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Introduction

An important class of resource allocation problems involves “matching
without transfers”

assignment of students to public school

allocation of social housing

assignment of teachers to schools

assignment of organs to patients in need

In practice, those markets are often organized in a centralized way.
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Objectives

1 Pareto-efficiency: satisfying the preferences of the agents.

Attained by Random Serial Dictatorship (RSD), Top Trading Cycles
(TTC), etc.

2 Stability: respecting agents’ priorities (aka “no justified envy”, or
“fairness”).

Attained by Gale and Shapley’s Deferred Acceptance Algorithm (DA).
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Conflicts

Impossibility: No algorithm achieves both Pareto-efficient and No
Justified Envy (Roth, 82).

=⇒ Prominent mechanisms achieve one objective at the “minimal”
sacrifice of the other.

DA is stable and efficient among stable mechanisms (Gale and
Shapley, 62)
(Boston, Hong Kong, New York, Paris...)

Top Trading Cycle is efficient and envy minimal (Abdulkadiroglu,
Che, Tercieux, 13)
(San Francisco, New Orleans,...)
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Research Questions

How do alternative PE mechanisms differ in utilitarian efficiency and
payoff distribution?

(Examples of PE mechanisms: Serial Dictatorship
/ random Serial Dictatorship, Hylland and Zeckhauser, Top-trading
Cycles, YRMH-IGYT, Abdulkadiroglu and Sonmez TTC, Hierarchical
Exchange)

What is the optimal way to resolve the tradeoff of the two goals?
Attaining one at the minimal sacrifice of the other may not be the
best if the sacrifice is significant and/or if one can approximately
achieve both.
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Large Market with Random Preferences

To make progress, we add some structure to the environment:

Large markets:

Realistic in the applications mentioned. In New York,
100,000 students apply each year to 500 schools; In medical
matching, 20,000 doctors and 3,000-4,000 programs

Random preference structure: individuals draw preferences at random
with some correlation (to be specified).
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Setting

Finite set of individuals I and finite set of objects O to be matched

For simplicity, |I | = |O | = n
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Setting: preferences

Each i ∈ I receives utility from object o ∈ O

Ui (o) = U(uo , ξio)

where uo is the common value component

The uo are in [0, 1]

Let X n(·) be its distribution and X (·) its limit
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Distribution of common values (finite example)
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Setting: preferences

Each i ∈ I receives utility from object o ∈ O

Ui (o) = U(uo , ξio)

ξio is the idiosyncratic shock on i ’s preferences for object o

The {ξio}i ,o is a collection of iid random variable

Distribution takes values in [0, ξ̄] ⊂ R

U(·, ·) takes values in R+, is strictly increasing and continuous

All objects are acceptable
(utility of the outside option is normalized to 0)
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Setting: objects’ preferences (agents’ priorities)

First part: arbitrary.

Second part: Each o ∈ O receives utility from individual i ∈ I :

Vo(i) = V (ηio)

Purely idiosyncratic preferences.
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Setting: matching

A matching µ is a bijective mapping µ : I ∪O → I ∪O such that
µ(I ) ⊂ O and

µ(i) = o if and only if µ(o) = i

A matching is Pareto-efficient if no individual i can be made strictly
better-off without hurting another individual.
A matching µ is stable if there is no pair (i , o) where i would prefer o
to his match µ(i) and o would assign higher priority to i rather than to
his match µ(o)

A matching mechanism µ̃ maps “states” into matchings, where a
state refers to the profile of preferences together with the profile of
priorities.
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PE mechanism: Serial Dictatorship (SD) mechanism

A serial dictatorship mechanism SD f specifies an ordering

f : {1, 2, 3, ..., n} → I , where f (i) is the i th “dictator”

f (1) chooses his favorite object

f (2) chooses his favorite object among the remaining ones

and so on....
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PE Mechanism: Top Trading Cycle (TTC) mechanism

Assume objects have preferences / priorities

Step 1:

Each individual points to his most preferred object

Each object points to its most preferred individual

There exists at least one cycle and no cycles intersect. Remove cycles.
Individuals in a cycle get the object they point to.

Step t = 2, ...: Repeat the same procedure with the remaining economy.
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Utilitarian efficiency of PE mechanisms
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Utilitarian Efficiency of Pareto Efficiency

Let U∗ :=
∫ 1

0 U(u, ξ̄)dX (u) be the utilitarian upper bound;

In our

example: U∗ = ∑K
k=1 xkU(uk , ξ̄).

Theorem

Let µ be a Pareto-efficient matching mechanism.

1

n ∑
i∈I

Ui (µ(i))
p−→ U∗,

i.e., for any δ > 0,

Pr

{∣∣∣∣∣1n ∑
i∈I

Ui (µ(i))− U∗

∣∣∣∣∣ < δ

}
→ 1 as n→ ∞.
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Implication in terms of distribution of payoffs:
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Implication in terms of distribution of payoffs:

This is the sense in which Pareto-efficient mechanisms are asymptotically
payoff equivalent.
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Sketch of proof

Intuition given for the case where X (·) is degenerate (i.e. we only have
the idiosyncratic component)

A PE mechanism µ̃ can be implemented by a serial dictatorship
mechanism with a particular serial order f̃

For arbitrarily small ε, δ > 0, define the random set:

Ī := {i ∈ I
∣∣Ui (µ̃(i)) ≤ U(u0, ξ̄)− ε and f̃ (i) ≤ (1− δ)|O | }.

We show via applying a random graph theory result that

|Ī |
n

p−→ 0.

(We show Ī to be a shorter side of an independent set of an associated
random graph, which vanishes.)
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Detour: Random bipartite graph

A random bipartite graph G (V1,V2, p) :

V1 is the set of vertices on one side

V2 is the set of vertices on the other side and

The set of edges is random:

An edge (i , j) ∈ V1 × V2 is added with probability p.
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Size of an independent set

Given a (deterministic) bipartite graph G (V1,V2,E ),

W1 ×W2 ⊆ V1 × V2 is an independent set if

(i , j) ∈ W1 ×W2 =⇒ (i , j) /∈ E .

Theorem (Extension of Bollobas and Erdös (1975))

Let W1 ×W2 be an independent set in a random bipartite graph
G (V1,V2, p) where 0 < p < 1

Pr {min {|W1| , |W2|} < κ ln n} → 1 as n→ ∞.

(where κ is a strictly positive constant)
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Sketch of proof

Now that we have

Ī := {i ∈ I
∣∣Ui (µ̃(i)) ≤ ξ̄ − ε and f̃ (i) ≤ (1− δ)|O | }

let us define
Ō := {o ∈ O

∣∣f̃ (µ̃(o)) ≥ (1− δ)|O | }.

Build an associated random bipartite graph

Random variables {ξio} induce a random graph on I ×O where

(i , o) is an edge iff ξio > ξ̄ − ε
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Sketch of proof

Now that we have

Ī := {i ∈ I
∣∣Ui (µ̃(i)) ≤ ξ̄ − ε and f̃ (i) ≤ (1− δ)|O1| }

let us define
Ō := {o ∈ O

∣∣f̃ (µ̃(o)) ≥ (1− δ)|O | },

objects assigned to agents with “bad” serial orders.
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Sketch of proof

Claim. Ī × Ō is an independent set in the associated random graph.

Proof. Otherwise, if (i , o) ∈ Ī × Ō is an edge then

1. (i , o) ∈ Ī × Ō =⇒ Ui (o) > Ui (µ̃(i))

2. o ∈ Ō =⇒ when i gets to choose, o is still available

=⇒ i picks µ̃(i) while a better object o is available.

Contradiction.
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Stability versus efficiency
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Asymptotic Efficiency and Stability

Matching mechanism µ̃ is asymptotically efficient if

for any µ̃′ which Pareto-dominates µ̃ and any ε > 0

|Iε(µ̃′|µ̃)|
|I |

p−→ 0,

where
Iε(µ̃

′|µ̃) := {i ∈ I |Ui (µ̃
′(i))− Ui (µ̃(i)) > ε}.

Matching mechanism µ̃ is asymptotically stable if, for any ε > 0

|Jε|
|I ×O |

p−→ 0,

where

Jε := {(i , o) ∈ I ×O |Ui (o)− Ui (µ̃(i)) > ε and Vo(i)− Vo(µ̃(o)) > ε}.
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Asymptotic Instability of TTC

If X (·) is degenerate (i.e., only one tier of objects), TTC is
asymptotically stable:

Our first result implies that all individuals get a
payoff arbitrarily close to the upper bound U(u0

1 , ξ̄)

But if we add tiers on objects/correlation in individuals’ preferences,
TTC is not asymptotically stable (even with this weaker notion).
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Asymptotic Instability of TTC
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Asymptotic Inefficiency of DA

With only one tier of objects (X (·) degenerate), all individuals get a
payoff arbitrarily close to the upper bound U(u0

1 , ξ̄) (Wilson (72),
Knuth (76), Pittel (89, 92), Compte-Jehiel (07)...)

⇒Hence, asymptotically, DA is efficient.

But if we add tiers on the side of objects / correlation in individuals’
preferences, DA is not asymptotically efficient.

- Assume there are two tiers and tier 1 objects are uniformly better than
tier 2 objects.

- Inefficiency can be seen more clearly with the McVitie-Wilson version
of DA: Serialize the agents, and each agent applies to an object “one
at a time.”

- Apply Ashlagi, Kanoria, and Leshno (2013).
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Asymptotically inefficiency of DA
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Achieving Both: DA with Circuit Breaker

We modify DA to prevent the agents from competing excessively.

Consider a (bit more general) model with finite tiers on the objects
(the payoffs can overlap across tiers).

The algorithm is parametrized by an integer β(n). Consider the
market composed of individuals I and objects O.

Start running the McVitie-Wilson version of Gale-Shapley’s algorithm.
Keep track of the number of offers made by each individual.
When there is an individual who has made more than β(n) offers,
finalize the matching, i.e., any object gets matched with the individual
he tentatively holds if any.

Iterate the process until we exhaust the market.
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Result

Theorem

Let µ̃ be the matching mechanism obtained by this procedure for⌈
log(n)2

⌉
≤ β(n) = o(n). µ̃ is asymptotically efficient and asymptotically

stable.

Theorem

The mechanism is “asymptotically incentive compatible”: Truthtelling is
an ε-Bayes Nash equilibrium.
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Intuition for the result

Theorem

Let µ̃ be the matching mechanism obtained by this procedure for⌈
log(n)2

⌉
≤ β(n) = o(n). µ̃ is asymptotically efficient and asymptotically

stable.

1 whp, the β(n) most preferred objects of all individuals are in O1. We
condition on this event

2 whp, all objects in O1 are assigned without the circuit breaker being
triggered (i.e., no agent makes more than log(n)2 offers) (by the
classical results, due to Pittel and others). And we know the circuit
breaker will be triggered right after all objects in O1 are matched, so
no object outside O1 is matched by the first stage.

3 whp, individuals matched in this step get high idiosyncratic payoffs
4 whp, almost all objects in O1 get high idiosyncratic payoffs (by the

classical results).
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Intuition for the result

Theorem

Let µ̃ be the matching mechanism obtained by this procedure for⌈
log(n)2

⌉
≤ β(n) = o(n). µ̃ is asymptotically efficient and asymptotically

stable.

We iterate the reasoning for other tiers.
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Intuition for the result

Theorem

Let µ̃ be the matching mechanism obtained by this procedure for⌈
log(n)2

⌉
≤ β(n) = o(n). µ̃ is asymptotically efficient and asymptotically

stable.

Hence,

1 whp, almost all objects get high payoffs =⇒ asymptotically stable

2 whp, all individuals are assigned objects that yield high idiosyncratic
payoffs =⇒ asymptotically efficient
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Simulations

We simulate a situation where

common values uniformly distributed from [0, 1]

the idiosyncratic payoff ξio uniformly distributed from [0, 1]
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Conclusion

While there is an (asymptotically) efficient and stable matching
mechanism: two of the prominent mechanisms fail to find this
matching

Alternative mechanism which limits competition seem to perform
better

In practice, students can only report a small number of objects in
their list of preferences. This also limits the total number of offers
that agents can make, and this may an unexpected good effect on the
performance of the mechanism
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Conclusion: Data ongoing

Abdulkadiroglu, Pathak and Roth (2006) have studied NYC data for the
entrance in high school

Under DA: out of 80,000 students 5,000 can be made better-off by
letting them exchange their assignments

Under TTC: out of 80,000, 55,000 are part of a blocking pair

This suggests that DA and TTC are indeed not close to be efficient or
stable in the field.

We are currently running our alternative algorithm on NYC data...
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