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Selecting landmarks from an image or object:

To reduce the high dimensionality of an image, it is often useful to
summarize important features using landmarks.

Landmark analysis of images is a type of vectorization.

Salient features of d-dimensional images are encoded as vectors in
R

n×d where n is the number of landmarks.

Landmarks can be chosen by an expert or by a simple heuristic
procedure.

Christopher G. Small (University of Waterloo) Anaysis in shape spaces June 9, 2011 4 / 46



By an expert .................
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Figure: Seven landmarks from an orthodontics study
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Figure: Landmarks for cervical gorilla vertebra (GGG & GGB)
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By a simple heuristic procedure ...........
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Figure: Iron Age brooch shapes encoded with 4 landmarks
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The aim of such a landmark analysis is

to cluster images into groups,

to perform a discriminant analysis when images are classified by some
variable (training),

to test an hypothesis concerning two or more groups of images.
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Figure: GGB cervical vertebrae

Figure: GGG cervical vertebrae
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Let
Xi = (Xi1, . . . Xid) i = 1, . . . , n .
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The configuration matrix

Let
Xi = (Xi1, . . . Xid) i = 1, . . . , n .

denote the n landmarks in R
d .

We can arrange these vectors into a matrix of coordinates for all
landmarks as follows.

Definition

The configuration matrix is defined as

X = (Xij), i = 1, . . . , n; j = 1, . . . , d .
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Invariance to choice of coordinate system

In many configuration matrices we are not concerned with
information about the location and orientation of the configuration.

So the statistical methods should be invariant under any common
transformation of the landmarks by an isometry of R

d .

Definition

Two n × d configuration matrices

(Xij) =




X1
...

Xn


 and (Yij) =




Y1
...

Yn




are said to have the same size and shape if there is some isometry
τ : R

d → R
d such that Yi = τ(Xi) for all i = 1, . . . , n.
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Size and shape class of X

When n × d matrices X and Y have the same size and shape we
write X ∼ Y .

Then ∼ defines an equivalence relation on the set of all configuration
matrices.

We write the equivalence class of all configuration matrices Y with
the same size and shape as X as s(X ).

Equivalently,
s(X ) = {Y : X ∼ Y }.
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Goodall and Mardia (1992), Goodall and Mardia (1993) proposed a
representation of the size and shape of landmark cofigurations using lower
triangular matrices and the QR-factorization.........

Christopher G. Small (University of Waterloo) Anaysis in shape spaces June 9, 2011 18 / 46



Removing location

Christopher G. Small (University of Waterloo) Anaysis in shape spaces June 9, 2011 19 / 46



Removing location

Assume that the landmarks are in general position. That is, no three
landmarks lie on a straight line, no four in some common plane, ...,
subset of m lies in some common (m − 2)-flat.
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Assume that the landmarks are in general position. That is, no three
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To remove location we choose the coordinate system so that one of
the landmarks (say X1) is at the origin. Equivalently we can subtract
the first row of X from all other n − 1 rows.
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Removing location

Assume that the landmarks are in general position. That is, no three
landmarks lie on a straight line, no four in some common plane, ...,
subset of m lies in some common (m − 2)-flat.

To remove location we choose the coordinate system so that one of
the landmarks (say X1) is at the origin. Equivalently we can subtract
the first row of X from all other n − 1 rows.

We then delete the first row, yielding the (n − 1) × d matrix

X̃ = (Xij − X1j); i = 2, · · · n; j = 1, . . . , d .

called the pre-size-and-shape matrix.
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Next, we must remove orientation information from X̃ .

We perform a QR-factorization on X̃ so that

X̃ = s(X ) Γ(X ) .

where Γ(X ) is a d × d special orthogonal matrix and s(X ) is an
(n − 1) × d lower triangular matrix.
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Removing orientation:

Next, we must remove orientation information from X̃ .

We perform a QR-factorization on X̃ so that

X̃ = s(X ) Γ(X ) .

where Γ(X ) is a d × d special orthogonal matrix and s(X ) is an
(n − 1) × d lower triangular matrix.

The matrix s(X ) is a coordinate representation of the size and shape
of X .
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Goodall-Mardia coordinates for size and shape

s(X ) =




F11 0 0 · · · 0
F21 F22 0 · · · 0
F31 F32 F33 · · · 0
...

...
...

. . .
...

Fd1 Fd2 Fd3 · · · Fdd

...
...

...
...

...
F(n−1)1 F(n−1)2 F(n−1)3 · · · F(n−1)d




where F11, . . . ,F(d−1)(d−1) > 0.
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For three landmarks in R
2
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For four landmarks in R
3
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Goodall-Mardia coordinates for shape

To eliminate size, so that only shape information remains, we scale the
elements of the size and shape matrix so that σij = Fij/F11. This gives us
the shape matrix

σ(X ) =




1 0 0 · · · 0
σ21 σ22 0 · · · 0
σ31 σ32 σ33 · · · 0
...

...
...

. . .
...

σd1 σd2 σd3 · · · σdd

...
...

...
...

...
σ(n−1)1 σ(n−1)2 σ(n−1)3 · · · σ(n−1)d




where again σ22, . . . , σ(d−1)(d−1) > 0.
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Advantages of Goodall-Mardia coordinates:
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Advantages of Goodall-Mardia coordinates:

Goodall-Mardia coordinates provide a simple recipe for representing
landmark shapes as multivariate data.

While the coordinates are represented in lower triangular matrix form,
they may be encoded as vectors in standard statistical packages such
as R, etc.

The statistician who wishes to analyse shapes can calculate these
coordinates and apply standard multivariate procedures. (While
standard distribution assumptions will not hold for the coordinates,
they are never realised in practice anyway.)
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Problems with Goodall-Mardia coordinates:
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Problems with Goodall-Mardia coordinates:

The QR-factorization is not symmetric in the landmark labels. That
is, if the landmarks are labelled in different order the shape matrix
undergoes a transformation.
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Problems with Goodall-Mardia coordinates:

The QR-factorization is not symmetric in the landmark labels. That
is, if the landmarks are labelled in different order the shape matrix
undergoes a transformation.

So statistical inference will depend upon arbitrary labelling of vertices.

For example, suppose X (1), . . . ,X (k) are k configurations each of n

landmarks in R
d , and let π

(
X (1)

)
, . . . , π

(
X (k)

)
be row-permuted

(i.e., relabelled) versions of the original configurations.
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(
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Problems with Goodall-Mardia coordinates:

The QR-factorization is not symmetric in the landmark labels. That
is, if the landmarks are labelled in different order the shape matrix
undergoes a transformation.

So statistical inference will depend upon arbitrary labelling of vertices.

For example, suppose X (1), . . . ,X (k) are k configurations each of n

landmarks in R
d , and let π

(
X (1)

)
, . . . , π

(
X (k)

)
be row-permuted

(i.e., relabelled) versions of the original configurations.

Then there is no simple affine relationship between the two sets of
shapes

σ
(
X (1)

)
, . . . , σ

(
X (k)

)
and σ

(
π(X (1))

)
, . . . , σ

(
π(X (k))

)
.

A statistician using the former may reach different conclusions from a
statistician using the latter.

Christopher G. Small (University of Waterloo) Anaysis in shape spaces June 9, 2011 26 / 46



Outline

1 Landmark analysis

2 Size and shape coordinates
The configuration of landmarks
Goodall-Mardia coordinates
Kendall shape coordinates

3 Statistical analysis of size and shape
A quick two-sample test for shape differences

4 References



In 1986, David G. Kendall proposed a coordinatisation of size and shape
based upon procrustes fitting. This is the approach to shape analysis taken
in Small (1996, 2011), Dryden and Mardia (1998), Kendall et al. (1999)
.....
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By a scale variable of order p we mean
◮ a nonnegative function of size-and-shape: λ(X ) = λ [ s(X ) ],
◮ which is homogeneous of order p: λ [ s(c X ) ] = cp λ [ s(X ) ] for all

c ∈ R+ .

So when λ > 0,
s(X ) = {σ(X ), λ(X ) } ,

and when λ = 0
s(X ) = ⋆

the shape is degenerate.

We write size and shape space as

SΣn
d =

(
Σn

d × R
+
)
∪ {⋆}.
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of coincident landmarks
degenerate configuration

shape

size

Figure: Schematic diagram of size-and-shape space
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Kendall geometry of size-and-shape space

To make the Kendall geometry explicit we need to put metrics on
shape space Σn

d and size-and-shape space SΣn
d .
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d by setting

ρ (s(X ), s(Y )) = min {||X − Z || : s(Z ) = s(Y )} .

Warning: this is not geodesic distance!
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We use a matching metric on SΣn
d by setting

ρ (s(X ), s(Y )) = min {||X − Z || : s(Z ) = s(Y )} .

Warning: this is not geodesic distance!

As a scale variable, we choose

λ(X ) = min
τ

{||τ(X )||2 : τ isometry}

using the Frobenius norm || ||. Note: this is simply the trace of the
landmark covariance matrix.
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We use a matching metric on SΣn
d by setting

ρ (s(X ), s(Y )) = min {||X − Z || : s(Z ) = s(Y )} .
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As a scale variable, we choose

λ(X ) = min
τ

{||τ(X )||2 : τ isometry}

using the Frobenius norm || ||. Note: this is simply the trace of the
landmark covariance matrix.

Σn
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Kendall geometry of size-and-shape space

To make the Kendall geometry explicit we need to put metrics on
shape space Σn

d and size-and-shape space SΣn
d .

We use a matching metric on SΣn
d by setting

ρ (s(X ), s(Y )) = min {||X − Z || : s(Z ) = s(Y )} .

Warning: this is not geodesic distance!

As a scale variable, we choose

λ(X ) = min
τ

{||τ(X )||2 : τ isometry}

using the Frobenius norm || ||. Note: this is simply the trace of the
landmark covariance matrix.

Σn
d = SΣn

d ∩ {λ = 1} .

The shape space Σn
d inherits its metric as a subspace of SΣn

d .
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Figure: Shape space Σ3
2 of triangle shapes in 2D
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(one circle of three shown)
isosceles triangles

circle of collinear triangles

321
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Figure: Shape space Σ3
2 again. A line of “longitude” corresponding to isosceles

triangle shapes (top). The “equator” of collinear triangle shapes (bottom).
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How do we conduct a statistical analysis of size and shape?

We will consider two ways ..............
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In Goodall-Mardia coordinates, we encode size and shape as vectors
(vectorized matrices) and apply standard multivariate methods.
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MANOVA → Analysis of geodesic dispersion

◮ The advantages of this are that the conclusions of such and analysis
are not influenced by artificial coordinate systems designed to “make”
the data multivariate.
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In Goodall-Mardia coordinates, we encode size and shape as vectors
(vectorized matrices) and apply standard multivariate methods.

◮ However, as discussed earlier, this distorts the nonlinear geometry of
shape.

In Kendall geometry, we look for analogs of various multivariate
statistical tools appropriate for the geometry of the manifold, E.g.,

Euclidean distance → Matching distance/Geodesic distance

Centroid → Frechet mean

MANOVA → Analysis of geodesic dispersion

◮ The advantages of this are that the conclusions of such and analysis
are not influenced by artificial coordinate systems designed to “make”
the data multivariate.

◮ The disadvantage of this is that an analog of a multivariate method
may not be obviously available, or there may be many different analogs
of one multivariate method.
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Gorilla gorilla gorilla

Gorilla gorilla beringei

Testing for shape differences in cervical vertebrae of two gorilla subspecies
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We consider the shapes of the fifth cervical vertebrae of two
subspecies of gorilla: G. g. gorilla and G. g. beringei.

Figure: GGB cervical vertebrae (left), GGG cervical vertebrae (right)
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We consider the shapes of the fifth cervical vertebrae of two
subspecies of gorilla: G. g. gorilla and G. g. beringei.

Figure: GGB cervical vertebrae (left), GGG cervical vertebrae (right)

The most prominent shape differences between the two subspecies are
to be seen in the vertex angle at the “top” of the configuration of
landmarks: this angle is smaller for GGG than for GGB.
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We consider the shapes of the fifth cervical vertebrae of two
subspecies of gorilla: G. g. gorilla and G. g. beringei.

Figure: GGB cervical vertebrae (left), GGG cervical vertebrae (right)

The most prominent shape differences between the two subspecies are
to be seen in the vertex angle at the “top” of the configuration of
landmarks: this angle is smaller for GGG than for GGB.

But is this apparent difference significant? Secondly, which landmarks
contribute most to the observed shape differences? Here, we shall
only address the first question. See Albert, Le & Small (2003) for
more on the second question.
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We test

H0 : L (σ
GGG

) = L (σ
GGB

)

versus

H1 : L (σ
GGG

) 6= L (σ
GGB

)

where σ ∈ Σ7
2 is a random shape from the respective population.
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We test

H0 : L (σ
GGG

) = L (σ
GGB

)

versus

H1 : L (σ
GGG

) 6= L (σ
GGB

)

where σ ∈ Σ7
2 is a random shape from the respective population.

We shall assume that any differences in shape between GGG and GGB
are due to a shift in Frechet mean, and that the geodesic dispersions
of the two populations are roughly equal.
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Samples:
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Samples:
◮ GGG: σ1,1, σ1,2, . . . , σ1,10

◮ GGB: σ2,1, σ2,2, . . . , σ2,7
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Samples:
◮ GGG: σ1,1, σ1,2, . . . , σ1,10

◮ GGB: σ2,1, σ2,2, . . . , σ2,7

Proposed test statistic

T =

∑10
j=1

∑7
k=1 ρ2(σ1j , σ2k)

∑9
j=1

∑10
k=j+1 ρ2(σ1j , σ1k) +

∑6
j=1

∑7
k=j+1 ρ2(σ2j , σ2k)

where ρ(σ , τ) is the geodesic distance in Σ7
2 which is the

Fubini-Study metric on the complex projective space Σ7
2
∼= CP5(4).
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To approximate the distribution of the statistic T under H0 we can
use a permutation test.
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To approximate the distribution of the statistic T under H0 we can
use a permutation test.

Shuffle the 10+7=17 shapes into random order:

Π : {1, 2, . . . , 17} → {1, 2, . . . , 17} ,

where Π is a random permutation of 1, 2, ... , 17. then partition the
shuffled 17 shapes into two new groups:

σ∗

1,1, . . . , σ∗

1,10 ; σ∗

2,1, . . . , σ∗

2,7 .
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To approximate the distribution of the statistic T under H0 we can
use a permutation test.

Shuffle the 10+7=17 shapes into random order:

Π : {1, 2, . . . , 17} → {1, 2, . . . , 17} ,

where Π is a random permutation of 1, 2, ... , 17. then partition the
shuffled 17 shapes into two new groups:

σ∗

1,1, . . . , σ∗

1,10 ; σ∗

2,1, . . . , σ∗

2,7 .

We computed the test statistic T ∗, iterated 10000 times, and
computed the number of times out of 10000 that T ∗ > T .
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To approximate the distribution of the statistic T under H0 we can
use a permutation test.

Shuffle the 10+7=17 shapes into random order:

Π : {1, 2, . . . , 17} → {1, 2, . . . , 17} ,

where Π is a random permutation of 1, 2, ... , 17. then partition the
shuffled 17 shapes into two new groups:

σ∗

1,1, . . . , σ∗

1,10 ; σ∗

2,1, . . . , σ∗

2,7 .

We computed the test statistic T ∗, iterated 10000 times, and
computed the number of times out of 10000 that T ∗ > T .

For the given data, we found only this to be true in only 0.07 % of
cases!!!
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A more detailed analysis – see Albert, Le & Small (2003) – shows that two
landmarks are particularly responsible for most of the between sample
shape variation.
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Thank you

Christopher G. Small (University of Waterloo) Anaysis in shape spaces June 9, 2011 46 / 46


	Landmark analysis
	Size and shape coordinates
	The configuration of landmarks
	Goodall-Mardia coordinates
	Kendall shape coordinates

	Statistical analysis of size and shape
	A quick two-sample test for shape differences

	References

