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0. Introduction

The main purpose for which Jim Arthur developed the
trace formula is, of course, to establish functoriality.
The trace formula, however, has also interesting app-
lications in other fields such as analytic number theory
and spectral theory of automorphic forms. From the
beginning the Selberg trace formula has been an im-
portant tool to study spectral problems in the theory
of automorphic forms. For some of the potential app-
lications of the Arthur trace formula to spectral theory
it iIs necessary to know that the spectral side of the
trace formula is absolutely convergent.

The purpose of this talk is to discuss the problem
of absolute convergence and some applications which
are based on it.



1. The noninvariant trace formula

In this talk we will only be concerned with the no-
ninvariant trace formula. The general framework is as
follows:

e A ring of adeles of ()

e (G reductive algebraic group over )

GA)= () ker|x|
XE€EX(G)q

G(A) = G(A)! - A(R).

e X equivalence classes of (M,p), M Levi factor of
rational parabolic subgroup, p cuspidal automorphic
representation of M(A)L.

e X set of cuspidal data

e O set of equivalence classes of those elements in
G (1)) whose semisimple components are G((Q)-conjugate

The noninvariant trace formula is an identity between
distributions on G(A)1:



S (D =Y J(f), feCPGM)?)

xEX S,
spectral side = geometric side

e Jy, Jo distributions on G(A)?!
e J, weighted orbital integrals
The spectral side

e Py minimal Q-parabolic subgroup, Mg Levi subgroup
of PO

e P C G Q-parabolic subgroup, P = MpNp Levi de-
composition with Mg C Mp

e Ap C Mp split component of the center of Mp,
® Op = Lie(Ap)

e A2(P) square integrable automorphic forms on

Np(A) Mp(Q\G(A)



o For x € X, m € M(Mp(A)L), let A2 (P) C A%(P) be
the subspace of all ¢ such that for each z € G(A), the
function

¢z(m) = ¢(mz), m e Mp(A),

belongs to L2(Mp(Q)\Mp(A)!1), and transforms un-
der Mp(A) according to =«

e o x(P,A) induced representation of G(A) in X?M(P)

® Q C G Q-parabolic subgroup, s € W(ap,ag)

Mg p(s,\): A2(P) = A%(Q), X¢ ap ¢

intertwining operator, meromorphic function of \.
e most important ingredient of the spectral side

Let M be a Levi subgroup and Q,P € P(M). Set

Mg p(A) 1= Mg p(1, ).

e L DO Mp Levi subgroup



M (P, ) := Iim< > vol(agl/Z(Aél))

A0 grerr)
Maop(A =+ A)
—1 “7Q|P
X MQ|P(>‘) HQ{EAQl /\(a\/)>a

Given Q1 € P(L), Q € P(Mp) is the a parabolic sub-
group with Q C @1, A and A are constrained to lie in

z'az.

Special case: L = M, dima¥ = 1, o unigue simple
root of (P, A), @ € (a§p)*, &(aV) = 1.

M (P, 2) = — vol(a$;/Za)

d
~—1 ~

So My (P,\) can be regarded as " generalized logarith-
mic derivative”

o Let f € CP(G(A)L). Then Arthur has shown that
the distribution J, has the following expression:



I()= > > >

MoCMCL seWE(ap)reg meM(M(A)L)
f* 2. T (sz(P, A)Mpp(s,0)px,x(P; A, f)) d\.
a7y /iag, PeP(M)

Theorem(Arthur): 3, cx |[Jx(f)] < o0

Problem: Absolute convergence of the spectral side
w.r.t. the trace norm.

2. Absolute convergence of the spectral side

2.1 The discrete spectrum

e £ unitary character of Ag(R)°

L3 (GQ\GA), )= P  m(x)Hr.

7elM(G(A))

e Ryisc regular representation of G(A) in

Lgisc (GQ\G(A), )



Theorem(M.,’89): Let f € C*®°(G(A), &) be K-finite.
Then Ryisc(f) is trace class.

Tr(Rgisc(f)) = >, m(m)Tr(x(f))

melM(G(A))
converges with respect to the trace norm

o L. Ji, M. '98: Removal of K-finiteness assumption.

2.2 The rank one cuspidal spectrum

Theorem(Langlands, '90): Let P be maximal para-
bolic. Then

2. 2.

X€X reMcusp(Mp(A)1)

/OO Tr <Mﬁ|p(i)\ )" 1 d P|P(Z)‘ ) Py, (P i, f))

— 00

converges absolutely w.r.t. trace norm.

2.3 The general case

e M Levi subgroup, m € M(M(A)), m = Qumy.

<IP (71')\) HP(W)> <®'UIP (7Tfu )\) ®’UHP(7T'U)) A€ a?\l,@'



Joip(mu, )t HP () = HY(m0), A€ alyp

local intertwining operator

Arthur, Langlands: There exist normalizing factors
rQ|P(7rU,)\), meromorphic functions of A € aj,; -, such
that

R p(mo,A) := rgp(mo, )~ g p(mu, A)

satisfy axioms of normalized intertwining operators
such as

o RS|Q(7T/U7 )\)RQ|P(7TU, )\) — RS|P(7T/U, )\)
° RQ|p(7T — U, )\)* — RP|Q(7TU7 —X)

Example: G = GL(n), P standard maximal parabolic,
Mp = GL(n1) x GL(n2), my = my,1 @ Ty 2,

L(s,m, 1 X T, 2) Rankin-Selberg L-function

L(Saﬂ'v,l X 77'1),2)
L(1+ S, Ty,1 X 7?,0’2)6(8,71'@’1 X 7~Tv,27¢)

rp p (0, ) =



Set
’I"Q|P(7T, )\) = H ’T’Q|P(7Tru, )\)
v

e converges in some chamber in ap .

o Let m € Myiec(M(AD). roip(m,A) admits meromor-
phic extension.

Ngp(m,A) i=rgp(m, \) ™ Mg p(m, A)

e normalized global intertwining operator.

e ¢ unitary character of Ay (R)?, m € Mgjsc(M(A))e

AZ(P) 2 Hp(r) ® Hom (s (7“ Iz]\\j((giAM(R)O(g))

e Hp(w) space of the induced representation

NQ|P(7T7 A) = (H RQ|P(7T’07 A)® Id>



o Kf =[lycoo Kv C G(Af) open compact subgroup.

There exists finite set of primes Sy such that

RQ|P(7Tv; )‘)Kv = Id, v §é So, ™ E I’IdiSC(M(A)l)

a) Special case: P maximal parabolic

l

2 M

ﬁ|P(7T Z)

+ N |p(7T z)” 1dd p|p(7T z)

b) General case: Use Arthur's theory of (G, M)-
families to reduce the investigation of generalized lo-
garithmic derivatives of MQ|P(7T, A) to that of rQ|P(7r, A)
and NQ|P(7T7 )\)

Study of normalizing factors:

e M., '00: Let P be maximal parabolic, &, € A2(P).
Then

se€e U <Mﬁ|p(7ra 8)b, V)



is @ meromorphic function of order < n+ 2, n =
dimG(R) /K-

° Rﬂp(wp,s) is a rational function of p=%, if »p < oo,
and of s, if p = 0.

= rﬂp(w, s) is @ meromorphic function of order <
n —+ 2.

Theorem(M.,’01): Suppose that for all M € L(Mp),
Q,P € P(M) and v the following holds:

1) v < oo: For every K, C G(QQy) and every invariant
differential operator Dy on aj, there exists C' > 0 such
that

| DaxRgp(mv, Mk, IS C
for all XA € 4a3, and all my € MNgisc(M(Qv)).

2) v = oo: For every invariant differential operator D,
on aj, there exist C > 0 and N € N such that

| DaRQp(moos Mgt (o) |
< COA+ | M +Aral + 2DV



for all A € ia};, 0 € N(Kx) and oo € Myisc(M(R)).

Then for every f € CH(G(A)!) the spectral side is
absolutely convergent.

Proposition(Lapid, '03): Let Q, P be adjacent. Let
. (1 _
d = mln{i’ |IRe(p)|: p pole of RQIP(WOWS)"HWOO(J)}'

For every differential operator D(s) with constant co-
efficients there exist constants C,k such that

14| o I\"
0

| D()Rgyp(roer s, (o) lI< © (

for all 0 € M(Kx) and s € iR.
e a Ssimilar result holds at finite places

e reduces problem of absolute convergence to the exi-
stence of pole free strips

Special case: G = GL(n).

Luo-Rudnick-Sarnak: Weak version of Ramanujan
conjecture for GL(n).



e my unitary generic representation of GL(m, Q).

Then my is fully induced:

mo 2 1503 (rata] @ -+ @ o[t4])

T[t](g) = 7(g)|det(g)|’, g€ G(Qu).

P standard parabolic subgroup,
Mp = GL(ny1) x --- x GL(n,),
; tempered representation of GL(n;, Qy),

th >t > >tr, |t <1/2.

H. Jacquet: 7 = Ry cuspidal automorphic represen-
tation of GL(m,A). Then =, is generic.

Theorem(Luo-Rudnick-Sarnak,’99): Let m = ®m, be
a cuspidal automorphic representation of GL(m,A),
my unramified. Then

1 1
1] < = —

— 1=1,...,7.
2 m241

e M., Speh: Extension to ramified places.



e Moeglin-Waldspurger: Description of the residual
spectrum of GL(n).

= Extension to all automorphic representations in the
discrete spectrum of GL(m,A)

Theorem(M., Speh): M = GL(n1) x---x GL(ny) Levi
subgroup of GL(m), Q,P € P(M). For all place v and
all my € Ngisc(M(Quv)), Rg|p(mv,s) is holomorphic in

{s € CT: Re(s; —s5) > —2/(1+m?), 1<i<j< 'r}.

Theorem(Lapid, M., Speh): Let G = GL(n). Then
the spectral side of the Arthur trace formula is abso-
lutely convergent for all f € CL(G(A)).

General case. The above theorem suggests the fol-
lowing conjecture:

Conjecture 1: G reductive over ), P maximal -
parabolic subgroup of G. For all v there exists § > O
such that Rﬂp(m,s) is holomorphic for |Re(s)| < ¢
and all m, € MNgisc (G(Ry)).



e Conjecture 1 = absolute convergence of spectral
side.

Question: Is the conjecture compatible with Arthur’s
conjectures?

Arthur’s conjectures: unramified case
e (G split over @, G smooth model of G over Z.
e p finite prime, Kp = G(Zp) C G(WQyp).

e 7 irreducible representation of G(0)p), with K, fixed
vector. Then « is uniqgue subquotient of

_ G(Qp)
P — IB((Q;)) (x)

which has Kp-fixed vector.

e B Borel subgroup, x quasi-character of T'(Qp) =
()", T C B maximal torus.

~

e G complex dual group of G, T C G maximal torus
such that

X (T) = X*(T).



T te € T/W, W =W(G,T).
o Wy = W@p Weil group

1—=Ip - Wp—7Z—1

e frob, inverse of the geometric Frobenius in Wy/Ip.

Arthur parameters: morphism

Y: Wp x SL(2,C) — G
such that

1) ¥|s (2,0 is an algebraic representation

2) ¢|Wp is unramified and ¢ (froby) belongs to maximal
compact subgroup of G.

e j: Wy, — SL(2,C) map which is unramified and

1/2 0
frob, — 7| ) .

Conjecture 2(Arthur): If m, is a local, unramified
component of a representation occurring in Aé, then



for a parameter 1 satisfying 1) and 2).
Clozel's version of this conjecture:

Conjecture 3(Clozel): If my, is a local unramified com-
ponent of an automorphic representation =, then for
any isomorphism T £ (CX)":

e Using the properties satisfied by normalized intert-
wining operators, it follows that Conjecture 3 implies
Conjecture 1 in the unramified case.

e T here may be alternative approaches which avoid
considerations of the existence of pole free regions of
local intertwining operators.

3. Applications

We discuss a number of applications of the Arthur
trace formula for which the absolute convergence of
the spectral side is significant.

3.1 Existence of cusp forms and Weyl’s law



e G connected semisimple algebraic group over @

e [ C G(R) arithmetic subgroup

e Koo C G(R) maximal compact subgroup

o LZ2,sp(M\G(R)) C L2(M\G(R)) space of cusp forms

e 0. Koo — GL(V,) irreducible unitary representation.

Hiusp(0) = (Leusp(M\G(R)) © V(’)KOO

Space of N'-cusp forms of "weight” o.
o Qe Z(gp) Casimir element.
® poo regular representation of G(R) in L2,5p(M\G(R)).

e A, selfadjoint operator in ngsp(a) induced by
— oo () ® Id.



Geometric interpretation: Assume that I is torsion
free. Let

be the Riemannian symmetric space and let E, -+ X
be the homogeneous vector bundle attached to o. Set

E, =M\ Es; — MNX.
Then
(LQ(r\G(IR)) ® V(,)Koo ~ 12(M\X, Ey)
and
Ay = (V)*V? — N\1d,

where V7 is the canonical invariant connection of E,
and A\, the Casimir eigenvalue of o.

e A, has pure point spectrum in H{,so(0):

A <A1 <A < — o0,

e cuspidal spectrum of "weight” o.

Counting function:

Ngusp()\aff) = {0 [N <AL



Let d = dim X.

Weyl’'s constant:
B Vol(I\ X)
C (4m)2r(d/2 + 1)

CrZ

Conjecture(Sarnak, 1984): Assume that o[z = Id.
Then

NguspO\aU) ~ dim(o)Cr 2\d/2

as A — oo.
The conjecture has been proved in the following cases:

e A. Selberg, 1954: I' C SL(2,R) congruence sub-
group, o = 1.

e I. Efrat, 1987: I' C SL(2,R)™ Hilbert modular group,

o=1.

e A. Reznikov, 1993: ' C SOqp(n,1) congruence sub-
group, o = 1.

e St. Miller, 2001: T = SL(3,7Z), o = 1.



Theorem(M.,'03): Let G=SL(n) andletl" C SL(n,7Z)
be a principal congruence subgroup. Then

Nlusp (N, ) ~ dim(a)Cr A%/
for all o € M(SO(n)) such that |z =Id.

Method: Combination of trace formual and heat equa-
tion method.

Assume: c = 1.
Choice of test function:
h: € CL(G(R)), t > 0, kernel of e t2 on X.

Ky C G(Ay) open compact subgroup, ' = KN G(Q).

1

ot(g) = ht(goo)vol(Kf)XKf(gf)a g = googy € G(A).

Kr= Kf(N) congruence subgroup.
Jspec(dr) = p(N) Y e~ 4 E(2),
i

E(t) contribution of the Eisenstein series.



. vol(IM(N)\X)
Jgeom(¢t) = p(N) (47r)d/2

ast— 04, X =G(R)/Kso, d=dim X.

Jspec(dt) = Jgeom(¢t).

t_d/2 + O(t—d/Q)

Problem: behaviour of E(t) as t — 0+.

Main result: Let d =dimG(R)/K«. Then

E@) =0 @1/ 4+ o4,

For the proof we use the following results:

e Absolute convergence of the spectral side of the
trace formula

e Weak version of Ramanujan conjecture (Luo-Rudnick-
Sarnak)

e Analytic properties of Rankin-Selberg L-functions
(Jacquet, Piatetski-Shapiro, Shalika, Shahidi, Moeg-
lin, Waldspurger,...), bounds on the logarithmic deri-
vatives.



A weaker result suffices: Let w;, ¢« = 1,2, be a
cuspidal automorphic representation of GLy (A). Set

L(S,7T1 X 77'2)
L(l —|— S,m1 X 77‘2)6(8,71‘1 X 77'2).

/\(37 ™, 7T2) —

Then
T N
[ [ tir w1 m2)| dr < C Tlog(T + v(my x 72))
for T' > 0, where v(mw1 X ) is the analytic conductor.

e Description of the residual spectrum (Moeglin, Wald-
spurger).

e At present these results are only available for GL(n).
Estimation of remainder term:

Write

NCIZ_USD()‘a (7) — Nsmooth()\: (7) + NOSC()‘aa)

Problem: Estimation of Nosc(\)



General case and weaker versions of Weyl’'s law:

Theorem(Piatetski-Shapiro). Let o = 1. For every I
there exists a normal subgroup of finite index I’ of I
such that

lim Nliep(A, 1) = oco.
A—00

e A.B. Venkov, G = SL(2).

Theorem(Labesse-M.). Let G be almost simple, connec-
ted and simply connected such that G(R) is non com-
pact. Let S be a finite set of primes containing at least
two finite primes. There exists Cr-(S) < 1 such that
for every congruence subgroup I C G(R) and every o
such that o|z- = Id we have

NL o (N, o)
| < liminf =SR2 77
dim(o)CrCr(S) < |)|[r_1>|or<1) NI

e O < Cr(S) for ' a deep enough congruence sub-
group.

e T he proof uses a simple form of the trace formula.



3.2. The tempered spectrum
e S. Miller: ' =SL(3,7).

e A Laplacian on functions of MN\SL(3,R)/SO(3).

im #{\ <T| Agp; = \jp;, ¢; tempered} _ 4
T—o00 #{)\j < T}

Problem: Extension to congruence subgroups I C
SL(n,Z).

3.3. Limit multiplicities

L2,o(M\G(R)) = @ Nr(n)Hx

—_—

TeG(R)

1
Cusp — > N
o VOI(I_\ ( )) WE@ r(ﬂ-)&r

e ), delta distribution

o u="P measure on G(R).

Fr=r;>Mr>---2>MpD---, nN,I[;={e}

tower of normal subgroups of finite index.



e 11 Plancherel measure of G(R).

Conjecture 4: Let (I';) be a tower of normal sub-
groups of finite index (and of bounded depth). For
every open relatively compact subset U C G(R), which
is regular for the Plancherel measure (u(U) = p(U)),
one has

lim pr2P(U) = p(U).

J—r00 J

Known results:

[ cocompact: de George, Wallach, Delorme

e ——

[ co-finite: Savin: Let m € G(R)4. Then

Nr ()
vol(I";\G(R))

ur P ({m}) = — d(m) = p({r}).

e It is likely that Conjecture 4 can be proved for G =
SL(n) with the methods used to prove Weyl's law.

Let G be semisimple over Q).

e —— e ——

G(Qu)cusp C G(Qu) closure in Fell topology of the set
of my's such that m = ®ymy 0ccurs in LZ,sp (G(Q)\G(A)).



e cuspidal automorphic dual.

e Conjecture 4 =

G(R)temp C G(R)cusp°
e Ramanujan conjecture for G = GL(n): " =" holds.
3.4. Asymptotics of class numbers

Recent work of Deitmar and Hoffmann on the asym-
ptotic of class numbers for cubic number fields



