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The Nekhoroshev theorem says: Suppose we have a Hamiltonian
system

H = H0(I ) + εH1(I , θ), (I , θ) ∈ Rn × Tn

Theorem (Nekhoroshev)

When the unperturbed Hamiltonian H0 is quasi-convex (the energy
surface H0(I ) = E is strictly convex) the following general estimate
holds:
‖I (t)− I (0)‖ ≤ C1ε

b when t ≤ T , T = O(exp(C2/ε
a))
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a = b =
1

2n
(Lochak-Neishtadt, Pöschel)

a =
1

2(n − 1)
− δ, b = δ(n − 1), 0 < δ ≤ 1

2n(n − 1)

(Bounemoura, Marco)
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Theorem (X)

C2 =

(
M−
M+

)3/2 ρ1
8
√
n

M−Id ≤ HessH0 ≤ M+Id

Motivation: estimate stability time for concrete system
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Nekhoroshev theorem(Lochak’s proof)

Treschev’s Continuous averaging method

The proof
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The geometric part
analytical part

Local:
Analytic part: Neishtadt’s single frequency averaging.
Geometric part.

From Local to global:
Number theoretical part: Dirichlet’s simultaneous
approximation theorem.

Jinxin Xue Continuous averaging proof of the Nekhoroshev theorem



Nekhoroshev Theorem(Lochak’s proof)
Treschev’s Continuous averaging

The geometric part
analytical part

Local:
Analytic part: Neishtadt’s single frequency averaging.
Geometric part.

From Local to global:
Number theoretical part: Dirichlet’s simultaneous
approximation theorem.

Jinxin Xue Continuous averaging proof of the Nekhoroshev theorem



Nekhoroshev Theorem(Lochak’s proof)
Treschev’s Continuous averaging

The geometric part
analytical part

Neishtadt’s theorem on single frequency averaging

{
θ̇ = ω(I ) + εf (I , θ)

İ = εg(I , θ) (I , θ) ∈ Rm × Tn
=⇒

{
ψ̇ = Ω(J, ε) + εα(J, ψ)

J̇ = εφ(J, ε) + εβ(J, ψ)

Ifn = 1, α, β ∼ exp(−C/ε)

C is determined by the complex singularity of θ (Treschev).
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The geometric part
analytical part

We need to fix a rational frequency ω∗ ∈ Qn and expand the
Hamiltonian in the following form:

H = 〈I , ω∗〉+ G (I ) + εH̄ + εH̃

If we do the Fourier expansion of the perturbation εH1, then

H̄ : 〈k , ω∗〉 = 0, resonant, 〈ω∗, ∂H̄
∂θ
〉 = 0

H̃ : 〈k, ω∗〉 6= 0, nonresonant
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The geometric part
analytical part

Example

Consider frequency ω∗ = (1, 0, ..., 0) ∈ Qn,

H̄ = H̄(I , θ2, θ3, ..., θn), e i〈k,θ〉, k1 = 0

H̃ = H̃(I , θ1, θ2, ..., θn), e i〈k,θ〉, k1 6= 0
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The geometric part
analytical part

almost first integral

If we can kill the H̃ term to be exponentially small, we get an
“almost first integral”

〈ω∗, I 〉

In the sense that:

d

dt
〈ω∗, I 〉 = −ε〈ω∗, ∂H1(I , θ)

∂θ
〉 = −ε〈ω∗, ∂H̃(I , θ)

∂θ
〉 = O(ε)

Over exponentially long time.
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The geometric part
analytical part

intersection of a hyperplane with energy surface

We have two first integrals: the Hamiltonian and 〈ω∗, I 〉, we
consider their intersection.

{〈ω∗, (I (t)− I0)〉 = 0}
⋂
{H0(I (t)) = H0(I0)}

{hyperplane}
⋂
{convex energy surface}
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The geometric part
analytical part

analytic part

Recall:
H = H0(I ) + εH1(I , θ)

Split it in the form:

H = 〈ω∗, I 〉+ G (I ) + εH̄(I , θ) + εH̃(I , θ)

Goal: Use the continuous averaging, kill H̃ to

exp

(
− 2πρ1
M+RT

)
R : size of working region. |I | ≤ R
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The geometric part
analytical part

From local to global:

Dirichlet theorem for simultaneous approximation:
For any α ∈ Rn,Q ∈ R1, and Q > 1.
There exists an integer q, 1 ≤ q < Q, s.t.

‖qα− Zn‖∞ ≤ Q−1/n
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Derivation of continuous averaging

LFH = {H,F}

Hδ = {H,F}

Change of variables vs. evolution of Hamiltonian
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The Hilbert transform

Fourier expansion

H1(I , θ) =
∑
k

Hk(I )e i〈k,θ〉

Then Define:
F (I , θ) = i

∑
k

σkH
k(I )e i〈k,θ〉

σk = sign(〈k, ω∗〉)

Example:

sin x =
e ix − e−ix

2i

cos x =
e ix + e−ix

2
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Figure
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comparison with the iterative Lie method

H(I , θ) = H0(I ) + εH1(I , θ)

dH

dt
= LεFH = {H, εF}

eLεFH = H + {H, εF}+
1

2
{{H, εF}, εF}+ ...

= H0 + εH1 + ε{H0,F}+ O(ε2)
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cohomological equation,

H1 + {H0,F} = 0

Fourier expansion gives:

H1(I , θ) =
∑
k∈Z

Hk(I )e ikθ

F (I , θ) =
∑
k∈Z

F k(I )e ikθ
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In fact, we are only able to solve

H1 − H0 + {H0,F} = 0

Fourier coefficients:

Hk(I ) + i〈k, ω〉F k = 0, k 6= 0

F k = i
Hk(I )

〈k , ω〉
ω :=

∂H0

∂I
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Continuous averaging for Nekhoroshev

Hδ = −{F ,H}
Hδ = −{F , 〈ω∗, I 〉} − {F ,G} − {F , εH̄} − {F , εH̃}
=⇒ H̄δ = −{ξH̃, H̃}

H̃δ = −{ξH̃, 〈ω∗, I 〉} − {ξH̃,G} − {ξH̃, εH̄} − ˜{ξH̃, εH̃}
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Use the antisymmetricity of the Poisson bracket, we obtain the
following.

H̄δ = −2iε{H+,H−}

H+
δ = −i{H+,H0} − iε{H+, H̄} − 2iε ˜{H+,H−}

+

H−δ = i{H−,H0}+ iε{H−, H̄} − 2iε ˜{H+,H−}
−
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Linearization

H̄δ = 0

H+
δ = −i{H+, 〈ω∗, I 〉+ G} = i〈ω∗, ∂H

+

∂θ
〉 − i

∂G

∂I

∂H+

∂θ

H−δ = i{H−, 〈ω∗, I 〉+ G} = −i〈ω∗, ∂H
−

∂θ
〉+ i

∂G

∂I

∂H−

∂θ
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Property of the rational frequency

ω∗ is a rational vector
1

q
(p1, p2, ..., pn), pi , q ∈ Z.

So the period T of this vector is:

2π/T =
1

q
g .c .d .(p1, p2, ..., pn)

Those k ’s with 〈ω∗, k〉 6= 0, give us

|〈k, ω∗〉| =
1

q
|k .(p1, p2, ..., pn)| ≥ 2π

T
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decay of Fourier coefficients, I

1. For 〈k , ω∗〉 > 0, Hke i〈k,θ〉,

H+
δ = i〈ω∗, ∂H

+

∂θ
〉

Hk
δ e

i〈k,θ〉 = i〈ω∗, ∂
∂θ

(Hke i〈k,θ〉)〉 = −|〈k, ω∗〉|Hke i〈k,θ〉

=⇒ Hk(δ) = e−|〈k,ω
∗〉|δHk(0) ≤ e−

2πδ
T |Hk(0)|
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decay of Fourier coefficients, II

2. For 〈k , ω∗〉 < 0, Hke i〈k,θ〉

H−δ = −i〈ω∗, ∂H
−

∂θ
〉

Hk
δ e

i〈k,θ〉 = −i〈ω∗, ∂
∂θ

(Hke i〈k,θ〉)〉 = −|〈k , ω∗〉|Hke i〈k,θ〉

=⇒ Hk(δ) = e−|〈k,ω
∗〉|δHk(0) ≤ e−

2πδ
T |Hk(0)|
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imaginary flow

H+
δ = −i ∂G

∂I

∂H+

∂θ

The imaginary flow,

dθ

dδ
= i

dG

dI
, θ(δ) = θ(0) + iG ′δ

Characteristic method,

=⇒ dH+

dδ
= 0
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imaginary flow: continued

Hke i〈k,θ〉 ' e−|k|ρ.e i〈k,θ(0)+iG ′δ〉

= e−|k|ρ−〈k,G
′δ〉.e i〈k,θ(0)〉

|k|ρ > |〈k ,G ′δ〉|

Speed of the imaginary flow has upper bound

|dG
dI
| ≤ M+R

=⇒ δ <
ρ

M+R
The Stopping time
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estimate of constant

M+Rδ ≤ ρ

e
−

2πδ

T

=⇒ e
−

2πρ

M+RT
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