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Motivation: Detecting blow-up reliably using numerics
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Blowup in Differential Equations
A solution or some of its derivatives become infinite at a finite 
time or at infinity  
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Numerical investigation is an important tool
Classic convergence analysis does not apply!

Can we trust numerical solutions?

Can discretization prevent blow-up?

Can discretization cause artificial blow-up?
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Shear Flow with Temperature-Dependent Viscosity

θ = temperature, σ = shear stress, v = velocity

Assuming  σ = θ -α vx , conservation of energy and momentum 
yields
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Does Blow-up Occur?
Uniform shear flow:  v=x

unstable when   1<αstable when   0≤α<1

Starting near the uniform shear flow with α=2, 
here is the solution at t~17,0000
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Observing Blowup in the Shear Flow Model

Observations of blowup in numerical simulations depends 
critically on the accuracy of the numerical solutions
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Blow-up in Reaction-Diffusion Equations
Can we trust numerical solutions?

Can discretization prevent blow-up?
Yes, inaccuracy can inhibit blow-up. 
We can use adaptive error control to maintain accuracy 
during the onset of blowup

Can discretization cause artificial blow-up?
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Invariant Regions
A set in solution space inside of which a solution remains 
for all time

A compact invariant region can imply global existence and 
smoothness of solutions

Example: ut= u2

u2 is not globally Lipschitz continuous
As u increases, so does the Lipschitz
constant of u2, driving the blowup

If a solution remains in a compact region, a local Lipschitz 
condition on the reaction serves as well as a global Lipschitz 
condition
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SIR Model of Rabies in Foxes
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Blow-up in Reaction-Diffusion Equations

Can we trust numerical solutions?

Can discretization prevent blow-up?
Can discretization cause artificial blow-up?

Yes, numerical solutions can exhibit spurious blow-up.
We can use schemes that automatically preserve 
invariant regions

If blowup is seen in a numerical solution that preserves 
compact invariant regions, this is strong evidence that blowup 
is occurring
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Simplified Problem
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Invariant Rectangle
A generalized rectangle in solution space with sides parallel to
the coordinate planes

Invariant rectangle condition on 
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Invariant Rectangle
Essentially, two facts give invariance

• ut-ε∆u satisfies a maximum principle

• The sign of  f on the boundary means that it pushes 
solutions near the boundary back inside the rectangle
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Predator-Prey Model
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Interesting dynamics can occur inside the rectangle!
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Applications with Invariant Rectangles

Allen-Cahn equation

predator-prey model

Hodgkin-Huxley equations

Fitz-Hugh-Nagumo equations

superconductivity in liquids

Field-Noyes equations

flame propagation

models for morphogenesis

model of rabies in foxes in Europe
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Can We Preserve Invariant Rectangles?

Preservation of exact invariant rectangles

Preservation of approximate invariant rectangles
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Exact Preservation

This is related to whether the numerical method satisfies a 
maximum principle when applied to the heat equation

For the standard finite element method, this requires the use 
of the lumped mass quadrature formula for the space 
integrals 

Under a severe CFL-like stability restraint on the time steps,
any invariant rectangle for the true solution is also invariant for 
the lumped mass finite element solution
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Preserving Approximate Invariant Rectangles
We try to keep the numerical solution inside an approximation 
of the invariant rectangle by using adaptive error control

But error bounds grow exponentially with time!
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Preserving Approximate Invariant Rectangles
We try to keep the numerical solution inside an approximation 
of the invariant rectangle by using adaptive error control

But error bounds grow exponentially with time!
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Preservation of a “Fuzzy” Rectangle
We assume there are concentric rectangles Ri ⊂ Ro such that  
f  satisfies a minimum angle condition in the region between  
Ri and Ro

A solution starting with data in the outer rectangle  Ro must
enter the inner rectangle Ri after a fixed finite time 



20

Ordinary Differential Equations
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Reaction-Diffusion Equations

It is more complicated for reaction-diffusion equations because 
a solution can increase and decrease simultaneously 

We perform the analysis on the Lipschitz continuous functional 
defined by the size of the smallest rectangle concentric with Ri
containing the solution



22

Controlling the Accuracy

We control the accuracy using an a posteriori error estimate
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The residual can always be made small by refinement
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Case 1
1 is inside n

iU R−

We compare U to a nearby “local” solution
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Case 2
1 is inside and outside   2n

i iU R Rρ− +
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Theorem on Approximate Preservation

If the residual is kept smaller than a tolerance that depends 
on the
• width of the fuzzy region Ro\ Ri 
• angle in the minimum angle condition
• size and shape of Ri
• Lipschitz constant and size of  f in Ro
but is independent of time then U remains inside a small 
multiple of  Ri for all time
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