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Introduction

e Many scientific studies involve the obser-
vation of a group of subjects over time

e When repeated measurements are taken on
each subject the resulting data are referred
to as longitudinal data



Introduction

e Well established methods, accounting for
temporal correlation and trends, already ex-
ist for the analysis of longitudinal data.
These include:

— generalized linear mixed models
— hidden Markov models
— counting process models
— multi-state models
e EXisting methods, developed for the health

context, typically assume that subjects un-
der observations are independent



e In forestry, statistical methodology for the
analysis of longitudinal data should allow
for spatial correlation between subjects

e Example: In a study of recurrent weevil
infestation, pine trees within a plantation
are examined annually for the presence or
absence of infection — longitudinal binary
data

White Pine Tree Plantation




Introduction

e Use both continuous and discrete mixture
models

e Incorporate spatially correlated random ef-
fects into existing models for longitudinal
data

e Focus in this talk: spatial mixed multi-
state models



Outline

. Introduction to multi-state models

. Discrete-time spatial mover-stayer model
for recurrent weevil infestation

. Continuous-time spatial multi-state mod-
els

. Extensions



Multi-State Models: A Brief Introduction

e Commonly used in the analysis of longitu-
dinal data.

e At any point in time subjects occupy one
of a discrete set of states.

e States can represent the health status of
an individual or summarize states of disease
activity.

e Change of state is called a transition. For
example subjects can make transitions be-
tween diseased and disease-free states.



Two-State Model for Disease
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Multi-State Models

e \We are interested in modelling the process
governing transitions.

e If we observe a discrete time, k-state process,
Y(t),t =1,2,..., we are often interested in
transition probabilities, for example the 1-
step probabilities:

pij(t) = Pr(Y(t) =jlY(t—1) =1), i, €{1,...,k}

e For a continuous time process Y (t),t €
[0, 7], we are interested in analogous quan-
tities known as the transition intensity func-
tions:

g(0) = i PO =Y G 1) = i iy

i,j€{1,..,k}



Multi-State Models

e Common simplifying assumption is the Markov
assumption where one assumes the entire
history of the process up to time t is cap-
tured by the current state occupied at time
t.

e While many complex processes may not ex-
hibit Markov dependence, Markov processes
can be used as building blocks in a hier-
archical setting to specify more complex
models.



Multi-State Models

e When a large number of subjects are ob-
served, there can be a great deal of het-
erogeneity in the transition processes cor-
responding to different subjects. This can
be accommodated in several ways:

1. Regression models, Muenz and Ruben-
stein (1985)

2. Independent random effect models, Cook
and Ng (1997), Albert and Waclawiw
(1998)

3. Finite mixture models, Frydman (1984),
Fuchs and Greenhouse (1988), Cook et
al. (2002)

e [ hese models are more sophisticated but
still assume independence between subjects.

10



Weevil Infestation in B.C. Forests

Study involves a plantation of pine trees
roughly 22,000 m? in size.

Roughly 3000 pine trees susceptible to wee-
vil infection.

Each tree was examined at regular annual
intervals for the presence/absence of weevil
infection.

Trees are therefore observed in one of two
states, either infected or uninfected and
make transitions between the two states.

Objective: describe the transition process
between states and characterize variation
in this process over space and time.
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Weevil Infestation in B.C. Forests

e Weevil attacks may occur in clusters through-
out the region — spatial correlation in the
year-to-year disease status of trees.

e In addition 27% of trees were never ob-
served in the infected state throughout the
course of the study.

e It was thought that some trees may be
"resistant” to infection. These are trees
which, for unknown reasons, have extremely
low probability of infection and are thus al-
ways observed in the uninfected state.
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A Model for Tree Infection

Let state 1 denote the infected state and
state O denote the uninfected state.

The state occupied by the ith tree at year
t is denoted by a binary variate y;(t).

Let x;(t) denote a corresponding vector of
covariates.

The response obtained from the ith tree is
therefore a vector of binary values

yi = (%:(0), ..., 4:(6))’

indicating the sequence of states occupied.
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A Model for Tree Infection

e \We specify a hierarchical model where, at
the first level of the model, we assume each
response vector, yj, is independently drawn
from a two component mixture model:

gi ~ 4 J1 (Y1) with py
Y fo,(Yy)  with 1 —py

o fo,(Y;) is the density of a degenerate dis-
tribution placing all its mass on the zero
vector

fo,(Yi) = I{Y; = 0}
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A Model for Tree Infection

° fli(Yi) is the density of a 15¢ order, 2-state
Markov chain with initial probability:

pr, = Pr{y;(0) =1}

and transition probabilities:
po1,(t) = Pr{y;(t) = 1]y;(t — 1) = 0}
p10,(t) = Pr{y;(t) = Oly;(t — 1) = 1}

t=1,..,6.
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A Model for Tree Infection

e \We model transition probabilities with lo-
gistic regression specifications:

logit{po1,(t)} = Bo'xi(t) + go (¢, ag) + by,

logit{p10,(t)} = B1'x3(t) + g1(t, 1) + b1,
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A Model for Tree Infection

e \We model transition probabilities with lo-
gistic regression specifications:

logit{po1,(t)} = Bo'x;(t) + go(t, ap) + bo,

logit{p10,(t)} = B1'x;(t) + g1(t, 1) + b1,

¢ Xi(t) — (17D27A2(t — 1)),
1. D; a local measure of tree density

2. A;(t—1) a local measure of attack den-
Sity at time ¢t —1
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A Model for Tree Infection

e \We model transition probabilities with lo-
gistic regression specifications:

logit{po1,(t)} = Bo'x;(t) + go(t, ap) + bo,

logit{p10,(t)} = B1'x3(t) + g1 (¢, a1) + b1,

¢ Xi(t) — (17Dz7AZ(t — 1)),
1. D; a local measure of tree density

2. A;(t—1) a local measure of attack den-
Sity at time ¢t —1
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A Model for Tree Infection

e \We model transition probabilities with lo-
gistic regression specifications:

logit{po1,(t)} = Bo'x;(t) + go(t, ap) + bo,

logit{p10,(t)} = B1'x3(t) + g1 (¢, a1) + b1,

¢ Xi(t) — (17DzaAZ(t — 1>),
1. D; a local measure of tree density

2. A;(t—1) a local measure of attack den-
Sity at time t — 1
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A Model for Tree Infection

e VWe model transition probabilities with lo-
gistic regression specifications:

logit{po1,(t)} = Bo'x;(t) + go(t, ) + by,
logit{p10,(t)} = B1'x3(t) + g1 (t, 1) + b1,
e go(t,ag) and g1 (t, aq) describe overall tem-

poral trends in transitions - use cubic B-
splines
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A Model for Tree Infection

e \We model transition probabilities with lo-
gistic regression specifications:

logit{po1,(t)} = Bo'x;(t) + go(t, ap) + bo,

logit{p10,(t)} = B1'x;(t) + g1 (¢, 1) + b1,

® bp. and by, are tree specific random effects
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A Model for Tree Infection

Two vectors of random by = (bg,, ..., bo,)’
and by = (bll’ ""blN),'

We assume each vector is independently
drawn from a conqitionally autoregressive
CAR(c) model: by ® CAR(ay), 1 =0,1

The CAR model is a Markov random field
model where the joint distribution for a col-
lection of spatially correlated random vari-
ables is determined through a set of local
specifications

Have found wide application in disease map-
ping and image analysis
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A Model for Tree Infection

To model the random effects we employ

a Gaussian CAR(o) model where the joint
distribution for a random vector b = (b4, ..., bn)
is specified through the conditional distri-
butions:

bi|bji ~ Normal(p;, 07;2)

L XgEiwigby o o®
My — ’ Jz’ —
2 Wij 27 Wij

Examples of w;:

. 1 ifd;<d
K 0 ifdy>d

2. w;; = €XP (_dij)
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A Model for Tree Infection

e Our 2-state model allows for a sub-population
of resistant trees - stayers.

e [rees which can make transitions do so
according to a Markov chain incorporat-
ing spatially correlated random effects -

MOVETrS.

UNINFECTED INFECTED

STAYERS | MOVERS MOVERS

AN,
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Inference

e \We approach from both classical and Bayesian
perspectives:

1. Marginal Likelihood Function

N
L(©,Y) = Ep p, []] f(ilb1,b0)]
i=1

2. Posterior Distribution
N
7(©,bo,b1|Y) o< | T £(yilb1.bo)|
i=1
X f(bo|og) f(b1]o1)7(O)

e w(O®) prior distribution for parameters. We
use weakly informative priors.

e In both cases we apply model fitting tech-

niques based on Markov Chain Monte Carlo
simulation.
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Inference

e Bayesian analysis: Draw Markov Chain Monte
Carlo samples from posterior distribution.

e Likelihood analysis: Use a Monte Carlo EM
algorithm to obtain MLE’s.
1. EM used for missing data problems.
2. Treat random effects as ” missing” data.

3. The E-step of a standard EM algorithm
is not available in closed form for our
model.

4. Approximate the required expectation us-
ing Gibbs sampling.
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Monte Carlo EM

The MCEM algorithm does not posses the
monotonicity properties of the usual EM
algorithm.

Will converge to a neighborhood of the
MLE and vary randomly about this neigh-
borhood.

Convergence can be assessed by examining
trace plots of each parameter.

Standard Errors: use MCMC to approxi-
mate the observed information matrix.
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MCEM Output for Mover-Stayer Model
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Some Results

e Results obtained from Bayesian and Likeli-
hood procedures are very similar.

e Mixture allocation probability (proportion
of movers):

pis = 0.894 (0.021) — BAYES

pi; = 0.895(0.018) — MLE

e Covariate effect: A;(t — 1) (local measure
on infection density)

— Trees surrounded by a larger number of
infected trees at time t—1 are more likely
to make a transition into the infected
state at time t.
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Estimated Random Effects

e \We can estimate the random effects - "' spa-
tial residuals’.

e T hese can be used to obtain maps of the
unmodeled heterogeneity — pinpoint areas
to search for missing covariates.
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Estimated Random Effects: bg, by
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Goodness of Fit

We use the posterior predictive distribu-
tion pr(YT'P|Y) associated with our model
where Y'®P is a hypothetical replicate data
set.

If the models fits reasonably well, the ob-
served data should look plausible under this
distribution.

Simulate replicate data sets from the pos-
terior predictive distribution Y7, Y5 7, ..., Y °P
and compare these to the observed data.

Any systematic differences between data
simulated from our model and the observed
data may be an indication of model misfit.
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Random Effects - Forest Example

e Negative correlation between bg, and by,

b,

-0.4 -0.2 0.0 0.2 0.4 0.6

bo
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Random Effects - Forest Example

e We seek a joint spatial model for bg =
(bol,...,boN)’ and by = (bll,.--,blN)’

e Employ a bivariate CAR model with condi-
tional specifications for the pair of random
effects, b; = (bg;, b1;)’, associated with the
ith tree given by:

01 )82 )L~ BUN (. 55)
b1 b15 )} jozi
poi |\ _ [ boj
(i) = (1)

e For models with more than two states, mul-
tivariate CAR models are defined in a sim-
ilar manner
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Continuous-time Models

e More general continuous-time models for
spatially reference event history data

e Describe transition rates between states while
accounting for spatial correlation.

e Identify and map spatial variation in tran-
sition rates.
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Continuous-time Models

e Let X;(t) represent the state occupied by
subject [l at time t, [ =1,....n

e \We specify a hierarchical model where, at
the first stage of the model, we assume
that processes corresponding to different
subjects are independent with each follow-
ing a continuous time Markov Chain

e Let )\;;(¢) denote the intensity function as-
sociated with transitions from state i to
state j for subject I: A;;(t) =

Priz;(t) = jlo;(t — h) =i}
h

limp, 0
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Continuous-time Models - Transition
Intensity Functions

We adopt a proportional intensities model
given by:

Xij1(8) = Xijo(t) exp(B;;'z1 + bi;'ry)
Aijo(t): baseline intensity function
zj: vector of explanatory variables
Bij: vector of regression coefficients
b;; is a vector of random effects allowing

for spatial correlation
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Continuous-time Models: \;;o(%)
e Splines
e Parametric forms, for example Weibull:

Aijo(t) = pithi

with shape parameter p;; > 0.
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Continuous-time Models — Random
Effects

e T he model contains a separate vector of
random effects, b,,;j, for each possible 1 — 3
transition

e Model in example would contain five sets
of random effects: bi12, b14, b23, by and
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Continuous-time Models — Random
Effects

e At the second level of the model we assume
that random effects follow a multivariate
conditional autoregressive model

e Such a model allows for both spatial cor-
relation in transitions as well as correlation
between different transition rates
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Continuous-time Models — Model Fitting
and Inference

e As before we can employ both Bayesian
and frequentist methods based on MCMC
sampling
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Extensions

e Extensions to the current formulation of
the mover-stayer model allowing for spatial
clusters of resistant trees

e Extend methods for continuous-time mod-
els to accommodate processes under panel
observation
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Extensions (Links with Jason’s work)

Space-varying coefficient models - do co-
variate effects vary spatially?

Random spline models where the coeffi-
cients of the spline basis are spatially vary-
ing over locations - do peak periods vary
spatially?

Adapative spline models

Integrate methodology into a GIS/spatial
analysis system.

45



