Lindelöf spaces which are indestructible, productive, or ${\cal D}$

Franklin D. Tall

We report on recent research in collaboration with Marion Scheepers and with Leandro Aurichi. Classical combinatorial strengthenings of Lindelöfness, namely the *Menger* and *Rothberger* properties, yield new insights into longstanding open problems in topology. For example,

Theorem 1 [3]. If it is consistent there is a supercompact cardinal, it is consistent with GCH that all Rothberger spaces with points G_{δ} have cardinality $\leq \aleph_1$, and that all uncountable Rothberger spaces of character $\leq \aleph_1$ have Rothberger subspaces of size \aleph_1 .

Theorem 2 [1]. Menger spaces are D-spaces.

Theorem 3 [2]. Indestructibly productively Lindelöf implies Alster implies Menger.

Theorem 4 [2]. CH implies that if a T_3 space X is either separable or first countable, and is productively Lindelöf, then it is Alster and hence Menger and D.

Theorem 5 [2]. Every completely metrizable productively Lindelöf space is Menger (Alster) (σ -compact) (indestrucibly productively Lindelöf) iff there is a Lindelöf regular space M such that $M \times \mathbb{P}$ (the space of irrationals) is not Lindelöf.

Definitions.

- A space X has the *Rothberger* (*Menger*) property if for each sequence $\{\mathcal{U}_n : n < \omega\}$ of open covers of X (each closed under finite unions), for each n there is a $U_n \in \mathcal{U}_n$ such that $\{U_n : n < \omega\}$ covers X.
- A space X is D if for each open neighborhood assignment $\{V_x : x \in X\}$ there is a closed discrete D such that $\{V_x : x \in D\}$ covers X.
- A space is *Alster* if every open cover by G_{δ} sets that covers each compact set finitely includes a countable subcover.
- A space X is productively Lindelöf if $X \times Y$ is Lindelöf for every Lindelöf space Y.
- A space is *indestructibly (productively) Lindelöf* if it remains (productively) Lindelöf in any countably closed forcing extension.

References

- [1] AURICHI, L. F. D-spaces, topological games and selection principles. In preparation.
- [2] AURICHI, L. F. AND TALL, F. D. Lindelöf spaces which are indestructible, productive, or *D*. In preparation.
- [3] SCHEEPERS, M., AND TALL, F. D. Lindelöf indestructibility, topological games and selection principles. Submitted.

Franklin D. Tall Department of Mathematics University of Toronto Toronto, Ontario M5S 2E4 CANADA *e-mail address:* f.tall@utoronto.ca