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Isotropicity, the ψα condition

A random vector X in Rn is isotropic if

EX = 0

and
EX ⊗ X = Id

or equivalently for all y ∈ Rn,

E〈X , y〉2 = |y |2.

X is ψα (α ∈ [1,2]) with constant C if for all y ∈ Rn,

‖〈X , y〉‖ψα ≤ C|y |,

where
‖Y‖ψα = inf{a > 0 : E exp((Y/a)α) ≤ 2}
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Consequences

E|X |2 =
∑n

j=1 E〈X ,ej〉2 = n

For any y ∈ Sn−1 and t ≥ 0,

P(|〈X , y〉| ≥ t) ≤ 2 exp(−(t/C)α).

Fact
For every random vector X not supported on any n − 1 dimensional
hyperplane, there exists an affine map T : Rn → Rn such that TX is
isotropic.

If for a set K ⊆ Rn the random vector distributed uniformly on K is
isotropic, we say that K is isotropic.
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Log-concavity

A random vector X in Rn is log-concave if its law µ satisfies a
Brunn-Minkowski type inequality

µ(θA + (1− θ)B) ≥ µ(A)θµ(B)1−θ.

Theorem (Borell)
A random vector not supported on any (n − 1) dimensional hyperplane
is log-concave iff it has density of the form exp(−V (x)), where
V : Rn → (−∞,∞] is convex.

Lemma (Borell)
An isotropic log-concave random vector is ψ1 with a universal constant
C.



Examples

The following distributions are log-concave:
Gaussian measures
Uniform distributions on convex bodies
Measures with density of the form C exp(−‖x‖), where ‖x‖ is a
norm.
Products, affine images and convolutions of the above
distributions.



The basic model

Definition
Let Γ be an n × N matrix with columns X1, . . . ,XN , where Xi ’s are
independent isotropic log-concave random vectors in Rn

Questions

What is the operator norm of Γ: `N2 → `n2?
When is ΓT close to a multiple of isometry?
How does Γ (ΓT ) act on sparse vectors?
What is the smallest singular value of Γ?
What is the distribution of singular values /eigenvalues of Γ?
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Motivations: sampling convex bodies

Problem

Let K ⊆ Rn be a convex body, s.t. Bn
2 ⊆ K ⊆ RBn

2 . Assume we have
access to an oracle (a black box), which given x ∈ Rn tells us whether
x ∈ K .

How to generate random points uniformly distributed in K ?
How to compute the volume of K ?

This can be done by using Markov chains.
Their speed of convergence depends on the position of the
convex body.
Preprocessing: First put K in the isotropic position (again by
randomized algorithms).
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Centering the body is not comp. difficult – takes O(n) steps.
The question boils down to:

How to approximate the covariance matrix of X - uniformly
distributed on K by the empirical covariance matrix

1
N

N∑
i=1

Xi ⊗ Xi .

or (after a linear transformation)

Given an isotropic convex body in Rn, how large N should we take
so that ∥∥∥ 1

N

N∑
i=1

Xi ⊗ Xi − Id
∥∥∥
`2→`2

≤ ε

with high probability?
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Interpretation in terms of Γ.

We have∥∥∥ 1
N

N∑
i=1

Xi ⊗ Xi − Id
∥∥∥
`2→`2

= sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

〈Xi , y〉2 − 1
∣∣∣

= sup
y∈Sn−1

∣∣∣ 1
N
|ΓT y |2 − 1

∣∣∣

So the (geometric) question is

Let Γ be a matrix with independent columns X1, . . . ,XN drawn from an
isotropic convex body (log-concave measure) in Rn.

How large should N be so that N−1/2ΓT : Rn → RN was an almost
isometry?
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History of the problem

Kannan, Lovasz, Simonovits (1995) – N = O(n2)

Bourgain (1996) – N = O(n log3 n)

Rudelson (1999) – N = O(n log2 n)

Giannopoulos, Hartzoulaki, Tsolomitis (2005) – unconditional
bodies: N = O(n log n)

Aubrun (2006) – unconditional bodies: N = O(n)

Paouris (2006) – N = O(n log n)

Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008) – N = O(n)

For arbitrary isotropic random vectors, if you do not assume any
uniform bound on 〈Xi , y〉, y ∈ Sn−1, you cannot remove the logarithm
(the optimal bound N = O(n logβ n) is due to M. Rudelson). Recently
N = O(nloglog n) was proven under a uniform bound on (4 + ε)-th
moments of 〈Xi , y〉 (R. Vershynin).
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Theorem (A refined estimate, ALPT 2010)
Assume that N ≥ n. Then with probability at least 1− exp(−c

√
n) one

has ∥∥∥ 1
N

N∑
i=1

Xi ⊗ Xi − 1
∥∥∥
`2→`2

≤ C
√

n
N
.

Remark

Previous estimates (ALPT 2008) had an additional log(N/n) factor.



Remark

If 1√
N

ΓT is an almost isometry then obviously ‖Γ‖ ≤ C
√

N, so the KLS
question and the question about ‖Γ‖ are related.

It turns out that to answer KLS it is enough to have good bounds on

Am := sup
z∈SN−1
|supp z|≤m

|Γz|

Theorem (Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008))
If N ≤ exp(c

√
n) and the vectors Xi are log-concave then for t > 1,

with probability at least 1− exp(−ct
√

n),

∀m≤N Am ≤ Ct
(√

n +
√

m log
(2N

m

))
.

In particular, with high probability ‖Γ‖ ≤ C(
√

n +
√

N).
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Sketch of the proof

A modification of Bourgain’s approach. One approximates an arbitrary
vector z with |supp z| ≤ m by x0 + x1 + . . .+ xl (l < log2 m), where

|supp xi | ' m/2i , ‖xi‖∞ '
√

2i/m, i ≥ 1

|supp x0| ' m/2l , ‖x0‖∞ ≤ 1

and xi comes from a 2−i–net in the set of sparse vectors of support at
most m/2i .

Then using the ψ1 condition one shows that with high probability

A2
m . max

i
|Xi |2 + Am(

√
n +
√

m log(2N/m)).

Theorem (G. Paouris)

P(|Xi | ≥ Ct
√

n) ≤ exp(−ct
√

n)

Thus maxi |Xi | ≤ C
√

n with high probability and we can solve the
inequality for Am.
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Compressed sensing and neighbourly polytopes

Imagine we have a vector x ∈ RN (N large), which is supported on a
small number of coordinates (say |supp x| = m << N).

If we knew the support of x , to determine x it would be enough to take
m measurements along basis vectors.

What if we don’t know the support?

Answer (Donoho, Candes, Tao, Romberg) Take measurements in
random directions Y1, . . . ,Yn and set

x̂ = argmin {‖y‖1 : 〈Yi , y〉 = 〈Yi , x〉}
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Compressed sensing and neighbourly polytopes

Definition
A polytope K ⊆ Rn is called m-neighbourly if any set of vertices of K
of cardinality at most m + 1 is the vertex set of a face.

Theorem (Donoho)
Let Γ be an n × N matrix with columns X1, . . . ,XN . The following
conditions are equivalent

(i) For any x ∈ RN with |supp x | ≤ m, x is the unique solution of the
minimization problem

min ‖t‖1, Γt = Γx .

(ii) The polytope K (Γ) = conv(±X1, . . . ,±XN) has 2N vertices and is
m-symmetric-neighbourly.
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m-(symmetric)-neighbourly if any set of vertices of K of cardinality at
most m + 1 (containing no opposite pairs) is the vertex set of a face.
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Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candes, Tao))
For an n×N matrix Γ define the isometry constant δm = δm(Γ) as the
smallest number such that

(1− δm)|x |2 ≤ |Γx |2 ≤ (1 + δm)|x |2

for all m-sparse vectors x ∈ RN .

Theorem (Candes)

If δ2m(Γ) <
√

2− 1 then for every m-sparse x ∈ Rn, x is the unique
solution to

min ‖t‖1, Γt = Γx .

In consequence, the polytope K (Γ) (resp. K+(Γ) = conv(X1, . . . ,XN)) is
m-symmetric-neighbourly (resp. m-neighbourly)
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History

The following matrices satisfy RIP
Gaussian matrices (Candes, Tao), m ' n/log(2N/n)

Matrices with rows selected randomly from the Fourier matrix
(Candes & Tao, Rudelson & Vershynin), m ' n/log4(N)

Matrices with independent subgaussian isotropic rows
(Mendelson, Pajor, Tomczak-Jaegermann), m ' n/log(2N/n)

Matrices with independent log-concave isotropic columns (LPTA),
m ' n/log2(2N/n)



Neighbourly polytopes

Theorem (LPTA)
Assume that X ′i s are ψr . Let θ ∈ (0,1/4) and assume that

N ≤ exp(cθCnc) and m log2/r
(

2N
θm

)
≤ θ2n. Then, with probability at

least 1− exp(−cθCnc)

δm

( 1√
n

Γ
)
≤ θ.

Corollary (LPTA)
Let X1, . . . ,XN be random vectors drawn from an isotropic ψr
(r ∈ [1,2]) convex body in Rn. Then, for N ≤ exp(cnc), with probability
at least 1− exp(−cnc), the polytope K (Γ) (resp. K+(Γ)) is
m-symmetric-neighbourly (resp. m-neighbourly) with

m = bc n
log2/r (CN/n)

c.



Method of proof

We use the same approximation techniques as for the KLS problem to
bound

Bm = sup
|supp z|≤m, |z|=1

∣∣∣∣∣∣∑
i≤N

ziXi

∣∣∣2 −∑
i≤N

z2
i |Xi |2

∣∣∣1/2

Theorem (B. Klartag)

P
(

max
i≤N

∣∣∣∣ |Xi |2

n
− 1
∣∣∣∣ ≥ ε) ≤ C exp(−cεCnc).

Thus
δn(n−1/2Γ) ≤ n−1B2

m + ε

with overwhelming probability.



Smallest singular value

Definition
For an n × n matrix Γ let s1(Γ) ≥ s2(Γ) ≥ . . . ≥ sn(Γ) be the singular
values of Γ, i.e. eigenvalues of

√
ΓΓT . In particular

s1(Γ) = ‖A‖, sn(Γ) = inf
x∈Sn−1

|Γx | =
1

‖A−1‖

Theorem (Edelman, Szarek)
Let Γ be an n × n random matrix with independent N (0,1) entries. Let
sn denote the smallest singular values of Γ. Then, for every ε > 0,

P(sn(Γ) ≤ εn−1/2) ≤ Cε,

where C is a universal constant.



Theorem (Rudelson, Vershynin)
Let Γ be a random matrix with independent entries Xij , satisfying
EXij = 0, EX 2

ij = 1, ‖Xij‖ψ2 ≤ B. Then for any ε ∈ (0,1),

P(sn(Γ) ≤ εn−1/2) ≤ Cε+ cn,

where C > 0, c ∈ (0,1) depend only on B.

Theorem (Guédon, Litvak, Pajor, Tomczak-Jaegermann, R.A.)
Let Γ be an n × n random matrix with independent isotropic
log-concave rows. Then, for any ε ∈ (0,1),

P(sn(Γ) ≤ εn−1/2) ≤ Cε+ C exp(−cnc)

and
P(sn(Γ) ≤ εn−1/2) ≤ Cεn/(n+2) logC(2/ε).



Corollary
For any δ ∈ (0,1) there exists Cδ such that for any n and ε ∈ (0,1),

P(sn(Γ) ≤ εn−1/2) ≤ Cδε
1−δ.

Definition
For an n × n matrix Γ define the condition number κ(Γ) as

κ(Γ) = ‖Γ‖ · ‖Γ−1‖ =
s1(Γ)

sn(Γ)
.

Corollary
If Γ has independent isotropic log-concave columns, then for any
δ > 0, t > 0,

P(κ(Γ) ≥ nt) ≤ Cδ

t1−δ .



Definition
A random vector X = (X1, . . . ,XN) is unconditional if its distribution is
the same as that of (ε1X1, . . . , εNXN) for any choice of signs
ε1, . . . , εN ∈ {−1,1}.

Theorem (LPTA 2010)
Let A be an n × N matrix with independent log-concave isotropic
unconditional rows. Let θ ∈ (0,1) and assume that
m log2

(
2N
m

)
≤ θ2n. Then, with high probability,

δm

( 1√
n

A
)
≤ θ.

Tool: A comparison principle for norms of unconditional log-concave
vectors by Rafał Latała.
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Asymptotic spectral distribution, singular values

Definition
The empirical spectral distribution of a random n × n matrix A is the
random measure defined as

ν =
1
n

n∑
i=1

δλi ,

where λ1, . . . , λn are the eigenvalues of A and δx is the Dirac mass at
x .

Theorem (Marchenko-Pastur 1967)
Let An = (Xij)i≤Nn,j≤n, where Xij are i.i.d. mean zero variance one
random variables. If Nn/n→ y ∈ (0,∞) then the empirical spectral
distribution of 1

n AnAT
n converges almost surely to a non-random

measure depending only on y (the Marchenko-Pastur distribution with
parameter y).



Asymptotic spectral distribution, singular values

Definition
The empirical spectral distribution of a random n × n matrix A is the
random measure defined as

ν =
1
n

n∑
i=1

δλi ,

where λ1, . . . , λn are the eigenvalues of A and δx is the Dirac mass at
x .

Theorem (Pajor, Pastur 2007)
Let An be an Nn × n random matrix with independent log-concave
isotropic rows. If Nn/n→ y ∈ (0,∞), then the empirical spectral
distribution of 1

n AnAT
n converges almost surely to the

Marchenko-Pastur law with parameter y.



Asymptotic spectral distribution, eigenvalues

Theorem (Circular law (Tao-Vu 2008, Mehta, Girko, Bai ...))
Let An be an n × n matrix with i.i.d. mean zero, variance one entries.
Then the empirical spectral distribution of 1√

n An converges almost
surely to the uniform measure on the unit disc.

Theorem (Adamczak 2010)
Let An be an n × n matrix with independent log-concave isotropic
unconditional rows. Then the empirical spectral distribution of 1√

n An

converges almost surely to the uniform measure on the unit disc.



Asymptotic spectral distribution, eigenvalues

Theorem (Circular law (Tao-Vu 2008, Mehta, Girko, Bai ...))
Let An be an n × n matrix with i.i.d. mean zero, variance one entries.
Then the empirical spectral distribution of 1√

n An converges almost
surely to the uniform measure on the unit disc.

Theorem (Adamczak 2010)
Let An be an n × n matrix with independent log-concave isotropic
unconditional rows. Then the empirical spectral distribution of 1√

n An

converges almost surely to the uniform measure on the unit disc.



Thank you
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