Cyclicity one elliptic islands in the Standard family

Jacopo De Simoi Università di Roma Tor Vergata

Workshop on Instabilities in Hamiltonian Systems Fields institute, Toronto

16.06.2011

Definition (Chirikov-Taylor standard family of maps)

Let
$$\mathbb{T} = \mathbb{R}/\mathbb{Z}$$
, $\kappa \in \mathbb{R}^+$, $\phi(x) = 2\pi^{-1}\sin(2\pi x)$; define $f_{\kappa}: \mathbb{T}^2 \to \mathbb{T}^2$

$$f_{\kappa}: (x,y) \mapsto (y, -x + 2y + \kappa \dot{\phi}(y)) \mod \mathbb{Z}^2$$

Definition (Chirikov-Taylor standard family of maps)

Let
$$\mathbb{T} = \mathbb{R}/\mathbb{Z}$$
, $\kappa \in \mathbb{R}^+$, $\phi(x) = 2\pi^{-1}\sin(2\pi x)$; define $f_{\kappa}: \mathbb{T}^2 \to \mathbb{T}^2$

$$f_{\kappa}: (x,y) \mapsto (y, -x + 2y + \kappa \dot{\phi}(y)) \mod \mathbb{Z}^2$$

 f_{κ} is a symplectic reversible exact twist diffeomorphism.

Definition (Chirikov-Taylor standard family of maps)

Let
$$\mathbb{T} = \mathbb{R}/\mathbb{Z}$$
, $\kappa \in \mathbb{R}^+$, $\phi(x) = 2\pi^{-1}\sin(2\pi x)$; define $f_{\kappa}: \mathbb{T}^2 \to \mathbb{T}^2$

$$f_{\kappa}:(x,y)\mapsto (y,-x+2y+\kappa\dot{\phi}(y))\mod\mathbb{Z}^2$$

 f_{κ} is a symplectic reversible exact twist diffeomorphism.

Definition (Chirikov-Taylor standard family of maps)

Let
$$\mathbb{T}=\mathbb{R}/\mathbb{Z}, \, \kappa\in\mathbb{R}^+, \, \phi(x)=2\pi^{-1}\sin(2\pi x);$$
 define $f_\kappa:\mathbb{T}^2\to\mathbb{T}^2$

$$f_{\kappa}: (x,y) \mapsto (y, -x + 2y + \kappa \dot{\phi}(y)) \mod \mathbb{Z}^2$$

 f_{κ} is a symplectic reversible exact twist diffeomorphism.

 $\kappa \sim 1$

 $\kappa \gg 1$

Question

Is $\mathcal{C} = \{\kappa \in \mathbb{R}^+ \text{ s.t. } f_\kappa \text{ is ergodic}\} \neq \emptyset$?

Question

Is
$$\mathcal{C} = \{ \kappa \in \mathbb{R}^+ \text{ s.t. } f_{\kappa} \text{ is ergodic} \} \neq \emptyset ?$$

Conjecture (Carleson · 1991):

$$\lim_{n\to\infty} \operatorname{Leb}(\{\kappa\in\mathbb{R}^+ \text{ s.t. } f_\kappa \text{ has no elliptic islands}\}\cap [n,n+1])=1$$

Question

Is
$$\mathcal{C} = \{ \kappa \in \mathbb{R}^+ \text{ s.t. } f_{\kappa} \text{ is ergodic} \} \neq \emptyset ?$$

Conjecture (Carleson · 1991):

$$\lim_{n\to\infty} \mathrm{Leb}(\{\kappa\in\mathbb{R}^+ \text{ s.t. } f_\kappa \text{ has no elliptic islands}\}\cap [n,n+1]) = 1$$

Question (Sinai·1994)

Let $\mathcal{C}^* = \{\kappa \text{ s.t. } h_{\mathsf{Leb}}(f_{\kappa}) > 0\}$; does any of the following hold?

$$\mathcal{C}^* = \mathbb{R} \setminus \{0\}$$
 Leb $\mathcal{C}^* > 0$ $\mathcal{C}^* \neq \emptyset$

By Pesin theory we know that if $h_{Leb}(f_{\kappa}) > 0$, there exist positive measure invariant sets on which f_{κ} is ergodic (*stochastic sea*)

Some related previous results

Theorem (Duarte-1994)

There exists $\kappa_0 > 0$ and a residual set of parameters $\mathfrak{M}^D \subset [\kappa_0, \infty)$ s.t. if $\kappa \in \mathfrak{M}^D$, then f_{κ} has infinitely many elliptic periodic points accumulating on a locally maximal hyperbolic set that fills the torus as $\kappa \to \infty$

Some related previous results

Theorem (Duarte-1994)

There exists $\kappa_0 > 0$ and a residual set of parameters $\mathbb{M}^D \subset [\kappa_0, \infty)$ s.t. if $\kappa \in \mathbb{M}^D$, then f_{κ} has infinitely many elliptic periodic points accumulating on a locally maximal hyperbolic set that fills the torus as $\kappa \to \infty$

Theorem (Gorodetksi-2010)

There exists $\kappa_0 > 0$ and a residual set of parameters $\mathcal{M}^G \subset [\kappa_0, \infty)$ s.t. if $\kappa \in \mathcal{M}^G$, then the stochastic sea of f_{κ} has full Hausdorff dimension

Main results

Theorem (2011)

There exists $\kappa_0 > 0$ and a dense set of parameters $\mathfrak{M} \subset [\kappa_0, \infty)$ of Hausdorff dimension larger than ¼ such that if $\kappa \in \mathfrak{M}$, then f_{κ} has infinitely many elliptic islands whose centers accumulate on a locally maximal hyperbolic set that fills the torus as $\kappa \to \infty$

Main results

Theorem (2011)

There exists $\kappa_0 > 0$ and a dense set of parameters $\mathfrak{M} \subset [\kappa_0, \infty)$ of Hausdorff dimension larger than 4 such that if $\kappa \in \mathfrak{M}$, then f_{κ} has infinitely many cyclicity 1 elliptic islands whose centers accumulate on a locally maximal hyperbolic set that fills the torus as $\kappa \to \infty$

Theorem (2011)

There exists a $\kappa_0>0$ such that for almost every $\kappa\geq\kappa_0$ the standard map f_κ has only finitely many cyclicity 1 elliptic islands

Basic observation

For large κ there exists a set $\mathbf{C}_{\kappa} \subset \mathbb{T}^2$ and cone fields $\mathscr{C}_{\kappa}^{\mathsf{u,s}}$ such that

$$\forall\, p\in\mathbb{T}^2\setminus\mathbf{C}_\kappa\quad f_{\kappa*}\mathscr{C}^\mathsf{u}_\kappa|_p\subset\mathscr{C}^\mathsf{u}_\kappa|_{f_\kappa p}\quad f_\kappa^*\mathscr{C}^\mathsf{s}_\kappa|_p\subset\mathscr{C}^\mathsf{s}_\kappa|_{f_\kappa^{-1}p}$$

Basic observation

For large κ there exists a set $\mathbf{C}_{\kappa}\subset\mathbb{T}^2$ and cone fields $\mathscr{C}^{\mathsf{u,s}}_{\kappa}$ such that

$$\forall\,p\in\mathbb{T}^2\setminus\mathbf{C}_\kappa\quad f_{\kappa*}\mathscr{C}^\mathsf{u}_\kappa|_p\subset\mathscr{C}^\mathsf{u}_\kappa|_{f_\kappa p}\quad f_\kappa^*\mathscr{C}^\mathsf{s}_\kappa|_p\subset\mathscr{C}^\mathsf{s}_\kappa|_{f_\kappa^{-1}p}$$

Definition (κ -adapted slope field)

 $h:\mathbb{T}^2\to\mathbb{RP}$ smooth such that diffeomorphisms transform κh as the slope of a vector field. In particular:

$$f_{\kappa_*}h = h_1 - \frac{1}{\kappa^2 h \circ f_{\kappa}^{-1}} \qquad f_{\kappa}^* h = h_{-1} + \frac{1}{\kappa^2 [h_1 - h] \circ f_{\kappa}}$$
$$h_1(x, y) = \ddot{\phi}(x) + 2\kappa^{-1} \qquad h_{-1}(x, y) = 0$$

Definition (κ -adapted slope field)

 $h:\mathbb{T}^2\to\mathbb{RP}$ smooth such that diffeomorphisms transform κh as the slope of a vector field. In particular:

$$f_{\kappa_*}h = h_1 - \frac{1}{\kappa^2 h \circ f_{\kappa}^{-1}} \qquad f_{\kappa}^* h = h_{-1} + \frac{1}{\kappa^2 [h_1 - h] \circ f_{\kappa}}$$
$$h_1(x, y) = \ddot{\phi}(x) + 2\kappa^{-1} \qquad h_{-1}(x, y) = 0$$

Fix
$$\alpha \in (\mbox{$\!\!\!/$},1)$$
 and $\tau \in \mathbb{R}^+,$ then there exist $C^{\,\mbox{u,s}}$ s.t.:

$$\begin{split} \mathbf{C}_{\kappa}(\alpha,\tau) &= \{ p \text{ s.t. } |h_1(p)| < \tau \kappa^{\alpha-1} \} \\ \mathscr{C}^{\mathsf{u}}_{\kappa}(\alpha,\tau) &= \{ h \text{ s.t. } \|h-h_1\| < C^{\,\mathsf{u}} \kappa^{-\alpha-1} \} \\ \mathscr{C}^{\mathsf{s}}_{\kappa}(\alpha,\tau) &= \{ h \text{ s.t. } \|h-h_{-1}\| < C^{\,\mathsf{s}} \kappa^{\alpha-1} \} \end{split}$$

$$\forall\,p\in\mathbb{T}^2\setminus\mathbf{C}_\kappa\quad f_{\kappa*}\mathscr{C}^\mathsf{u}_\kappa|_p\subset\mathscr{C}^\mathsf{u}_\kappa|_{f_\kappa p}\quad f_\kappa^*\mathscr{C}^\mathsf{s}_\kappa|_p\subset\mathscr{C}^\mathsf{s}_\kappa|_{f_\kappa^{-1}p}$$

Definition (Cyclicity)

Let $p \in \mathbb{T}^2$ a periodic point for f_{κ} of least period N:

$$s(p) \doteqdot \operatorname{card}\left(\{p, f_{\kappa}p, \cdots, f_{\kappa}^{N-1}p\} \cap \mathbf{C}_{\kappa}\right)$$

Definition (Cyclicity)

Let $p \in \mathbb{T}^2$ a periodic point for f_{κ} of least period N:

$$s(p) \doteqdot \operatorname{card}\left(\{p, f_{\kappa}p, \cdots, f_{\kappa}^{N-1}p\} \cap \mathbf{C}_{\kappa}\right)$$

By invariance of $\mathscr{C}^{u,s}$ outside \mathbf{C}_{κ} :

$$p ext{ elliptic} \Rightarrow s(p) > 0$$

Results

Theorem (2011)

There exists $\kappa_0 > 0$ and a dense set of parameters $\mathfrak{M} \subset [\kappa_0, \infty)$ of Hausdorff dimension larger than 4 such that if $\kappa \in \mathfrak{M}$, then f_{κ} has infinitely many cyclicity 1 elliptic islands whose center accumulate on a locally maximal hyperbolic set that fills the torus as $\kappa \to \infty$

Theorem (2011)

There exists $\kappa_0 > 0$ such that for almost every $\kappa \geq \kappa_0$ the standard map f_{κ} has only finitely many cyclicity 1 elliptic islands

Results

Theorem (2011)

There exists $\kappa_0 > 0$ and a dense set of parameters $\mathfrak{M} \subset [\kappa_0, \infty)$ of Hausdorff dimension larger than 4 such that if $\kappa \in \mathfrak{M}$, then f_{κ} has infinitely many cyclicity 1 elliptic islands whose center accumulate on a locally maximal hyperbolic set that fills the torus as $\kappa \to \infty$

Theorem (2011)

There exists $\kappa_0 > 0$ such that for almost every $\kappa \geq \kappa_0$ the standard map f_{κ} has only finitely many cyclicity 1 elliptic islands

Conjecture

There exists $\kappa_0>0$ such that for almost every $\kappa\geq\kappa_0$ the standard map f_κ has only finitely many elliptic islands of either bounded cyclicity or period larger than some N_s

• Fix α , τ ; choose pair of critical sets $\hat{\mathbf{C}}_{\kappa} \subset \mathbf{C}_{\kappa}$:

$$\mathbf{C}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau)$$
 $\hat{\mathbf{C}}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau/10)$

Recall $\mathbf{C}_{\kappa}(\alpha, \tau)$ is a O $\left(\tau \kappa^{\alpha-1}\right)$ strip around critical points of $\dot{\phi}$

• Fix α , τ ; choose pair of critical sets $\hat{\mathbf{C}}_{\kappa} \subset \mathbf{C}_{\kappa}$:

$$\mathbf{C}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau)$$
 $\hat{\mathbf{C}}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau/10)$

• Construct locally maximal hyperbolic set $\Lambda_{\kappa} \subset \mathbb{T}^2 \setminus \hat{\mathbf{C}}_{\kappa}$ w/ expansion rate $> \kappa^{\alpha}$; Markov partition (of Λ_{κ}):

$$\mathbf{\Lambda}_{\kappa} \ni p \mapsto \cdots a_{-2}a_{-1}a_0a_1a_2\cdots$$

• Fix α , τ ; choose pair of critical sets $\hat{\mathbf{C}}_{\kappa} \subset \mathbf{C}_{\kappa}$:

$$\mathbf{C}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau)$$
 $\hat{\mathbf{C}}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau/10)$

• Construct locally maximal hyperbolic set $\Lambda_{\kappa} \subset \mathbb{T}^2 \setminus \hat{\mathbf{C}}_{\kappa}$ w/ expansion rate $> \kappa^{\alpha}$; Markov partition (of Λ_{κ}):

$$\Lambda_{\kappa} \ni p \mapsto \cdots a_{-2}a_{-1}a_0a_1a_2\cdots$$

• Extend the construction to a *finite time Markov structure*:

$$\mathbb{T}^2 \setminus \mathbf{C}_{\kappa} \ni p \mapsto \langle \tilde{a}_{-*} \cdots \tilde{a}_{-1} \tilde{a}_0 \tilde{a}_1 \cdots \tilde{a}_* \rangle$$

Symbols \tilde{a} belong to some extended alphabet

• Fix α , τ ; choose pair of critical sets $\hat{\mathbf{C}}_{\kappa} \subset \mathbf{C}_{\kappa}$:

$$\mathbf{C}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau)$$
 $\hat{\mathbf{C}}_{\kappa} = \mathbf{C}_{\kappa}(\alpha, \tau/10)$

• Construct locally maximal hyperbolic set $\Lambda_{\kappa} \subset \mathbb{T}^2 \setminus \hat{\mathbf{C}}_{\kappa}$ w/ expansion rate $> \kappa^{\alpha}$; Markov partition (of Λ_{κ}):

$$\mathbf{\Lambda}_{\kappa} \ni p \mapsto \cdots a_{-2}a_{-1}a_0a_1a_2\cdots$$

• Extend the construction to a *finite time Markov structure*:

$$\mathbb{T}^2 \setminus \mathbf{C}_{\kappa} \ni p \mapsto \langle \tilde{a}_{-*} \cdots \tilde{a}_{-1} \tilde{a}_0 \tilde{a}_1 \cdots \tilde{a}_* \rangle$$
$$\mathbf{C}_{\kappa} \ni p \mapsto \omega(p) = \langle \tilde{a}_1 \cdots \tilde{a}_n \rangle$$

Note: if
$$p \in \mathbf{C}_k \cap f_{\kappa}^{-1} \mathbf{C}_k$$
 we set $p \mapsto \langle \rangle$

$$\mathcal{E}_{\omega} = \{\kappa \text{ s.t. } \exists \, p \in \mathbf{C}_{\kappa}, \, p \text{ cyclicity 1 elliptic p.p. for } f_{\kappa}, \, \omega(p) = \omega \}$$

$$\mathcal{J}_{m} = [m - 1/2, m + 1/2] \quad m \text{ large enough}$$

$$\mathcal{E}_{\omega} = \{\kappa \text{ s.t. } \exists \, p \in \mathbf{C}_{\kappa}, \, p \text{ cyclicity 1 elliptic p.p. for } f_{\kappa}, \, \omega(p) = \omega \}$$

$$\mathcal{J}_{m} = [m - 1/2, m + 1/2] \quad m \text{ large enough}$$

Lemma (Upper bound)

Given
$$\omega, \kappa, \; \exists \; at \; most \; one \; cyclicity \; 1 \; elliptic p.p. \; for \; f_{\kappa} \; \; \mathrm{s.t.} \; \omega(p) = \omega$$

$$\mathrm{card}\{\omega\}|_{|\omega|} \leq \mathrm{Const} \; m^{|\omega|}$$

$$\mathrm{Leb}(\mathfrak{J}_m \cap \mathcal{E}_\omega) \leq \mathrm{Const} \; m^{-2\alpha|\omega|-1}$$

$$\mathcal{E}_{\omega} = \{\kappa \text{ s.t. } \exists \, p \in \mathbf{C}_{\kappa}, \, p \text{ cyclicity 1 elliptic p.p. for } f_{\kappa}, \, \omega(p) = \omega \}$$

$$\mathcal{J}_{m} = [m - 1/2, m + 1/2] \quad m \text{ large enough}$$

Lemma (Upper bound)

Given
$$\omega, \kappa, \exists$$
 at most one cyclicity 1 elliptic p.p. for f_{κ} s.t. $\omega(p) = \omega$
$$\operatorname{card}\{\omega\}|_{|\omega|} \leq \operatorname{Const} m^{|\omega|}$$

$$\operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) \leq \operatorname{Const} m^{-2\alpha|\omega|-1}$$

Lemma (Density + Lower bound)

For any $\mathfrak{B}\subset \mathfrak{J}_m$ there exists N s.t. $\operatorname{diam}\mathfrak{B}\sim m^{-N}$ and ω with $|\omega|=2N$ such that $\mathfrak{B}\supset \mathcal{E}_\omega\supset \mathfrak{J}_\omega$ where \mathfrak{J}_ω is an interval and $\operatorname{diam}\mathfrak{J}_\omega\geq \operatorname{Const} m^{-4N-1}$

$$\mathcal{E}_{\omega} = \{\kappa \text{ s.t. } \exists \, p \in \mathbf{C}_{\kappa}, \, p \text{ cyclicity 1 elliptic p.p. for } f_{\kappa}, \, \omega(p) = \omega \}$$

$$\mathcal{J}_{m} = [m - 1/2, m + 1/2] \quad m \text{ large enough}$$

Lemma (Upper bound)

Given
$$\omega, \kappa, \; \exists \; at \; most \; one \; cyclicity \; 1 \; elliptic p.p. \; for \; f_{\kappa} \; \; \text{s.t.} \; \omega(p) = \omega$$

$$\operatorname{card}\{\omega\}|_{|\omega|} \leq \operatorname{Const} m^{|\omega|}$$

$$\operatorname{Leb}(\mathfrak{J}_m \cap \mathcal{E}_\omega) \leq \operatorname{Const} m^{-2\alpha|\omega|-1}$$

Lemma (Density + Lower bound)

For any $\mathcal{B} \subset \mathcal{J}_m$ there exists N s.t. diam $\mathcal{B} \sim m^{-N}$ and ω with $|\omega| = 2N$ such that $\mathcal{B} \supset \mathcal{E}_\omega \supset \mathcal{J}_\omega$ where \mathcal{J}_ω is an interval and diam $\mathcal{J}_\omega \geq \operatorname{Const} m^{-4N-1}$

Moreover, the middle $\log N$ symbols in ω can be fixed arbitrarily

Lemma (Upper bound)

Given $\omega, \kappa, \; \exists \; at \; most \; one \; cyclicity \; 1 \; elliptic \; p.p. \; s.t. \; \omega(p) = \omega$

$$\operatorname{card}\{\omega\}|_{|\omega|} \leq \operatorname{Const} m^{|\omega|}$$

 $\operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) \leq \operatorname{Const} m^{-2\alpha|\omega|-1}$

• If p a cyclicity 1 p.p. for $f_{\kappa} \Rightarrow \kappa \in \mathcal{E}_{\omega(p)}$

Lemma (Upper bound)

Given $\omega, \kappa, \; \exists \;$ at most one cyclicity 1 elliptic p.p. s.t. $\omega(p) = \omega$

$$\operatorname{card}\{\omega\}|_{|\omega|} \leq \operatorname{Const} m^{|\omega|}$$

 $\operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) \leq \operatorname{Const} m^{-2\alpha|\omega|-1}$

- If p a cyclicity 1 p.p. for $f_{\kappa} \Rightarrow \kappa \in \mathcal{E}_{\omega(p)}$
- $\sum_{N} \sum_{|\omega|=N} \operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) = \sum_{N} m^{(1-2\alpha)N-1} < \infty$

Lemma (Upper bound)

Given $\omega, \kappa, \; \exists \; at \; most \; one \; cyclicity \; 1 \; elliptic \; p.p. \; s.t. \; \omega(p) = \omega$

$$\operatorname{card}\{\omega\}|_{|\omega|} \leq \operatorname{Const} m^{|\omega|}$$

 $\operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) \leq \operatorname{Const} m^{-2\alpha|\omega|-1}$

- If p a cyclicity 1 p.p. for $f_{\kappa} \Rightarrow \kappa \in \mathcal{E}_{\omega(p)}$
- $\sum_{N} \sum_{|\omega|=N} \operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) = \sum_{N} m^{(1-2\alpha)N-1} < \infty$
- Borel·Cantelli lemma implies the result.

Lemma (Upper bound)

Given $\omega, \kappa, \; \exists \;$ at most one cyclicity 1 elliptic p.p. s.t. $\omega(p) = \omega$

$$\operatorname{card}\{\omega\}|_{|\omega|} \leq \operatorname{Const} m^{|\omega|}$$

 $\operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) \leq \operatorname{Const} m^{-2\alpha|\omega|-1}$

- If p a cyclicity 1 p.p. for $f_{\kappa} \Rightarrow \kappa \in \mathcal{E}_{\omega(p)}$
- $\sum_{N} \sum_{|\omega|=N} \operatorname{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) = \sum_{N} m^{(1-2\alpha)N-1} < \infty$
- Borel·Cantelli lemma implies the result.
- Moreover notice:

$$\sum_{N} \sum_{|\omega|=N} \mathsf{Leb}(\mathcal{J}_m \cap \mathcal{E}_\omega) \sim m^{-1}$$

There are *no* cyclicity 1 elliptic p.p in a parameter set of density approaching 1 as $m\to\infty$ (i.e. Carleson conjecture holds for cyclicity 1).

Lemma (Density + Lower bound)

For any $\mathfrak{B} \subset \mathfrak{J}_m$ there exists N s.t. $\operatorname{diam} \mathfrak{B} \sim m^{-N}$ and ω with $|\omega| = 2N$ such that $\mathfrak{B} \supset \mathcal{E}_\omega \supset \mathfrak{J}_\omega$ where \mathfrak{J}_ω is an interval and $\operatorname{diam} \mathfrak{J}_\omega \geq \operatorname{Const} m^{-4N-1}$

Moreover, the middle $\log N$ symbols in ω can be arbitrarily fixed

ullet Let $ar{\Lambda}_\kappa\subset \Lambda_\kappa\setminus C_\kappa$ be a locally maximal hyperbolic set

Lemma (Density + Lower bound)

For any $\mathfrak{B} \subset \mathfrak{J}_m$ there exists N s.t. $\operatorname{diam} \mathfrak{B} \sim m^{-N}$ and ω with $|\omega| = 2N$ such that $\mathfrak{B} \supset \mathcal{E}_\omega \supset \mathfrak{J}_\omega$ where \mathfrak{J}_ω is an interval and $\operatorname{diam} \mathfrak{J}_\omega \geq \operatorname{Const} m^{-4N-1}$

Moreover, the middle $\log N$ symbols in ω can be arbitrarily fixed

- ullet Let $ar{\Lambda}_\kappa\subset \Lambda_\kappa\setminus C_\kappa$ be a locally maximal hyperbolic set
- ullet Enumerate all possible words of given length for $ar{oldsymbol{\Lambda}}_{\kappa}$

Lemma (Density + Lower bound)

For any $\mathfrak{B} \subset \mathfrak{J}_m$ there exists N s.t. $\operatorname{diam} \mathfrak{B} \sim m^{-N}$ and ω with $|\omega| = 2N$ such that $\mathfrak{B} \supset \mathcal{E}_\omega \supset \mathfrak{J}_\omega$ where \mathfrak{J}_ω is an interval and $\operatorname{diam} \mathfrak{J}_\omega \geq \operatorname{Const} m^{-4N-1}$

Moreover, the middle $\log N$ symbols in ω can be arbitrarily fixed

- ullet Let $ar{\Lambda}_\kappa\subset \Lambda_\kappa\setminus C_\kappa$ be a locally maximal hyperbolic set
- ullet Enumerate all possible words of given length for $ar{oldsymbol{\Lambda}}_{\kappa}$
- \bullet Construct a Cantor set in $\ensuremath{\mathbb{B}}$ by induction using the lemma

Lemma (Density + Lower bound)

For any $\mathfrak{B} \subset \mathfrak{J}_m$ there exists N s.t. $\operatorname{diam} \mathfrak{B} \sim m^{-N}$ and ω with $|\omega| = 2N$ such that $\mathfrak{B} \supset \mathcal{E}_\omega \supset \mathfrak{J}_\omega$ where \mathfrak{J}_ω is an interval and $\operatorname{diam} \mathfrak{J}_\omega \geq \operatorname{Const} m^{-4N-1}$

Moreover, the middle $\log N$ symbols in ω can be arbitrarily fixed

- ullet Let $ar{\Lambda}_\kappa\subset \Lambda_\kappa\setminus C_\kappa$ be a locally maximal hyperbolic set
- ullet Enumerate all possible words of given length for $ar{oldsymbol{\Lambda}}_{\kappa}$
- ullet Construct a Cantor set in ${\mathfrak B}$ by induction using the lemma fixing the middle symbols according to the enumeration

Proof of the lemmata

Define
$$\Delta_{\omega,\kappa}^{\sharp} = \{ p \in \mathbf{C}_{\kappa} \text{ s.t. } \omega(p) = \omega \}; \ \Delta_{\omega,\kappa}^{\flat} = f_{\kappa}^{|\omega|+1} \Delta_{\omega,\kappa}^{\sharp}$$

Define $\Delta_{\omega,\kappa}^{\sharp} = \{ p \in \mathbf{C}_{\kappa} \text{ s.t. } \omega(p) = \omega \}; \ \Delta_{\omega,\kappa}^{\flat} = f_{\kappa}^{|\omega|+1} \Delta_{\omega,\kappa}^{\sharp}$ Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Define
$$\Delta_{\omega,\kappa}^{\sharp} = \{ p \in \mathbf{C}_{\kappa} \text{ s.t. } \omega(p) = \omega \}; \ \Delta_{\omega,\kappa}^{\flat} = f_{\kappa}^{|\omega|+1} \Delta_{\omega,\kappa}^{\sharp}$$
 Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Leaf functions: $\ell_{\omega}^{\sharp}[\zeta;\kappa](\xi)$ and $\ell_{\omega}^{\flat}[\eta;\kappa](\xi)$

Define
$$\Delta_{\omega,\kappa}^{\sharp}=\{p\in\mathbf{C}_{\kappa} \text{ s.t. } \omega(p)=\omega\};\ \Delta_{\omega,\kappa}^{\flat}=f_{\kappa}^{|\omega|+1}\Delta_{\omega,\kappa}^{\sharp}$$
 Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Leaf functions: $\ell_{\omega}^{\sharp}[\zeta;\kappa](\xi)$ and $\ell_{\omega}^{\flat}[\eta;\kappa](\xi)$ Geometrical bounds:

$$\mathcal{L}_{\omega} \sim \sup_{p \in \Delta_{\omega,\kappa}^{\sharp}} \frac{\mathrm{d}x_{|\omega|+1}}{\mathrm{d}y_0} \geq \kappa^{|\omega|\alpha}$$

Define
$$\Delta_{\omega,\kappa}^{\sharp} = \{ p \in \mathbf{C}_{\kappa} \text{ s.t. } \omega(p) = \omega \}; \ \Delta_{\omega,\kappa}^{\flat} = f_{\kappa}^{|\omega|+1} \Delta_{\omega,\kappa}^{\sharp}$$
 Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Leaf functions: $\ell_{\omega}^{\sharp}[\zeta;\kappa](\xi)$ and $\ell_{\omega}^{\flat}[\eta;\kappa](\xi)$ Geometrical bounds:

$$\mathcal{L}_{\omega} \sim \sup_{p \in \Delta_{\omega,\kappa}^{\sharp}} \frac{\mathrm{d}x_{|\omega|+1}}{\mathrm{d}y_0} \geq \kappa^{|\omega|\alpha}$$

Dependence on κ :

$$|\partial_{\kappa}(\ell_{\omega}^{\flat}[\eta;\kappa](\xi) - \ell_{\omega}^{\sharp}[\zeta;\kappa](\xi))| \sim 1$$

Define
$$\Delta_{\omega,\kappa}^{\sharp}=\{p\in\mathbf{C}_{\kappa} \text{ s.t. } \omega(p)=\omega\};\ \Delta_{\omega,\kappa}^{\flat}=f_{\kappa}^{|\omega|+1}\Delta_{\omega,\kappa}^{\sharp}$$
 Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Leaf functions: $\ell_{\omega}^{\sharp}[\zeta;\kappa](\xi)$ and $\ell_{\omega}^{\flat}[\eta;\kappa](\xi)$ Geometrical bounds:

$$\mathcal{L}_{\omega} \sim \sup_{p \in \Delta_{\omega,\kappa}^{\sharp}} \frac{\mathrm{d}x_{|\omega|+1}}{\mathrm{d}y_0} \geq \kappa^{|\omega|\alpha}$$

Dependence on κ :

$$|\partial_{\kappa}(\ell_{\omega}^{\flat}[\eta;\kappa](\xi) - \ell_{\omega}^{\sharp}[\zeta;\kappa](\xi))| \sim 1$$

Define
$$\Delta_{\omega,\kappa}^{\sharp} = \{ p \in \mathbf{C}_{\kappa} \text{ s.t. } \omega(p) = \omega \}; \ \Delta_{\omega,\kappa}^{\flat} = f_{\kappa}^{|\omega|+1} \Delta_{\omega,\kappa}^{\sharp}$$
 Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Leaf functions: $\ell_{\omega}^{\sharp}[\zeta;\kappa](\xi)$ and $\ell_{\omega}^{\flat}[\eta;\kappa](\xi)$ Geometrical bounds:

$$\mathcal{L}_{\omega} \sim \sup_{p \in \Delta_{\omega,\kappa}^{\sharp}} \frac{\mathrm{d}x_{|\omega|+1}}{\mathrm{d}y_0} \geq \kappa^{|\omega|\alpha}$$

Dependence on κ :

$$|\partial_{\kappa}(\ell_{\omega}^{\flat}[\eta;\kappa](\xi) - \ell_{\omega}^{\sharp}[\zeta;\kappa](\xi))| \sim 1$$

Define
$$\Delta_{\omega,\kappa}^{\sharp}=\{p\in\mathbf{C}_{\kappa} \text{ s.t. } \omega(p)=\omega\};\ \Delta_{\omega,\kappa}^{\flat}=f_{\kappa}^{|\omega|+1}\Delta_{\omega,\kappa}^{\sharp}$$
 Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Leaf functions: $\ell_{\omega}^{\sharp}[\zeta;\kappa](\xi)$ and $\ell_{\omega}^{\flat}[\eta;\kappa](\xi)$ Geometrical bounds:

$$\mathcal{L}_{\omega} \sim \sup_{p \in \Delta_{\omega,\kappa}^{\sharp}} \frac{\mathrm{d} x_{|\omega|+1}}{\mathrm{d} y_0} \geq \kappa^{|\omega|\alpha}$$

Dependence on κ :

$$|\partial_{\kappa}(\ell_{\omega}^{\flat}[\eta;\kappa](\xi) - \ell_{\omega}^{\sharp}[\zeta;\kappa](\xi))| \sim 1$$

Ellipticity condition:

$$|\partial_{\xi}(\ell_{\omega}^{\flat}[\eta;\kappa](\xi) - \ell_{\omega}^{\sharp}[\zeta;\kappa](\xi))| \lesssim \mathcal{L}_{\omega}^{-1}$$

Define
$$\Delta_{\omega,\kappa}^{\sharp}=\{p\in\mathbf{C}_{\kappa} \text{ s.t. } \omega(p)=\omega\};\ \Delta_{\omega,\kappa}^{\flat}=f_{\kappa}^{|\omega|+1}\Delta_{\omega,\kappa}^{\sharp}$$
 Adapted coordinates on $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega,\kappa}^{\flat}$

Leaf functions: $\ell_{\omega}^{\sharp}[\zeta;\kappa](\xi)$ and $\ell_{\omega}^{\flat}[\eta;\kappa](\xi)$ Geometrical bounds:

$$\mathcal{L}_{\omega} \sim \sup_{p \in \Delta_{\omega,\kappa}^{\sharp}} \frac{\mathrm{d} x_{|\omega|+1}}{\mathrm{d} y_0} \geq \kappa^{|\omega|\alpha}$$

Dependence on κ :

$$|\partial_{\kappa}(\ell_{\omega}^{\flat}[\eta;\kappa](\xi) - \ell_{\omega}^{\sharp}[\zeta;\kappa](\xi))| \sim 1$$

Ellipticity condition:

$$|\partial_{\xi}(\ell_{\omega}^{\flat}[\eta;\kappa](\xi) - \ell_{\omega}^{\sharp}[\zeta;\kappa](\xi))| \lesssim \mathcal{L}_{\omega}^{-1}$$

 ω -adapted $\mathbf{C}_{\omega,\kappa}$ of thickness $\sim \kappa^{-1}\mathcal{L}_{\omega}^{-1}$

Define
$$\bar{\Delta}_{\omega,\kappa}^{\sharp} = \{ p \in \mathbf{C}_{\omega,\kappa} \text{ s.t. } \omega(p) = \omega \}$$
 $\bar{\Delta}_{\omega,\kappa}^{\flat} = f_{\kappa}^{|\omega|+1} \bar{\Delta}_{\omega,\kappa}^{\sharp}$

Define
$$\bar{\Delta}_{\omega,\kappa}^{\sharp} = \{ p \in \mathbf{C}_{\omega,\kappa} \text{ s.t. } \omega(p) = \omega \}$$
 $\bar{\Delta}_{\omega,\kappa}^{\flat} = f_{\kappa}^{|\omega|+1} \bar{\Delta}_{\omega,\kappa}^{\sharp}$

Define
$$\bar{\Delta}_{\omega,\kappa}^\sharp = \{p \in \mathbf{C}_{\omega,\kappa} \text{ s.t. } \omega(p) = \omega\} \quad \bar{\Delta}_{\omega,\kappa}^\flat = f_\kappa^{|\omega|+1} \bar{\Delta}_{\omega,\kappa}^\sharp$$

If $p \in \Delta_{\omega,\kappa}$ cyclicity 1 elliptic p.p.:

$$p\in \bar{\Delta}_{\omega,\kappa}^{\sharp}$$

Define
$$\bar{\Delta}_{\omega,\kappa}^\sharp = \{p \in \mathbf{C}_{\omega,\kappa} \text{ s.t. } \omega(p) = \omega\} \quad \bar{\Delta}_{\omega,\kappa}^\flat = f_\kappa^{|\omega|+1} \bar{\Delta}_{\omega,\kappa}^\sharp$$

If $p \in \Delta_{\omega,\kappa}$ cyclicity 1 elliptic p.p.:

$$p\in \bar{\Delta}_{\omega,\kappa}^\sharp \cap \bar{\Delta}_{\omega,\kappa}^\flat$$

Define
$$\bar{\Delta}_{\omega,\kappa}^\sharp = \{p \in \mathbf{C}_{\omega,\kappa} \text{ s.t. } \omega(p) = \omega\} \quad \bar{\Delta}_{\omega,\kappa}^\flat = f_\kappa^{|\omega|+1} \bar{\Delta}_{\omega,\kappa}^\sharp$$

If $p \in \Delta_{\omega,\kappa}$ cyclicity 1 elliptic p.p.:

$$p\in \bar{\Delta}_{\omega,\kappa}^\sharp \cap \bar{\Delta}_{\omega,\kappa}^\flat$$

Consider diagonal leaves $\ell^{D^{\sharp}}$ and $\ell^{D^{\flat}}$ then if $p \in \ell^{D^{\sharp}} \cap \ell^{D^{\flat}}$, p is a cyclicity 1 p.p. + ellipticity condition

Define
$$\bar{\Delta}_{\omega,\kappa}^\sharp = \{p \in \mathbf{C}_{\omega,\kappa} \text{ s.t. } \omega(p) = \omega\} \quad \bar{\Delta}_{\omega,\kappa}^\flat = f_\kappa^{|\omega|+1} \bar{\Delta}_{\omega,\kappa}^\sharp$$

If $p \in \Delta_{\omega,\kappa}$ cyclicity 1 elliptic p.p.:

$$p\in \bar{\Delta}_{\omega,\kappa}^\sharp \cap \bar{\Delta}_{\omega,\kappa}^\flat$$

Consider diagonal leaves $\ell^{D^{\sharp}}$ and $\ell^{D^{\flat}}$ then if $p \in \ell^{D^{\sharp}} \cap \ell^{D^{\flat}}$, p is a cyclicity 1 p.p. + ellipticity condition

 \Rightarrow Both upper & lower bounds

$$\kappa^{-2|\omega|-1} \overset{*}{\lesssim} \operatorname{Leb} \mathcal{E}_{\omega} \lesssim \kappa^{-2\alpha|\omega|-1}$$

Define
$$\bar{\Delta}_{\omega,\kappa}^\sharp = \{p \in \mathbf{C}_{\omega,\kappa} \text{ s.t. } \omega(p) = \omega\} \quad \bar{\Delta}_{\omega,\kappa}^\flat = f_\kappa^{|\omega|+1} \bar{\Delta}_{\omega,\kappa}^\sharp$$

If $p \in \Delta_{\omega,\kappa}$ cyclicity 1 elliptic p.p.:

$$p\in \bar{\Delta}_{\omega,\kappa}^\sharp \cap \bar{\Delta}_{\omega,\kappa}^\flat$$

Consider diagonal leaves $\ell^{D^{\sharp}}$ and $\ell^{D^{\flat}}$ then if $p \in \ell^{D^{\sharp}} \cap \ell^{D^{\flat}}$, p is a cyclicity 1 p.p. + ellipticity condition

 \Rightarrow Both upper & lower bounds

$$\kappa^{-2|\omega|-1} \overset{*}{\lesssim} \operatorname{Leb} \mathcal{E}_{\omega} \lesssim \kappa^{-2\alpha|\omega|-1}$$

 $+\,$ at most 1 elliptic p.p. with given ω

Observation

 $\Delta^{\sharp}_{\omega,\kappa}$ and $\Delta^{\sharp}_{\omega',\kappa}$ are close if the *first* symbols of ω,ω' agree $\Delta^{\flat}_{\omega,\kappa}$ and $\Delta^{\flat}_{\omega',\kappa}$ are close if the *last* symbols of ω,ω' agree

Observation

 $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega',\kappa}^{\sharp}$ are close if the *first* symbols of ω,ω' agree $\Delta_{\omega,\kappa}^{\flat}$ and $\Delta_{\omega',\kappa}^{\flat}$ are close if the *last* symbols of ω,ω' agree

Definition (Bicylinder of rank r)

$$\omega = \langle \underbrace{a_1 a_2 \cdots a_r}_{\Omega^{\sharp}} * * * * \cdots * * * \underbrace{a_{n-r} a_{n-r+1} \cdots a_{n-2} a_{n-1}}_{\Omega^{\flat}} \rangle$$

Observation

 $\Delta^{\sharp}_{\omega,\kappa}$ and $\Delta^{\sharp}_{\omega',\kappa}$ are close if the *first* symbols of ω,ω' agree $\Delta^{\flat}_{\omega,\kappa}$ and $\Delta^{\flat}_{\omega',\kappa}$ are close if the *last* symbols of ω,ω' agree

Definition (Bicylinder of rank r)

 $\Omega = \{\omega \text{ with prescribed first and last } r \text{ symbols}\}$

• Given $\Omega = \Omega^\sharp \cap \Omega^\flat$ of rank r we have nontrivial intersections for $\kappa \in \mathcal{J}_\Omega$ ball with diam $\mathcal{J}_\Omega \sim \mathcal{L}_{\Omega^\sharp}^{-1} + \mathcal{L}_{\Omega^\flat}^{-1}$

Observation

 $\Delta^{\sharp}_{\omega,\kappa}$ and $\Delta^{\sharp}_{\omega',\kappa}$ are close if the *first* symbols of ω,ω' agree $\Delta^{\flat}_{\omega,\kappa}$ and $\Delta^{\flat}_{\omega',\kappa}$ are close if the *last* symbols of ω,ω' agree

Definition (Bicylinder of rank r)

- Given $\Omega = \Omega^\sharp \cap \Omega^\flat$ of rank r we have nontrivial intersections for $\kappa \in \mathcal{J}_\Omega$ ball with diam $\mathcal{J}_\Omega \sim \mathcal{L}_{\Omega^\sharp}^{-1} + \mathcal{L}_{\Omega^\flat}^{-1}$
- Given a ball $\mathcal{B} \in \mathcal{J}_m \exists \Omega \text{ s.t. } \mathcal{J}_\Omega \subset \mathcal{B}, \operatorname{diam} \mathcal{B} \sim m^{-\operatorname{rank} \Omega}$

Observation

 $\Delta_{\omega,\kappa}^{\sharp}$ and $\Delta_{\omega',\kappa}^{\sharp}$ are close if the *first* symbols of ω,ω' agree $\Delta_{\omega,\kappa}^{\flat}$ and $\Delta_{\omega',\kappa}^{\flat}$ are close if the *last* symbols of ω,ω' agree

Definition (Bicylinder of rank r)

- Given $\Omega = \Omega^\sharp \cap \Omega^\flat$ of rank r we have nontrivial intersections for $\kappa \in \mathcal{J}_\Omega$ ball with diam $\mathcal{J}_\Omega \sim \mathcal{L}_{\Omega^\sharp}^{-1} + \mathcal{L}_{\Omega^\flat}^{-1}$
- Given a ball $\mathcal{B} \in \mathcal{J}_m \exists \Omega$ s.t. $\mathcal{J}_{\Omega} \subset \mathcal{B}$, diam $\mathcal{B} \sim m^{-\operatorname{rank}\Omega}$
- Previous argument implies $\exists \ p \ \text{elliptic} \ N$ -p.p. with $\omega(p) \in \Omega$, $N \sim 2 \operatorname{rank} \Omega \Rightarrow \mathcal{J}_{\omega} \subset \mathcal{B}$, diam $\mathcal{J}_{\omega} \sim m^{-4 \operatorname{rank} \Omega}$

Observation

 $\Delta^{\sharp}_{\omega,\kappa}$ and $\Delta^{\sharp}_{\omega',\kappa}$ are close if the *first* symbols of ω,ω' agree $\Delta^{\flat}_{\omega,\kappa}$ and $\Delta^{\flat}_{\omega',\kappa}$ are close if the *last* symbols of ω,ω' agree

Definition (Bicylinder of rank r)

- Given $\Omega = \Omega^\sharp \cap \Omega^\flat$ of rank r we have nontrivial intersections for $\kappa \in \mathcal{J}_\Omega$ ball with diam $\mathcal{J}_\Omega \sim \mathcal{L}_{\Omega^\sharp}^{-1} + \mathcal{L}_{\Omega^\flat}^{-1}$
- Given a ball $\mathcal{B} \in \mathcal{J}_m \exists \Omega$ s.t. $\mathcal{J}_{\Omega} \subset \mathcal{B}$, diam $\mathcal{B} \sim m^{-\operatorname{rank}\Omega}$
- Previous argument implies $\exists \ p \ \text{elliptic} \ N$ -p.p. with $\omega(p) \in \Omega$, $N \sim 2 \operatorname{rank} \Omega \Rightarrow \mathcal{J}_{\omega} \subset \mathcal{B}$, $\operatorname{diam} \mathcal{J}_{\omega} \sim m^{-4 \operatorname{rank} \Omega}$
- \bullet Arbitrary choice of central log N symbols in $\omega(p)$

Final remarks

 The construction relies on the generic condition of non-degeneracy of critical points

Final remarks

- The construction relies on the generic condition of non-degeneracy of critical points
- The construction gives plenty of information on the parameter space. In particular it seems it can be used to study higher cyclicity orbits without a geometrical understanding of multiple passages through the critical set.

Final remarks

- The construction relies on the generic condition of non-degeneracy of critical points
- The construction gives plenty of information on the parameter space. In particular it seems it can be used to study higher cyclicity orbits without a geometrical understanding of multiple passages through the critical set.
- The construction provides estimates on the size of elliptic islands; such estimates seem to be sharp for cyclicity 1.