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Isotropicity, the ¢, condition

@ A random vector X in R" is isotropic if

EX=0
and
EX® X =1d
or equivalently for all y € R”,
E(X,y)? =yl

@ X is v, (a € [1,2]) with constant C if for all y € R”,

X, ) Mlga < Clyl,

where
Y]l = inf{a> 0: Eexp((Y/a)*) < 2}
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Consequences

° EXP =", E(X e)?=n
@ Foranyy e S"'andt >0,

P([{X, y)| = 1) < 2exp(-(t/C)").

For every random vector X not supported on any n — 1 dimensional
hyperplane, there exists an affine map T: R" — R" such that TX is

isotropic.

If for a set K C R" the random vector distributed uniformly on K is
isotropic, we say that K is isotropic.



Log-concavity

A random vector X in R" is log-concave if its law p satisfies a
Brunn-Minkowski type inequality

(A + (1 - 0)B) > u(A)’ u(B)' .

Theorem (Borell)

A random vector not supported on any (n — 1) dimensional hyperplane
is log-concave iff it has density of the form exp(—V/(x)), where
V:R" — (—o0, ] is convex.

Lemma (Borell)

An isotropic log-concave random vector is 1y with a universal constant
C.

v




The following distributions are log-concave:
@ Gaussian measures
@ Uniform distributions on convex bodies
@ Measures with density of the form Cexp(—||x||), where || x| is a
norm.

@ Products, affine images and convolutions of the above
distributions.
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The basic model

Definition

Let I be an n x N matrix with columns Xj, ..., Xy, where Xj’s are
independent isotropic log-concave random vectors in R"

Questions

@ What is the operator norm of I': /5 — ¢4?

@ Whenis I'7 close to a multiple of isometry?

@ How does I' (') act on sparse vectors?

@ What is the smallest singular value of I'?

@ What is the distribution of singular values /eigenvalues of '?
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Motivations: sampling convex bodies

Problem

Let K C R" be a convex body, s.t. B] C K C RBj. Assume we have
access to an oracle (a black box), which given x € R” tells us whether
x € K.

How to generate random points uniformly distributed in K?
How to compute the volume of K?

@ This can be done by using Markov chains.

@ Their speed of convergence depends on the position of the
convex body.

@ Preprocessing: First put K in the isotropic position (again by
randomized algorithms).
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@ Centering the body is not comp. difficult — takes O(n) steps.
@ The question boils down to:

How to approximate the covariance matrix of X - uniformly
distributed on K by the empirical covariance matrix

1N
N > Xi® X
i=1
or (after a linear transformation)
Given an isotropic convex body in R", how large N should we take

so that

<e
Ly—Lp

1 N
oo

with high probability?
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Interpretation in terms of I'.

We have

= sup

1 N
N2 1]
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So the (geometric) question is

Let I' be a matrix with independent columns Xj, ..., Xy drawn from an
isotropic convex body (log-concave measure) in R”.

How large should N be so that N=1/21T: R” — RN was an almost
isometry?



History of the problem

@ Kannan, Lovasz, Simonovits (1995) — N = (’)(nz)

@ Bourgain (1996) — N = O(nlog® n)

@ Rudelson (1999) — N = O(nlog? n)
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History of the problem

@ Kannan, Lovasz, Simonovits (1995) — N = O(n?)

@ Bourgain (1996) — N = O(nlog® n)

@ Rudelson (1999) — N = O(nlog? n)

@ Giannopoulos, Hartzoulaki, Tsolomitis (2005) — unconditional

bodies: N = O(nlog n)

@ Aubrun (2006) — unconditional bodies: N = O(n)

@ Paouris (2006) — N = O(nlog n)

@ Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008) — N = O(n)
For arbitrary isotropic random vectors, if you do not assume any
uniform bound on (X;, y), y € S"~', you cannot remove the logarithm
(the optimal bound N = O(nlog” n) is due to M. Rudelson). Recently

N = O(nloglog n) was proven under a uniform bound on (4 + ¢)-th
moments of (X, y) (R. Vershynin).



Theorem (A refined estimate, ALPT 2010)

Assume that N > n. Then with probability at least 1 — exp(—c+/n) one

has
'n
< —.
lo—sly © N

1 N
[w2oxex-1
i—1

Remark

Previous estimates (ALPT 2008) had an additional log(N/n) factor.
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Remark

If ﬁrT is an almost isometry then obviously ||| < CV/N, so the KLS
question and the question about ||I'|| are related.

It turns out that to answer KLS it is enough to have good bounds on

Am:= sup [I'Z|
zesN—1
[supp z|<m

Theorem (Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008))

If N < exp(cy/n) and the vectors X; are log-concave then fort > 1,
with probability at least 1 — exp(—ct\/n),

Vm<n Am < Ct(ﬁ"ﬁ‘ \/EIOQ <2nl;l>>

In particular, with high probability ||| < C(v/n+ v/'N).
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Sketch of the proof

A modification of Bourgain’s approach. One approximates an arbitrary
vector z with [supp z| < mby xo + x4 + ...+ X (I < log, m), where

Isupp X;| ~ m/2", ||Xillco ~ 1/2//m, i >1
|supp Xo| =~ m/2', ||Xo/lc0 < 1

and x; comes from a 2-/'—net in the set of sparse vectors of support at
most m/2'.
Then using the ¢y condition one shows that with high probability

A < max | Xi|? + An(vV/n + V/mlog(2N/m)).

Theorem (G. Paouris)

P(|X/| > Ctv/n) < exp(—ctV/n)

Thus max; | Xj| < C+/n with high probability and we can solve the
inequality for Ap.
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Compressed sensing and neighbourly polytopes

Imagine we have a vector x € RN (N large), which is supported on a
small number of coordinates (say |supp x| = m << N).

If we knew the support of x, to determine x it would be enough to take
m measurements along basis vectors.

What if we don’t know the support?

Answer (Donoho, Candes, Tao, Romberg) Take measurements in
random directions Y, ..., Y, and set

X = argmin {||y|[1: (Yi,y) = (¥, x)}
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A polytope K C R" s called m-neighbourly if any set of vertices of K
of cardinality at most m + 1 is the vertex set of a face.
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Compressed sensing and neighbourly polytopes

Definition

A (centraly symetric) polytope K C R" is called
m-(symmetric)-neighbourly if any set of vertices of K of cardinality at
most m+ 1 (containing no opposite pairs) is the vertex set of a face.

v

Theorem (Donoho)

LetT be an n x N matrix with columns Xy, ..., Xy. The following
conditions are equivalent

(i) Forany x € RN with |supp x| < m, x is the unique solution of the
minimization problem

min|t|ly, Tt=Tx.

(i) The polytope K(I') = conv(£Xi,...,£Xn) has 2N vertices and is
m-symmetric-neighbourly.




Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candes, Tao))

For an n x N matrix I define the isometry constant ¢, = d»(I') as the
smallest number such that

(1 = 8m)[x[? < [Tx2 < (1 + 6m)|x[?

for all m-sparse vectors x € RN,




Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candes, Tao))

For an n x N matrix I define the isometry constant ¢, = d»(I') as the
smallest number such that

(1 = 8m)Ix|? < [T < (1 + 6m)[x|?

for all m-sparse vectors x € RN,

Theorem (Candes)

If om(T) < /2 — 1 then for every m-sparse x € R", x is the unique
solution to
min||t|y, Tt=Tx.

In consequence, the polytope K(T') (resp. K (I') = conv(Xj,...,Xyn)) is
m-symmetric-neighbourly (resp. m-neighbourly)

v




The following matrices satisfy RIP
@ Gaussian matrices (Candes, Tao), m ~ n/log(2N/n)

@ Matrices with rows selected randomly from the Fourier matrix
(Candes & Tao, Rudelson & Vershynin), m ~ n/log*(N)

@ Matrices with independent subgaussian |sotrop|c rows
(Mendelson, Pajor, Tomczak-Jaegermann), m ~ n/log(2N/n)

@ Matrices with independent log-concave |sotrop|c columns (LPTA),
m ~ n/log?(2N/n)



Neighbourly polytopes

Theorem (LPTA)

Assume that Xis are ¢,. Let§ € (0,1/4) and assume that

N < exp(cOCnC) and mlogz/ r (%) < #2n. Then, with probability at
least 1 — exp(—cH°n°)

5m<%r) <.

Corollary (LPTA)

Let X1, ..., Xy be random vectors drawn from an isotropic 1,

(r € [1,2]) convex body in R". Then, for N < exp(cn°®), with probability
at least 1 — exp(—cn°©), the polytope K(I') (resp. K (I')) is
m-symmetric-neighbourly (resp. m-neighbourly) with

n

"= g (o)

A\




Method of proof

We use the same approximation techniques as for the KLS problem to

bound iy
Bm: HZZI _2212|X1|2‘

|supp z\<m |z|=1 i<N

Theorem (B. Klartag)

2
P(max 1Xil
i<N

o 1' )<Cexp( c=Cne).

Thus
Sn(n~ 121y < n B2 + ¢

with overwhelming probability.



Smallest singular value

Foran n x n matrixT let s1(I') > so(I') > ... > sp(I") be the singular
values of T, i.e. eigenvalues of VI TT. In particular

1

s1(F) = [|A[l, sn(F) = XeigL ITx| = AT

Theorem (Edelman, Szarek)

LetT be an n x n random matrix with independent N'(0, 1) entries. Let
Sp denote the smallest singular values of I'. Then, for every ¢ > 0,

P(sp(T") < en™'/?) < Ce,

where C is a universal constant.




Theorem (Rudelson, Vershynin)

LetT be a random matrix with independent entries Xj;, satisfying
EXj =0, EX? =1, || Xjlly, < B. Then forany < € (0,1),

P(sn(F) < en'/2) < Ce + ¢",

where C > 0,c € (0,1) depend only on B.

Theorem (Guédon, Litvak, Pajor, Tomczak-Jaegermann, R.A.)

LetT be an n x n random matrix with independent isotropic
log-concave rows. Then, for any e € (0, 1),

P(sp(T) < en~'/2) < Ce + Cexp(—cn®)

and
P(sn(l) < en1/2) < Ce™ (M2 10gC(2/e).




Corollary

For any § € (0,1) there exists Cs such that for any nande € (0, 1),

P(sp(F) < en~'/2) < Cse' 2.

Definition
For an n x n matrix I define the condition number (') as

s1(I)
sn(F)

| A\

(D) =Tl Ir ) =

'

IfT has independent isotropic log-concave columns, then for any
0>0,t>0,

P(k(T) > nt) < —2
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Definition

A random vector X = (Xj, ..., Xy) is unconditional if its distribution is
the same as that of (¢1Xj,...,enXy) for any choice of signs

E1,...,en € {—1,1}.

Theorem (LPTA 2010)

Let A be an n x N matrix with independent log-concave isotropic
unconditional rows. Letd € (0,1) and assume that

mlog? <2N ) < #2n. Then, with high probability,

5m<\1MA) < 9.

Tool: A comparison principle for norms of unconditional log-concave
vectors by Rafat Latata.




Asymptotic spectral distribution, singular values

The empirical spectral distribution of a random n x n matrix A is the
random measure defined as

1 n
v=1 0
i=1

where A1, ..., A\, are the eigenvalues of A and dy is the Dirac mass at
X.

Theorem (Marchenko-Pastur 1967)

Let Ap = (Xj)i<n,,j<n, Where Xj; are i.i.d. mean zero variance one
random variables. If N,/n — y € (0, 00) then the empirical spectral
distribution of %AnA,f converges almost surely to a non-random
measure depending only on y (the Marchenko-Pastur distribution with
parametery).




Asymptotic spectral distribution, singular values

Definition
The empirical spectral distribution of a random n x n matrix A is the
random measure defined as

1 n
V= Z(S,\,,
i=1

where \q, ..., \, are the eigenvalues of A and dy is the Dirac mass at
X.

Theorem (Pajor, Pastur 2007)

Let A, be an N, x n random matrix with independent log-concave
isotropic rows. If N,/n — y € (0,0), then the empirical spectral
distribution of 1EA,,A,I converges almost surely to the
Marchenko-Pastur law with parameter y.




Asymptotic spectral distribution, eigenvalues

Theorem (Circular law (Tao-Vu 2008, Mehta, Girko, Bai ...))

Let A, be an n x n matrix with i.i.d. mean zero, variance one entries.
Then the empirical spectral distribution of LnAn converges almost
surely to the uniform measure on the unit disc.




Asymptotic spectral distribution, eigenvalues

Theorem (Circular law (Tao-Vu 2008, Mehta, Girko, Bai ...))

Let A, be an n x n matrix with i.i.d. mean zero, variance one entries.
Then the empirical spectral distribution of fAn converges almost

surely to the uniform measure on the unit disc.

Theorem (Adamczak 2010)

Let A, be an n x n matrix with independent log-concave isotropic
unconditional rows. Then the empirical spectral distribution of fAn

converges almost surely to the uniform measure on the unit disc.




Thank you
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