W (·, η+) is increasing on the real axis.
The function ∆(η+) : R+ → R+ obtained by continuation along these paths
defines the real branch of the correspondence map.

In order to obtain the analytic continuation of this real branch to a
point η ∈ C+, one should find an admissible path γ(η) = γ0 which can be
continuously deformed within a family of admissible paths γs, s ∈ [0, 1], into
a real segment [0, η′] = γ1.

Let η = % + iϕ be a point in the half-plane C+. We claim that the
path γ(η) which consists of the segment of length % from η to the point
iϕ ∈ iR = ∂C+, and the segment of length |ϕ| on imaginary axis, continuing
the path to the origin, is admissible provided that η belongs to some standard
domain ΩC .

Indeed, for points % + iϕ inside the standard domain ΩC , we have the
asymptotic representation |ϕ| = (%/C)1/2 + O(1) as % → +∞. Along the
first segment of the corresponding path γ = γ(% + iϕ) the modulus of W
decreases exponentially from 1 to a small value not exceeding exp(−λ%/2)
if |ψ| < 1

2 , since Re(λ + ψ(z, w)) > λ/2 along this path.
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The Cauchy operator F iϕ of analytic continuation (flow) along the ver-
tical segment can be represented in the form

F iϕ = F iθ ◦∆nk
z , 0 6 θ < 2πn, k ∈ N,

where ∆z(w) = (exp 2πim
n )w + O(w2) ∈ Diff(C, 0) is the holonomy (mon-

odromy) operator associated with the standard loop z = exp 2πit, t ∈ [0, 1],
on the z-axis. The linear part of ∆z is a rational rotation, so that the nth
iterate ∆n

z (w) = w + O(w2) ∈ Diff1(C, 0) is parabolic (tangent to the iden-
tity). Because of the inequality between |ϕ| and % implied by the condition
% + iϕ ∈ ΩC , we have an upper bound k = O

(
(%/C)1/2

)
.

Let L be the maximal Lipschitz constant of the flow map F iθ over 0 6
θ 6 2πn on the disk {|w| 6 1}. Clearly, L < +∞.

The growth of iterates of ∆nk
z (w) of the parabolic germ ∆n

z as k →∞ can
be estimated comparing the growth of the cascade of iterates σa : r 7→ r+ar2

with the growth of solutions of the auxiliary differential equation ṙ = br2 on
the time interval t ∈ [0, k] (here a, b are real parameters). Indeed, since ∆n

z is
parabolic, |∆n(z)−z| < a|z|2, thus the absolute value of the iterates ∆kn

z (z)
does not exceed σk

a(r), r = |z|. The flow σ′b = exp br2 ∂
∂r of the auxiliary

equation can also be immediately computed: σ′b(r) = r + br2/(1− br). Thus
for each a > 0 one can find b > 0 such that the flow majorizes the cascade,
σk

a < σ′b
k for all k on a sufficiently small interval r < ε.

The flow of this equation with the initial condition r(0) = |W (iϕ, η)| 6
exp(−λ%/2) at the moment k = O

(
(%/C)1/2

)
does not exceed the reciprocal∣∣exp(λ%/2)−O(%/C)1/2

∣∣−1 (the auxiliary flow is constant in the chart 1/w).
Thus we conclude that along the path γ(η) the function W ( · , η) is bounded
in the absolute value by L

∣∣exp(λ%/2)−O(%/C)1/2
∣∣−1 which is less than 1 if

% > C (as is the case if η ∈ ΩC) and C is sufficiently large.
The path γ(η), η = %+ iϕ, can be deformed to a segment of the real axis

as follows: its endpoint ηs = % + iϕ(1 − s) moves parallel to the imaginary
axis towards % ∈ R, and γ(ηs) as before consists of a horizontal segment of
the same length ρ and contracting vertical segments of length (1−s)|ϕ|. All
estimates remain the same during this deformation, hence the paths γ(ηs)
are admissible for all s ∈ [0, 1]. ¤

Proof of Theorem 24.38. After the existence of analytic continuation of
the saddle correspondence map into a standard domain is proved, the Prox-
imity lemma 22.6 together with Proposition 24.39 allow us to prove that this
map admits an asymptotic expansion in the Dulac series. This will complete
the proof of Theorem 24.38.
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Consider an arbitrary saddle vector field F . By Proposition 24.39, with-
out loss of generality we may assume that the coordinates are chosen that
F differs from its formal normal form F0 by N -flat terms as in (22.4).

We compare the correspondence maps ∆ and ∆0 for the two saddle fields,
F and F0 respectively. Both maps are defined in some standard domain ΩC ,
and the correspondence map ∆0 for F0 is represented as a convergent Dulac
series there.

By the Proximity Lemma 22.6, the correspondence map ∆ for F differs
from ∆0 in ΩC by the term that decays sufficiently fast to infinity,

∆(ζ)−∆0(ζ) = O(exp(−Nζ/2)) as |ζ| → ∞, ζ ∈ ΩC .

This means that the Dulac series ∆0 approximates ∆ with an accuracy
corresponding to ν = N/2 in (24.7). Since N can be arbitrary, this (together
with Remark 24.28) proves that the correspondence map for any saddle
vector field is almost regular.

The assertion of Theorem 24.30 follows immediately from Lemma 24.33,
as a composition of almost regular germs is almost regular. ¤

Exercises and Problems for §24.

Exercise 24.1. What step of the proof of the Poincaré–Bendixson fails when at-
tempting to literally reproduce it for the 2-torus?

Problem 24.2. Let H(x+iy) = y2−x2+y4 be a polynomial on the plane R2 ∼= C1.
Plot the phase portrait of the vector field ż = ieiH(z) (∂H

∂x + i∂H
∂y ) (in the complex

notation).

Exercise 24.3. Modify the previous example to construct explicitly a polynomial
vector field with an ω-limit set which carries any number of singular points on it.

Problem 24.4. Prove that sums and products of almost regular germs are almost
regular.

Problem 24.5. Give an example of a saddle, for which the correspondence map
has a divergent Dulac series.

Problem 24.6. Prove, using the Phragmen–Lindelöf theorem, that if one of the
sectorial components of a normalizing map-cochain (Definition 21.9) is identical,
then all other components are also identical (cf. with Problem 21.3).
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