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Context: Suppose V is a finite or countable set endowed with some structure that can defined
by subsets or ordered sequences of elements, such as:

• a graph (V,E) with vertex-set V and edge-set E (as a subset of V {2})

• a map (V,E, F ) with vertex-set V , edge-set E and face-set F

• a design (V,B) with point-set V and block-set B (a subset of 2V = P(V ))

• a polytope (F0,F1, . . . ,Fn) with Fi as the set of all i-faces (the i-subflags of the flag-set V ).

Symmetry and automorphisms: Generally, an object is said to have symmetry if it can
be transformed in way that leaves it looking the same as it did originally. The degree of
symmetry of a discrete structure D can be described or measured by its automorphisms , which
are incidence-preserving bijections from D to D. Under composition, these form a group, called
the automorphism group (or symmetry group) of the structure D, and this is denoted by AutD.

Special case: An automorphism (or symmetry) of a simple graphX = (V,E) is a permutation
of the vertices of X which preserves the relation of adjacency; that is, a bijection π : V → V
such that {vπ, wπ} ∈ E iff {v, w} ∈ E. The automorphism group of X is denoted by AutX.

Examples
(a) Complete graphs and null graphs: AutKn

∼= AutNn
∼= Sn for all n

(b) Simple cycles: AutCn ∼= Dn for all n ≥ 3
(c) Petersen graph: AutP ∼= S5 .

Exercise: How many automorphisms has the underlying graph (1-skeleton) of each of the five
Platonic solids: the regular tetrahedron, cube, octahedron, dodecahedron and icosahedron?

Digression: the Degree-Diameter problem

Suppose X is a d-regular simple graph of diameter D. Counting the largest possible number of
vertices at distance k from a given vertex, for 1 ≤ k ≤ D, gives the Moore bound

|V (X)| ≤ 1 + d+ d(d− 1) + d(d− 1)2 + · · ·+ d(d− 1)D−1.

This bound is attained for certain pairs (d,D), but certainly not all. The Degree-Diameter
problem is to find for a given pair (d,D) the largest possible d-regular graph of diameter D.

Spectacular progress on this problem was made recently by PhD student Eyal Loz (2005–08);
see http://moorebound.indstate.edu/wiki/The Degree Diameter Problem for General Graphs.

Transitivity: A graph X = (V,E) is said to be

• vertex-transitive if AutX has a single orbit on the vertex-set V
• edge-transitive if AutX has a single orbit on the edge-set E
• arc-transitive if AutX has a single orbit on the arc-set A = {(v, w) : {v, w} ∈ E } of X.

Note that every vertex-transitive graph is regular (in the sense of having all vertices of the same
degree/valency). Arc-transitive graphs are also known as symmetric graphs.

Exercise: Let X be a k-valent graph, where k is odd. Show that if X is both vertex-transitive
and edge-transitive, then also X is arc-transitive. [Harder question: Does the same thing always
happen when k is even?]
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Another kind of transitivity: An s-arc in a graph X = (V,E) is a sequence (v0, v1, . . . , vs)
of vertices of X in which any two consecutive vertices are adjacent and any three consecutive
vertices are distinct, that is, {vi−1, vi} ∈ E for 1≤ i≤ s and vi−1 6= vi+1 for 1≤ i < s. The
graph X = (V,E) is called s-arc-transitive if AutX is transitive on the set of all s-arcs in X.

Examples
(a) Complete graphs: Kn is 2-arc-transitive (but not 3-arc-transitive) for all n ≥ 3
(b) Simple cycles: Cn is s-arc-transitive for all s ≥ 0, whenever n ≥ 3
(c) The Petersen graph is 3-arc-transitive (but not 4-arc-transitive)
(d) The Heawood graph is 4-arc-transitive (but not 5-arc-transitive)
(e) Tutte’s 8-cage is 5-arc-transitive (but not 6-arc-transitive).

Exercise: For each of the five Platonic solids, what is the largest value of s such that the
underlying graph (1-skeleton) is s-arc-transitive?

Exercise: Let X be an s-arc-transitive d-valent connected simple graph. Find a lower bound
on the order of the stabilizer in AutX of a vertex v ∈ V (X), in terms of s and d.

Reflexibility and Chirality

If an object is equivalent to its mirror image (with respect to some axis/hyperplane) then it is
said to have reflectional symmetry, or be reflexible. For example, all of the Platonic solids are
reflexible, as is a perfect snowflake.

On the other hand, an object is called chiral if it differs from all of its mirror images. For
example, the pattern of seeds on a sunflower is chiral. Also the right and left trefoil knots are
chiral, each being a mirror image of the other.

[In fact, the term ‘chiral’ means handedness , derived from the Greek word χειρ (or ‘kheir’)
for ‘hand’. It is usually attributed to the scientist William Thomson (Lord Kelvin) in 1884,
although the philosopher Kant had earlier made the observation that left and right hands are
inequivalent except under mirror image.]

Question: Among objects occurring frequently in nature that have some degree of symmetry
— that is, more than one automorphism — how many are reflexible, and how many are chiral?

Some references

M.D.E. Conder & P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Com-
bin. Math. Combin. Computing 40 (2002), 41–63.

M.D.E. Conder & P.J. Lorimer, Automorphism groups of symmetric graphs of valency 3,
J. Combin. Theory Ser. B 47 (1989), 60–72.

J.H. Conway, H. Burgiel & C. Goodman-Strauss, The Symmetries of Things, A.K. Peters, 2008.

D.Z. Djoković & G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin.
Theory Ser. B 29 (1980), 195–230.

M. Du Sautoy, Symmetry: A Journey into the Patterns of Nature, Harper, 2009.

W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621–624.

Richard Weiss, The non-existence of 8-transitive graphs, Combinatorica 1 (1981), 309–311.
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Marston Conder Lecture 2: Regular Maps October 2011

Definition: A map M is an embedding of a connected graph or multigraph X into a surface
S, with the property that all of the components of S \X (obtained by removing X from S)
are homeomorphic to unit disks — called the faces of the map. The map is orientable or non-
orientable depending on whether it lies on an orientable surface (such as the sphere, torus, or
double torus) or a non-orientable surface (such as the real projective plane or the Klein bottle).

Automorphisms of maps: An automorphism of a map M is an incidence-preserving permu-
tation of each of the vertex-set V = V (M), the edge-set E = E(M) and the face-set F = F (M).

Lemma: Any automorphism of a map M is completely determined by its effect on a given flag
(incident vertex-edge-face triple). Hence |AutM | ≤ 4|E|.

Definitions: If |AutM | = 4|E|, then the action of AutM is regular (sharply-transitive) on
flags of M , in which case M is called a regular map. A weaker version of this applies to orientable
maps: if M is orientable, and the group AutoM of all orientation-preserving automorphisms of
M acts regularly on the arcs of M , then M is called orientably-regular (or rotary, or regular).

Note the ambiguity! In fact there are three kinds of rotary/regular maps:
• Orientable maps M with |AutM | = 4|E| ... these are reflexible (admitting reflections);
• Orientable maps M with |AutM | = |AutoM | = 2|E| ... these are chiral (or irreflexible);
• Non-orientable maps M with |AutM | = 4|E|.
The maps in the first and third cases are flag-transitive, and sometimes called fully regular.

Type: In each of the above cases, AutM is transitive on vertices, on edges and on faces of M.
It follows that the underlying graph X is regular, with valence m, say, and that every face of
M has the same size k, called the co-valence of M . The pair {k,m} is called the type of M .

Examples: The five Platonic solids may be viewed as (fully) regular maps on the sphere,
of types {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube), {3, 5} (icosahedron), {5, 3}
(dodecahedron). On the torus are infinitely many regular maps of type {3, 6} (triangulations),
type {4, 4} (quadrangulations), and type {6, 3} (honeycombs).

Exercise: Find the numbers of vertices, edges and faces of such maps (on the sphere and
torus), and the orders of their automorphism groups.

Genus formulae: If M is an orientably-regular map, with |V | vertices, |E| edges and |F |
faces, then by arc-transitivity, k|V | = 2|E| = m|F | = |AutoM |, and so by the Euler-Poincaré
formula, the characteristic χ and genus g of the surface (and the map) are given by

2− 2g = χ = |V | − |E|+ |F | = |AutoM | (1

k
− 1

2
+

1

m
).

Similarly, if M is flag-transitive, then 2k|V | = 4|E| = 2m|F | = |AutM |, and then

|AutM | ( 1

2k
− 1

4
+

1

2m
) = |V | − |E|+ |F | = χ =

{
2− 2g if M is orientable

2− g if M is nonorientable.

Exercises:
(a) Find all pairs (m, k) such that 1

k
− 1

2
+ 1

m
> 0, and all (m, k) such that 1

k
− 1

2
+ 1

m
= 0.

(b) Show that if 1
k
− 1

2
+ 1

m
< 0, then | 1

k
− 1

2
+ 1

m
| ≥ 1

42
, so that |AutM | ≤ −84χ.

(c) Find a list of potential candidates for m, k and |AutM | for the case χ = −2.
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Generators for AutM : If M is a rotary/regular map of type {m, k}, then for any flag (v, e, f)
there exist automorphisms R and S such that R cyclically permutes consecutive edges of the
face f , and S cyclically permutes consecutive edges incident to v, and RS reverses the edge e.
These elements R and S generate an arc-transitive subgroup of AutM , of order 2|E| if M is
orientable, or 4|E| if M is non-orientable, and they satisfy the relations Rm = Sk = (RS)2 = 1.

[In fact, Steve Wilson likes to use a refinement of this property to define a rotary map.]

When M is flag-transitive, there are automorphisms a, b, c of order 2 such that (ab)m = (bc)k =
(ac)2 = 1, with ab = R and bc = S, and these involutions generate AutM , of order 4|E|.

Connection with triangle groups: If M is an orientably-regular map of type {m, k}, then
AutoM is a quotient of ∆o(m, k, 2) = 〈x, y, z | xm = yk = z2 = xyz = 1 〉, the ordinary (m, k, 2)
triangle group. Similarly if M is a flag-transitive map of type {m, k}, then AutM is a quotient
of ∆(m, k, 2) = 〈 a, b, c | a2 =b2 =c2 =(ab)m=(bc)k=(ac)2 =1 〉, the full (m, k, 2) triangle group.
Conversely, if G is a finite homomorphic image of one of these groups, in which the orders of
the key elements are preserved, then G is an arc-transitive (respectively flag-transitive) group
of automorphisms of a regular map M that can be constructed from the homorphism onto G.
Vertices, edges and faces of M can be labelled by (right) cosets in G of 〈y〉, 〈z〉 and 〈x〉, or
〈b, c〉, 〈a, c〉 and 〈a, b〉, respectively, with incidence given by non-empty intersection.

Reflexibility: If M is an orientably-regular map of type {m, k}, with AutoM generated by R
and S s.t. Rm = Sk = (RS)2 = 1, as above, then M is reflexible if and only if AutoM has an
involutory automorphism β such that Rβ = R−1 and Sβ = S−1.

Orientability: If M is a flag-transitive map of type {m, k}, with AutM generated by a, b, c
of order 2 s.t. (ab)m = (bc)k = (ac)2 = 1, as above, then M is orientable if and only if the
subgroup generated by R = ab and S = bc has index 2 in AutM .

Duality: The geometric/topological dual of a map M is obtained by interchanging the roles of
vertices and faces, preserving incidence with edges. The dual M∗ of a rotary/regular map of
type {m, k} has type {k,m}. For an orientably-regular map M as above, this is achieved by
the correspondence R↔ S, or for a flag-transitive map M , by (a, b, c)↔ (cb, b, ab).

[Hence M∗ is isomorphic to the mirror image of the map obtained from the polytope dual
correspondence (R, S)↔ (S−1, R−1), which comes from flag reversal (a, b, c)↔ (c, b, a).]

Finding regular maps of given small genera: By the connection with triangle groups and
the Euler-Poincaré (genus) formula, finding all regular maps of given Euler characteristic χ
reduces to finding all smooth quotients of relevant triangle groups of particular orders. This
can be done using algebra and computation, to build up a census of examples, which is now
complete for genus 2 to 300 [MC, 2011]. Pictures of some of the maps have been drawn very
nicely by Jarke van Wijk http://www.win.tue.nl/∼vanwijk/regularmaps.

Some references

N.L. Biggs, Cayley maps and symmetrical maps, Proc. Camb. Phil. Soc. 72 (1972), 381–386.

M.D.E. Conder & P. Dobcsányi, Determination of all regular maps of small genus, J. Com-
bin. Theory Ser. B 81 (2001), 224–242.

M.D.E. Conder & B.J. Everitt, Regular maps on non-orientable surfaces, Geometriae Dedicata
56 (1995), 209–219.

M.D.E. Conder, J. Širáň & T.W. Tucker, The genera, reflexibility and simplicity of regular
maps, J. Eur. Math. Soc. 56 (1995), 209–219.

G.A. Jones & D. Singerman, Theory of maps on orientable surfaces, Proc. London
Math. Soc. (3) 37 (1978), 273–307.
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Marston Conder Lecture 3: Computational and group-theoretic methods October 2011

Preamble: In the study of maps and polytopes (and other discrete structures) with a high
degree of symmetry, frequently the most symmetric examples fall into classes with the property
that the automorphism group of every member of the class is a quotient of some universal
group. The following ideas and techniques can be very helpful in dealing with such families.

Schreier coset graphs: Let G be a group generated by a finite set X = {x1, x2, . . . , xd}.
Given any transitive permutation representation of G on a finite set Ω, we may form a graph
with vertex-set Ω, and edges of the form α—αxi for 1≤ i≤d. Similarly, if H is a subgroup of
finite index in G, we may form a graph whose vertices are the right cosets of H and edges are
of the form Hg—Hgxi for 1≤ i≤d. These two graphs are the same when Ω is the coset space
(G :H), or H is the stabilizer of a point of Ω. It is called the Schreier coset graph Σ(G,X,H).
This gives a diagrammatic representation of the natural action of G on cosets of H.

Coset tables: The natural action of G on cosets of H can also be given by a coset table, with
rows indexed by right cosets of H, columns indexed by elements of X and their inverses, and
the entry in row Hg and column xi (resp. x−1

i ) representing the coset Hgxi (resp. Hgx−1
i ).

Exercise: Use coset graphs or coset tables to find all transitive permutation representations
of the modular group C2 ∗ C3 = 〈x, y | x2 = y3 = 1 〉 on up to 6 points.

Reidemeister-Schreier process: Given a subgroup H of finite index in a finitely-presented
group G, it is possible to find a presentation for H (with finitely many generators and relations).
A Schreier transversal T for H in G corresponds to a spanning tree for the coset graph Σ, and
Schreier generators for H in G correspond to edges of the coset graph not used in the spanning
tree. Defining relations for H (in terms of the Schreier generators) can then be found by tracing
the relations for G around the coset graph, from each vertex in turn.

Ree-Singerman theorem: Let G be a transitive permutation group, generated by elements
x1, x2, . . . , xd such that x1x2 . . . xd = 1 (identity), let n be the degree |Ω|, and let ci be the
number of orbits of 〈xi〉 on Ω. Then c1 + c2 + · · ·+ cd ≤ (d− 2)n+ 2.

Other uses of coset graphs: Schreier coset can be simplified to ‘coset diagrams’ (e.g. by
deleting vertex and edge labels, deleting loops for fixed points of generators, using single edges
for 2-cycles of involutory generators, and ignoring the effect of redundant generators). Often
two coset diagrams for the same group G on (say) m and n points can be composed to produce a
transitive permutation representation of larger degree m+n. In turn, this method may be used
to construct abelian covers, or infinite families of quotients of various kinds (e.g. automorphim
groups of chiral maps), or prove that a given finitely-presented group is infinite,

Coset enumeration: Given a finitely-presented group G = 〈X |R 〉 and a subgroup H gen-
erated by a given finite set Y of words on the alphabet X = {x1, . . . , xm}, methods exist for
systematically enumerating the cosets Hg for g ∈ G, by using the generators and relations to
help construct the coset table. Each relator r ∈ R from the defining presentation forces pairs
of cosets to be equal, and the same thing happens on application of each generator y ∈ Y to
the trivial coset H. New cosets are defined (if needed), and all such coincidences are processed,
until the coset table either ‘closes’ or has too many rows. If the coset table closes with n cosets,
then |G :H| = n, and the table gives the natural permutation representation of G on the coset
space (G :H). If it does not close, then the index |G :H| could be infinite, or just too large to
be found (or it might even be small but the computation was not given enough resources).
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Finding small index subgroups: Given a finitely-presented group G = 〈X |R 〉 and a
positive integer n, it is possible to find all subgroups of index up to n in G (up to conjugacy) by
systematic enumeration of all coset tables with at most n rows. This method uses a backtrack
process, which starts by taking H as the identity subgroup and attempts to construct the coset
table for H in G. At each stage of the process, if more than n cosets of H are defined, then
coincidences are forced between them, which has the effect of including new elements in H
(since Ha = Hb if and only if ab−1 ∈ H). Often such a coincidence will be seen to lead to a
subgroup H conjugate to one found previously, in which case that coincidence is rejected. If
not rejected, then ab−1 is added to a (partial) set of generators for H, and the search continues.

[Note: This process will terminate (given sufficient time and memory), by Schreier’s theorem:
every subgroup of finite index in a finitely-generated group is itself finitely-generated.]

Finding small index normal subgroups: Small homomorphic images of a finitely-presented
group G can be found as the groups of permutations induced by G on cosets of subgroups of
small index. This gives G/K where K is the core of H, but produces only images that have
small degree faithful permutation representations. A new method was developed recently by
Derek Holt and his student David Firth, which systematically enumerates all possibilities for a
composition series of a factor group G/K, where K is a normal subgroup of small index in G.

Exercise: Find all normal subgroups of index up to 12 in 〈x, y | x2 = y3 = 1 〉.

Double-coset graphs: Let G be a group, H a subgroup of G, and a an element of G such that
a2 ∈ H. Now define a graph Γ = Γ(G,H, a) by taking right cosets Hg (for g ∈ G) as vertices,
and joining Hx to Hy by an edge whenever xy−1 lies in the double coset HaH. This graph is
connected if and only if HaH generates G. More importantly, right multiplication makes G a
vertex-transitive group of automorphisms of Γ, with the subgroup H stabilizing the vertex H
and acting transitively on its neighbours Hah (for h ∈ H). Hence Γ is arc-transitive.

This gives a powerful construction for families of symmetric graphs, and has been used to
provide a census of all symmetric 3-valent graphs on up to 10,000 vertices [MC, 2011].

Computer implementations: Many of the above methods have been implemented in the
computational algebra systems Magma and GAP. For example, Magma has these commands:

• CosetTable and ToddCoxeter (for coset enumeration)

• Rewrite (for the Reidemeister-Schreier process)

• LowIndexSubgroups and LowIndexNormalSubgroups (for finding small index subgroups).

Some references

M.D.E. Conder, Schreier coset graphs and their applications, RIMS Kokyuroku 794 (1992),
169–175.

M.D.E. Conder & J. McKay, A necessary condition for transitivity of a finite permutation
group, Bull. London Math. Soc. 20 (1988), 235–238.

A. Dietze & M. Schaps, Determining subgroups of a given finite index in a finitely presented
group, Canadian J. Math. 26 (1974), 769–782.

D. Firth, An algorithm to find normal subgroups of a finitely presented group up to a given
index, PhD Thesis, University of Warwick, 2005.

D.F. Holt, B. Eick & E.A. OBrien, Handbook of Computational Group Theory, CRC Press,
2005.

J. Neubüser, An elementary introduction to coset-table methods in computational group theory,
Groups – St. Andrews 1981, London Math. Soc. Lecture Note Series, vol. 71, 1982, pp. 1–45.

C.C. Sims, Computation with Finitely-Presented Groups (Cambridge Univ. Press, 1994).
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Classification of regular maps: Regular maps can be viewed and categorised by several
perspectives, e.g. by type, by surface/genus, by underlying graph, or by automorphism group.
Within each class, various properties are worth considering, e.g. orientability, reflexibility, du-
ality, Petrie duality, etc., or having simple underlying graph (in the map and/or its dual), or
having a Cayley graph as underlying graph, or existence of semi-regular automorphisms, or the
kinds of quotients and covers that each map admits.

Classification by type of the map: In this case, relatively little is known. Regular maps of
types {2,m}, {3, 3}, {3, 4} and {3, 5} (on the sphere) and types {3, 6} and {4, 4} (on the torus)
and their duals all known and well understood. It is also known that there are infinitely many
rotary maps of any given hyperbolic type {k,m}; this follows easily from the residual finiteness
of the triangle group ∆o(2, k,m). Quite a lot is known about Hurwitz maps, which are regular
maps of type {3, 7}. Similarly, constructions are known for infinite families of rotary but chiral
maps of various given types, e.g. type {3,m} for all m ≥ 7.

Exercise: For some pair (k,m) with 1
k

+ 1
m
< 1

2
, find a specific construction for infinitely many

regular maps of type {m, k}. [This might be difficult, so here is a hint: consider semi-direct
products Cn oH of a cyclic group of variable order by a group H of fixed order.]

Classification by automorphism group: Again here, relatively little has been achieved.
The classifications for cyclic groups and dihedral groups are straightforward exercises (below).
Classifications of regular maps M with AutoM ∼= PSL(2, q) or PGL(2, q) follow from work
by Macbeath (1967), Sah (1969), and Conder, Potočnik and Siráň (2009). Some partial clas-
sifications are also known for the alternating and symmetric groups (through the study of
actions of these groups on Riemann surfaces). Also in the flag-transitive (fully regular) case,
many sub-classifications follow from the study of groups generated by three involutions, two of
which commute; see papers by Conder (1980s), Sjerve & Cherkassoff (1994), Nuzhin (1996–),
Tamburini & Zucca (1997), and Mazurov (2003).

Exercise: For any integer n > 2, find all possible ways of generating the cyclic group C2n and
the dihedral group Dn (of order 2n) by (a) two elements R and S such that RS has order 2,
and (b) three elements a, b, c of order 2 such that ac has order 2.

Exercise: Find all possible ways of generating the simple group A5 by (a) two elements R and
S such that RS has order 2, and (b) three elements a, b, c of order 2 such that ac has order 2.

Classification by underlying graph: Much more progress has been made on this topic.
Embeddings of the following families of graphs as orientably regular maps are now known:
cycle graphs Cn (on sphere); complete graphs Kn [James & Jones (1985)]; cocktail party graphs
[Nedela & Škoviera (1996)]; merged Johnson graphs [Jones (2005)]; some complete multipartite
graphs [Du et al (2005)] ; complete bipartite graphs Kn,n [various authors]; graphs of order p or
pq where p and q are prime [various authors]; hypercube graphs Qn for n odd [Du et al (2007)]
and for n even [Catalano et al (2010)]; Hamming graphs Hn(q) for q > 2 [Jones (preprint)].

Exercise: In what ways can the 3-cube Q3 be embedded in a surface as a regular map, apart
from the standard embedding on the sphere?

Exercise: In what ways can the complete bipartite graph K3,3 be embedded in a surface as a
regular map?
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Classification by surface (genus/characteristic):

This is perhaps the most illuminating perspective. Regular maps of characteristic 0, 1 and 2
were classified by Brahana (1927) and Coxeter (1957). Orientably-regular maps of genus 3 were
classified by Sherk (1959), and those of genus 4, 5 and 6 by Garbe (1969). With the help of
computational methods, most recently the LowIndexNormalSubgroups facility in Magma, a
complete list of all orientable and non-orientable regular maps is now known, for genus 2 to 300.

Theoretical analyses have determined all non-orientable regular maps of genus p + 2 for p an
odd prime [Breda, Nedela and Siráň (2005)], and moreover, all rotary maps M for which the
order of the subgroup generated by the canonical automorphisms R and S is coprime to the
characteristic χ when χ is odd, or to χ/2 when χ is even [Conder, Siráň & Tucker (2010)].
These determinations have resulted in the following theorems:

• If M is an irreflexible (chiral) orientably-regular map of genus p + 1 where p is prime, then
p ≡ 1 mod 3 and M has type {6, 6}, or p ≡ 1 mod 5 and M has type {5, 10}, or p ≡ 1 mod 8
and M has type {8, 8}. In particular, there are no chiral maps of genus p+ 1 whenever p is a
prime such that p− 1 is not divisible by 3, 5 or 8.

• There is no reflexible regular map with simple underlying graph on an orientable surface of
genus p+ 1 where p is a prime congruent to 1 mod 6, for p > 13.

• There is no regular map at all on a non-orientable surface of genus p+ 2 where p is a prime
congruent to 1 mod 12, for p > 13.

Regular Cayley maps: If the underlying graph of the rotary/regular map M is a Cayley
graph Cay(G,S) for some group G, such that G acts regularly on the vertices of M (as a group
of map automorphisms), then M is a regular Cayley map for G. Quite a lot of recent research
has been done on regular Cayley maps (RCMs), including: general theory [Jajcay, Siráň, et al];
balanced regular Cayley maps for cyclic, dihedral and generalized quaternion groups [Wang &
Feng]; RCMs for abelian groups [MC, Jajcay & Tucker]; RCMs of prime valency for abelian,
dihedral and dicyclic groups [Kim, Kwon & Lee]; t-balanced RCMs for cyclic groups [Kwon] and
semi-dihedral groups [Oh]; RCMs for dihedral groups [Kovács]; and a complete determination
of all regular Cayley maps for finite cyclic groups [Conder & Tucker (preprint)].

Additional symmetries: Very recent research has considered regular maps that admit a high
degree of ‘external symmetry’, including duality and Petrie duality, and the (Wilson) ‘hole’
operators. The best of these maps are said to be kaleidoscopic maps with trinity symmetry.

A (small) selection of references:

D. Archdeacon, M.D.E. Conder and J. Širáň, Trinity symmetry and kaleidoscopic regular maps,
preprint.

A.B. d’Azevedo, R. Nedela and J. Širáň, Classification of regular maps of negative prime Euler
characteristic, Trans. Amer. Math. Soc. 357 (2005), 4175–4190.

D. Catalano, M.D.E. Conder, S.F. Du, Y.S. Kwon, R. Nedela and Steve Wilson, Classification
of regular embeddings of n-dimensional cubes, J. Alg. Comb. 33 (2011), 215–238.

M.D.E. Conder, Regular maps and hypermaps of Euler characteristic −1 to −200, J. Com-
bin. Theory Ser. B 99 (2009), 455–459.

M.D.E. Conder, An update on Hurwitz groups, Groups Complex. Cryptol. 2 (2010), 35–49.

M.D.E. Conder and T.W. Tucker, Regular Cayley maps for cyclic groups, preprint.

M.D.E. Conder, J. Širáň & T.W. Tucker, The genera, reflexibility and simplicity of regular
maps, J. Eur. Math. Soc. 56 (1995), 209–219.

Ya. N. Nuzhin, Generating triples of involutions of Lie-type groups over a finite field of odd
characteristic, II, Algebra and Logic 36 (1997), 245–256.
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Definition(s): An abstract polytope of rank n is a partially ordered set P endowed with a
strictly monotone rank function having range {−1, . . . , n}. For −1 ≤ j ≤ n, elements of P
of rank j are called the j-faces, and a typical j-face is denoted by Fj. This poset P has a
smallest (−1)-face F−1, and a greatest n-face Fn, and each maximal chain (or flag) of P has
length n + 2. The faces of rank 0, 1 and n − 1 are called the vertices, edges and facets of the
polytope, respectively. Two flags are called adjacent if they differ by just one face. The poset
P must be strongly flag-connected, which means that any two flags Φ and Ψ of P can be joined
by a sequence of flags Φ = Φ0,Φ1, . . . ,Φk = Ψ, such that each two successive faces Φi−1 and Φi

are adjacent, and Φ ∩ Ψ ⊆ Φi for all i. Finally, whenever F ≤ G, with rank(F ) = j − 1 and
rank(G) = j + 1, there are exactly two faces H of rank j such that F ≤ H ≤ G. The latter is
called the diamond condition.

Symmetries of abstract polytopes: An automorphism of an abstract polytope P is an
order-preserving bijection P → P .

Exercise: Use the diamond condition and strongly flag-connectivity to to prove that every
automorphism of an abstract polytope is uniquely determined by its effect on any given flag.

Regular polytopes: An abstract polytope P is regular if its automorphism group AutP is
transitive (and hence regular) on the flags of P .

The automorphism group of a regular polytope: Let P be a regular abstract polytope,
and let Φ be any flag F−1−F0−F1−F2−...−Fn−1−Fn. Call this the base flag. For 0 ≤ i ≤ n−1,
there is an involutory automorphism ρi that maps Φ to the adjacent flag Φi (which differs from
Φ only in its i-face). Let ki be the order of the product σi = ρi−1ρi, for 1 ≤ i ≤ n−1. Then these
automorphisms ρ0, ρ1, . . . , ρn−1 generate AutP , and satisfy the following relations: ρ2

i = 1 for
0 ≤ i ≤ n−1, (ρi−1ρi)

ki = 1 for 1 ≤ i ≤ n−1, and (ρiρj)
2 = 1 for 0 ≤ i < i + 1 < j ≤ n−1.

These are precisely the defining relations for the Coxeter group [ k1, k2, .., kn−1] (with Schläfli
symbol { k1 | k2 | .. | kn−1}). In particular, AutP is a quotient of this Coxeter group.

Stabilizers and cosets: For 0 ≤ i ≤ n− 1, the i-faces of a regular polytope P can be
identified with the (right) cosets of the subgroup generated by ρ0, ρ1, . . . , ρi−1, ρi+1, . . . , ρn−1.
Then incidence in P is given by non-empty intersection of cosets.

The Intersection Condition: When P is regular, the generators ρi for AutP satisfy the
condition 〈 ρi : i ∈ I 〉 ∩ 〈 ρi : i ∈ J 〉 = 〈 ρi : i ∈ I ∩ J 〉 for all I, J ⊆ {0, 1, . . . , n− 1}.

Conversely, this condition on generators ρ0, ρ1, . . . , ρn−1 of a smooth quotient of a Coxeter group
[ k1, k2, .., kn−1] ensures the diamond condition and strong flag connectivity, and therefore:

If G is a finite group generated by n elements ρ0, ρ1, . . . , ρn−1 which satisfy the defining relations
for a string Coxeter group of rank n and satisfy the intersection condition, then there exists a
polytope P with AutP ∼= G.

Infinite families of regular polytopes: There are many such families, including these:

• Regular n-simplex, of type [ 3, n−1. . . , 3 ], with automorphism group Sn
• Cross polytope (or n-orthoplex), of type [ 3, n−2. . . , 3, 4 ]

• n-dimensional cubic honeycomb, of type [ 4, 3, n−2. . . , 3, 4 ].
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The ‘rotation subgroup’ of a regular polytope: In AutP = 〈ρ0, ρ1, . . . , ρn−2, ρn−1〉, we
may define σj = ρj−1ρj for 1 ≤ j ≤ n− 1. These generate a subgroup of index 1 or 2 in AutP ,
containing denoted by Aut+P , or AutoP . If the index is 1, then Aut+P = AutP has a single
orbit on flags of P , but if the index is 2, then Aut+P has two orbits on flags, with adjacent
flags in different orbits.

Exercise: Prove that σ ρ0
1 = σ1

−1, and σ ρ0
2 = σ1

2σ2, while σ ρ0
i = σi for 3 ≤ i ≤ n−1.

Chirality: An abstract n-polytope P is chiral if its automorphism group has two orbits on flags,
with adjacent flags being in distinct orbits. In this case, for each flag Φ = {F−1, F0, . . . , Fn},
there are automorphisms σ1, . . . , σn−1 such that each σj fixes all faces in Φ \ {Fj−1, Fj}, and
cyclically permutes j-faces in the rank 2 section [Fj−2, Fj+1] = {F ∈ P | Fj−2 ≤ F ≤ Fj+1}.
These automorphisms generate AutP), and satisfy (among others) the relations

(σiσi+1 . . . σj)
2 = 1 for 1 ≤ i < j ≤ n− 1,

which are defining relations for the orientation-preserving subgroup of the Coxeter group
[k1, . . . , kn−1], namely the subgroup generated by the elements σi = ρi−1ρi for 1≤ i<n.

Conversely, if G is any finite group generated by elements σ1, σ2, . . . , σn−1 satisfying these rela-
tions and a modified version of the intersection condition, then there exists an abstract polytope
P of rank n which is regular or chiral, with G ∼= AutP if P is chiral, or G ∼= Aut+P of index
2 in AutP if P is regular.

Moreover, the polytope P is regular if and only if there exists an involutory group automorphism
ρ : AutP → AutP such that ρ(σ1) = σ1

−1, ρ(σ2) = σ1
2σ2, and ρ(σi) = σi for 3 ≤ i ≤ n−1 (or

in other words, acting like conjugation by the generator ρ0 in the regular case).

Chiral polytopes (for which no such additional automorphism exists) occur in pairs of enan-
tiomorphic forms, with one being the ‘mirror image’ of the other.

Duality: The dual of an n-polytope P is the n-polytope P∗ obtained from P by reversing the
partial order. The polytope P is called self-dual if P ∼= P∗. In that case an incidence-reversing
bijection δ : P → P is called a duality. If P is a chiral n-polytope, the reverse of a flag can lie
in either one of two flag orbits. We say that P is properly self-dual if there exists a duality of
P mapping a flag Φ to a flag Φδ in the same orbit as Φ (under AutP), or improperly self-dual
if P has a duality mapping the flag Φ to a flag in the other orbit of AutP . For 3-polytopes
considered as maps, the polytope dual is a mirror image of the map dual. Hence the map is
self-dual (as a map) if and only if it is improperly self-dual as a 3-polytope.

Finding chiral polytopes: Chiral polytopes appear to be much more rare than regular poly-
topes, which is surprising since they have a smaller degree of symmetry. This may just hold for
small examples, or for small ranks, or of course it could be simply that we don’t know enough
examples! Chiral polytopes can be constructed from string Coxeter groups, or by using other
algebraic/combinatorial/geometric methods (e.g. building ‘new’ ones from old).

Drawback to inductive construction(s): If P is a chiral n-polytope, then the stabilizer
in AutP of each (n−2)-face Fn−2 of P is transitive on the flags of Fn−2, and therefore every
(n−2)-face of P is regular. Hence there is no natural construction for building chiral polytopes
from each rank to the next.

Some references

H.S.M. Coxeter, Regular Polytopes, 3rd ed., Dover, New York (1973).

P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia of Mathematics and its
Applications 92, Cambridge (2002).
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Constructions for regular polytopes:

• C-group permutation representation graphs (CPR graphs) were used by Daniel Pellicer to
construct regular polyhedra with alternating groups An as automorphism groups (2008), and
regular polytopes with given facets and prescribed even last entry of the Schläfli symbol (2010).

• Egon Schulte and Peter McMullen (2002) introduced a new group-theoretic method for
constructing a new regular polytope from two given regular polytopes P and Q, called the
‘mix’ of P and Q.

• Polytopes of given type: Dimitri Leemans and Michael Hartley (2004, 2009) constructed
various regular 4-polytopes with type [5, 3, 5]. Similarly, many families of examples (of type
[3, 5, 3], for example) arise from quotients of groups associated with hyperbolic 3-manifolds of
small volume, found by Lorimer, Jones, Conder, Torstensson et al (1990s–).

• Amalgamation of polytopes: Michael Hartley constructed regular polytopes with given facets
and given vertex-figures, in some special cases (2010).

Collecting small examples of regular polytopes

• Michael Hartley has created a web-based atlas of regular polytopes with automorphism group
of order at most 2000, except those ones with automorphism group having order 1024 or 1536
— see http://www.abstract-polytopes.com/atlas for this.

• Dimitri Leemans and Laurence Vauthier have found all regular polytopes with automorphism
group G being an almost simple group with S ≤ G ≤ Aut(S) for some simple group S of order
less than 900,000. For the complete list, see http://cso.ulb.ac.be/∼dleemans/polytopes.

Both of these two atlases were first published in 2006.

Regular polytopes with given group:

• Dimitri Leemans and Laurence Vauthier proved (in 2006) that the group PSL(2, q) cannot
be the automorphism group of a regular n-polytope for any n ≥ 5.

• Dimitri Leemans and Egon Schulte determined all regular 4-polytopes with automorphism
group PSL(2, q) or PGL(2, q), in 2007 and 2009.

• Daniel Pellicer (2008) used CPR graphs to construct regular polyhedra with automorphism
group An (and other groups related to An and Sn), and Dimitri Leemans, Maria Elisa Fernan-
des and Mark Mixer have extended some of this.

• Barry Monson and Egon Schulte (2009) used modular reduction techniques to construct new
regular 4-polytopes of hyperbolic types {3, 5, 3} and {5, 3, 5} with a finite orthogonal group as
automorphism group.

• Peter Brooksbank and Deborah Vicinsky (2010) showed that regular polytopes that have a
3-dimensional classical group as automorphism group must come from orthogonal groups.

• Ann Kiefer and Dimitri Leemans (2010) determined the regular polyhedra whose automor-
phism group is a Suzuki simple group Sz(q).

• Dimitri Leemans and Maria Elisa Fernandes (2011) proved that for every n > 3, the sym-
metric group Sn is the automorphism group of some regular r-polytope, for each r such that
3≤ r ≤ n−1, and hence for any given r ≥ 3, all but finitely many Sn are the automorphism
group of a regular r-polytope.
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Geometric and other considerations:

• Barry Monson and Egon Schulte wrote a series of five papers (2004–2009) on reflection groups
and polytopes over finite fields, producing (for example) a catalogue of modular polytopes of
small rank that are spherical or Euclidean.

• Peter McMullen (2004) classified abstract regular n-polytopes (and apeirotopes) that are
faithfully realisable in a Euclidean space of dimension n (resp. n− 1).

• Peter McMullen used similar techniques in order to classify 4-dimensional finite regular
polyhedra (2007), and regular apeirotopes of dimension 4 (2009).

• Michael Hartley and Gordon Williams (2010) used methods for finding quotients of regular
polytopes to obtain representations of the 14 sporadic Archimedean polyhedra.

• Isabel Hubard (2010) investigated ‘two-orbit’ polytopes, determining when the automorphism
group is transitive on the faces of each rank, and used this to completely characterise the groups
of two-orbit polyhedra.

• Mark Mixer (PhD) investigated the layer graphs (showing incidence between two layers) of
regular polytopes, esp. the medial layer graph of regular n-polytopes for even n.

Properties of chiral polytopes:

• Asia Weiss and Isabel Hubard (2005) proved that every self-dual chiral polytope of odd rank
admits a polarity, but that this is not true for even ranks.

• Asia Weiss, Egon Schulte and Isabel Hubard (2006) then showed how to construct chiral
polyhedra from improperly self-dual chiral polytopes of rank 4, and regular polyhedra from
properly self-dual ones.

Construction of chiral polytopes:

• Isabel Hubard, Marston Conder and Tomo Pisanski (2008) used computational group-
theoretic methods to find subgroups of small index in Coxeter groups that are normal in the
orientation-preserving subgroup but not in the group itself. This produced the smallest exam-
ples of finite chiral 3- and 4-polytopes, and also the first known finite chiral 5-polytopes, in
both the self-dual and non-self-dual cases.

• Alice Devillers and Marston Conder (2009) found the first known finite chiral 6-, 7- and
8-polytopes, by group-theoretic construction for types [3, 3, . . . , 3, k].

• Daniel Pellicer (2010) devised a construction for chiral polytopes with prescribed regular
facets (in some cases), and used this to prove the existence of chiral d-polytopes, for all d ≥ 3.

The smallest regular polytopes in all ranks:

• Marston Conder answered a question by Daniel Pellicer (2010), by showing the following:
For all n ≥ 9, the regular n-polytopes with the smallest number of flags and no ‘2’ in their
type are polytopes of type {4, n−1. . . , 4} with 2 · 4n−1 flags. For 2 ≤ n ≤ 8, the smallest regular
n-polytopes have 6 flags (type {3}), 24 flags (type {3, 4}), 96 flags (type {4, 3, 4}), 432 flags
(type {3, 6, 3, 4}), 1728 flags (type {4, 3, 6, 3, 4}), 7776 flags (type {3, 6, 3, 6, 3, 4}), and 31104
flags (type {4, 3, 6, 3, 6, 3, 4}). For n ≥ 9, the above regular n-polytopes of type {4, n−1. . . , 4} also
have the smallest number of elements, and the smallest number of direct incidences (links in
the Hasse diagram).

References:

Recent papers by the above-named contributors.
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