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Introduction

• Many scientific studies involve the obser-

vation of a group of subjects over time

• When repeated measurements are taken on

each subject the resulting data are referred

to as longitudinal data
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Introduction

• Well established methods, accounting for

temporal correlation and trends, already ex-

ist for the analysis of longitudinal data.

These include:

– generalized linear mixed models

– hidden Markov models

– counting process models

– multi-state models

• Existing methods, developed for the health

context, typically assume that subjects un-

der observations are independent
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• In forestry, statistical methodology for the

analysis of longitudinal data should allow

for spatial correlation between subjects

• Example: In a study of recurrent weevil

infestation, pine trees within a plantation

are examined annually for the presence or

absence of infection → longitudinal binary

data

White Pine Tree Plantation
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Introduction

• Use both continuous and discrete mixture

models

• Incorporate spatially correlated random ef-

fects into existing models for longitudinal

data

• Focus in this talk: spatial mixed multi-

state models
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Outline

1. Introduction to multi-state models

2. Discrete-time spatial mover-stayer model

for recurrent weevil infestation

3. Continuous-time spatial multi-state mod-

els

4. Extensions
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Multi-State Models: A Brief Introduction

• Commonly used in the analysis of longitu-

dinal data.

• At any point in time subjects occupy one

of a discrete set of states.

• States can represent the health status of

an individual or summarize states of disease

activity.

• Change of state is called a transition. For

example subjects can make transitions be-

tween diseased and disease-free states.
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Multi-State Models

• We are interested in modelling the process

governing transitions.

• If we observe a discrete time, k-state process,

Y (t), t = 1,2, ..., we are often interested in

transition probabilities, for example the 1-

step probabilities:

pij(t) = Pr(Y (t) = j|Y (t−1) = i), i, j ∈ {1, ..., k}

• For a continuous time process Y (t), t ∈
[0, τ ], we are interested in analogous quan-

tities known as the transition intensity func-

tions:

λij(t) = lim
h↓0

Pr(Y (t) = j|Y (t− h) = i, Ht−h)

h

i, j ∈ {1, ..., k}
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Multi-State Models

• Common simplifying assumption is the Markov

assumption where one assumes the entire

history of the process up to time t is cap-

tured by the current state occupied at time

t.

• While many complex processes may not ex-

hibit Markov dependence, Markov processes

can be used as building blocks in a hier-

archical setting to specify more complex

models.
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Multi-State Models

• When a large number of subjects are ob-
served, there can be a great deal of het-
erogeneity in the transition processes cor-
responding to different subjects. This can
be accommodated in several ways:

1. Regression models, Muenz and Ruben-
stein (1985)

2. Independent random effect models, Cook
and Ng (1997), Albert and Waclawiw
(1998)

3. Finite mixture models, Frydman (1984),
Fuchs and Greenhouse (1988), Cook et
al. (2002)

• These models are more sophisticated but
still assume independence between subjects.
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Weevil Infestation in B.C. Forests

• Study involves a plantation of pine trees
roughly 22,000 m2 in size.

• Roughly 3000 pine trees susceptible to wee-
vil infection.

• Each tree was examined at regular annual
intervals for the presence/absence of weevil
infection.

• Trees are therefore observed in one of two
states, either infected or uninfected and
make transitions between the two states.

• Objective: describe the transition process
between states and characterize variation
in this process over space and time.
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Weevil Infestation in B.C. Forests

• Weevil attacks may occur in clusters through-

out the region → spatial correlation in the

year-to-year disease status of trees.

• In addition 27% of trees were never ob-

served in the infected state throughout the

course of the study.

• It was thought that some trees may be

”resistant” to infection. These are trees

which, for unknown reasons, have extremely

low probability of infection and are thus al-

ways observed in the uninfected state.
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A Model for Tree Infection

• Let state 1 denote the infected state and

state 0 denote the uninfected state.

• The state occupied by the ith tree at year

t is denoted by a binary variate yi(t).

• Let xi(t) denote a corresponding vector of

covariates.

• The response obtained from the ith tree is

therefore a vector of binary values

yi = (yi(0), ..., yi(6))′

indicating the sequence of states occupied.
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A Model for Tree Infection

• We specify a hierarchical model where, at

the first level of the model, we assume each

response vector, yi, is independently drawn

from a two component mixture model:

yi ∼




f1i
(Yi) with pM

f0i
(Yi) with 1− pM

• f0i
(Yi) is the density of a degenerate dis-

tribution placing all its mass on the zero

vector

f0i
(Yi) = I{Yi = 0}
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A Model for Tree Infection

• f1i
(Yi) is the density of a 1st order, 2-state

Markov chain with initial probability:

pIi
= Pr{yi(0) = 1}

and transition probabilities:

p01i
(t) = Pr{yi(t) = 1|yi(t− 1) = 0}

p10i
(t) = Pr{yi(t) = 0|yi(t− 1) = 1}

t = 1, ...,6.
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A Model for Tree Infection

• We model transition probabilities with lo-

gistic regression specifications:

logit{p01i
(t)} = β0

′xi(t) + g0(t, α0) + b0i

logit{p10i
(t)} = β1

′xi(t) + g1(t, α1) + b1i
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A Model for Tree Infection

• We model transition probabilities with lo-

gistic regression specifications:

logit{p01i
(t)} = β0

′xi(t) + g0(t, α0) + b0i

logit{p10i
(t)} = β1

′xi(t) + g1(t, α1) + b1i

• xi(t) = (1, Di, Ai(t− 1))′

1. Di a local measure of tree density

2. Ai(t−1) a local measure of attack den-

sity at time t− 1
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A Model for Tree Infection

• We model transition probabilities with lo-
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A Model for Tree Infection

• We model transition probabilities with lo-

gistic regression specifications:

logit{p01i
(t)} = β0
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A Model for Tree Infection

• We model transition probabilities with lo-

gistic regression specifications:

logit{p01i
(t)} = β0

′xi(t) + g0(t, α0) + b0i

logit{p10i
(t)} = β1

′xi(t) + g1(t, α1) + b1i

• g0(t, α0) and g1(t, α1) describe overall tem-

poral trends in transitions - use cubic B-

splines
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A Model for Tree Infection

• We model transition probabilities with lo-

gistic regression specifications:

logit{p01i
(t)} = β0

′xi(t) + g0(t, α0) + b0i

logit{p10i
(t)} = β1

′xi(t) + g1(t, α1) + b1i

• b0i
and b1i

are tree specific random effects
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A Model for Tree Infection

• Two vectors of random b0 = (b01
, ..., b0N

)′
and b1 = (b11

, ..., b1N
)′.

• We assume each vector is independently

drawn from a conditionally autoregressive

CAR(σ) model: bl
ind∼ CAR(σl), l = 0,1

• The CAR model is a Markov random field

model where the joint distribution for a col-

lection of spatially correlated random vari-

ables is determined through a set of local

specifications

• Have found wide application in disease map-

ping and image analysis
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A Model for Tree Infection

• To model the random effects we employ

a Gaussian CAR(σ) model where the joint

distribution for a random vector b = (b1, ..., bn)

is specified through the conditional distri-

butions:

bi|bj 6=i ∼ Normal(µi, σ
2
i )

µi =

∑
j 6=i wijbj∑
j 6=i wij

, σ2
i =

σ2

∑
j 6=i wij

• Examples of wij:

1. wij =




1 if dij ≤ d

0 if dij > d

2. wij = exp (−dij)
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A Model for Tree Infection

• Our 2-state model allows for a sub-population

of resistant trees - stayers.

• Trees which can make transitions do so

according to a Markov chain incorporat-

ing spatially correlated random effects -

movers.

UNINFECTED INFECTED

STAYERS MOVERS MOVERS
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Inference

• We approach from both classical and Bayesian
perspectives:

1. Marginal Likelihood Function

L(Θ,Y) = Eb0,b1
[

N∏

i=1

f(yi|b1, b0)]

2. Posterior Distribution

π(Θ,b0,b1|Y) ∝
[ N∏

i=1

f(yi|b1, b0)
]

×f(b0|σ0)f(b1|σ1)π(Θ)

• π(Θ) prior distribution for parameters. We
use weakly informative priors.

• In both cases we apply model fitting tech-
niques based on Markov Chain Monte Carlo
simulation.
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Inference

• Bayesian analysis: Draw Markov Chain Monte

Carlo samples from posterior distribution.

• Likelihood analysis: Use a Monte Carlo EM

algorithm to obtain MLE’s.

1. EM used for missing data problems.

2. Treat random effects as ”missing” data.

3. The E-step of a standard EM algorithm

is not available in closed form for our

model.

4. Approximate the required expectation us-

ing Gibbs sampling.
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Monte Carlo EM

• The MCEM algorithm does not posses the

monotonicity properties of the usual EM

algorithm.

• Will converge to a neighborhood of the

MLE and vary randomly about this neigh-

borhood.

• Convergence can be assessed by examining

trace plots of each parameter.

• Standard Errors: use MCMC to approxi-

mate the observed information matrix.
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MCEM Output for Mover-Stayer Model
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Some Results

• Results obtained from Bayesian and Likeli-

hood procedures are very similar.

• Mixture allocation probability (proportion

of movers):

p̂M = 0.894 (0.021) − BAYES

p̂M = 0.895 (0.018) − MLE

• Covariate effect: Ai(t − 1) (local measure

on infection density)

– Trees surrounded by a larger number of

infected trees at time t−1 are more likely

to make a transition into the infected

state at time t.

29



Estimated Temporal Trends:

g0(t, α0), g1(t, α1)
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Estimated Random Effects

• We can estimate the random effects - ”spa-

tial residuals”.

• These can be used to obtain maps of the

unmodeled heterogeneity → pinpoint areas

to search for missing covariates.
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Estimated Random Effects: b0, b1

b0

b1
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Goodness of Fit

• We use the posterior predictive distribu-

tion pr(Yrep|Y) associated with our model

where Yrep is a hypothetical replicate data

set.

• If the models fits reasonably well, the ob-

served data should look plausible under this

distribution.

• Simulate replicate data sets from the pos-

terior predictive distribution Yrep
1 ,Yrep

2 , ...,Yrep
k

and compare these to the observed data.

• Any systematic differences between data

simulated from our model and the observed

data may be an indication of model misfit.
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Goodness of Fit
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Random Effects - Forest Example

• Negative correlation between b0i
and b1i
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Random Effects - Forest Example

• We seek a joint spatial model for b0 =

(b01
, ..., b0N

)′ and b1 = (b11
, ..., b1N

)′

• Employ a bivariate CAR model with condi-

tional specifications for the pair of random

effects, bi = (b0i, b1i)
′, associated with the

ith tree given by:
(

b0i
b1i

) {(
b0j
b1j

)}

j 6=i

∼ BV N(µi,Σi)

(
µ0i
µ1i

)
=

∑

j

Wij

(
b0j
b1j

)

• For models with more than two states, mul-

tivariate CAR models are defined in a sim-

ilar manner
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Continuous-time Models

• More general continuous-time models for
spatially reference event history data

4

321     

• Describe transition rates between states while
accounting for spatial correlation.

• Identify and map spatial variation in tran-
sition rates.
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Continuous-time Models

• Let Xl(t) represent the state occupied by

subject l at time t, l = 1, ..., n

• We specify a hierarchical model where, at

the first stage of the model, we assume

that processes corresponding to different

subjects are independent with each follow-

ing a continuous time Markov Chain

• Let λijl(t) denote the intensity function as-

sociated with transitions from state i to

state j for subject l: λijl(t) =

limh→0
Pr{xl(t) = j|xl(t− h) = i}

h
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Continuous-time Models - Transition

Intensity Functions

• We adopt a proportional intensities model

given by:

λijl(t) = λij0(t) exp(βij
′zl + bij

′rl)

• λij0(t): baseline intensity function

• zl: vector of explanatory variables

• βij: vector of regression coefficients

• bij is a vector of random effects allowing

for spatial correlation
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Continuous-time Models: λij0(t)

• Splines

• Parametric forms, for example Weibull:

λij0(t) = ρijt
ρij−1

with shape parameter ρij > 0.
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Continuous-time Models – Random
Effects

• The model contains a separate vector of
random effects, bij, for each possible i → j
transition

• Model in example would contain five sets
of random effects: b12, b14, b23, b24 and
b34

4
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Continuous-time Models – Random
Effects

• At the second level of the model we assume
that random effects follow a multivariate
conditional autoregressive model

• Such a model allows for both spatial cor-
relation in transitions as well as correlation
between different transition rates

4
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Continuous-time Models – Model Fitting

and Inference

• As before we can employ both Bayesian

and frequentist methods based on MCMC

sampling
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Extensions

• Extensions to the current formulation of

the mover-stayer model allowing for spatial

clusters of resistant trees

• Extend methods for continuous-time mod-

els to accommodate processes under panel

observation
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Extensions (Links with Jason’s work)

• Space-varying coefficient models - do co-

variate effects vary spatially?

• Random spline models where the coeffi-

cients of the spline basis are spatially vary-

ing over locations - do peak periods vary

spatially?

• Adapative spline models

• Integrate methodology into a GIS/spatial

analysis system.
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