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The Nekhoroshev theorem says: Suppose we have a Hamiltonian
system
H = Ho(l) +eHi(1,0),(1,60) € R" x T"

Theorem (Nekhoroshev)

When the unperturbed Hamiltonian Hy is quasi-convex (the energy
surface Hy(l) = E is strictly convex) the following general estimate
holds:

11(t) — 1(0)|| < C1e® when t < T, T = O(exp(Ca/e?))
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a=b= o (Lochak-Neishtadt, Pdschel)

1
= — — = — <
a 6, b=0(n-1), 0<d< oy

(Bounemoura, Marco)
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6= (M= o
2= \mt) s8yn

M_Id < HessHg < M*Id

Motivation: estimate stability time for concrete system
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@ Nekhoroshev theorem(Lochak'’s proof)
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@ Nekhoroshev theorem(Lochak'’s proof)

@ Treschev's Continuous averaging method
@ The proof

Jinxin Xue Continuous averaging proof of the Nekhoroshev theorem



Nekhoroshev Theorem(Lochak’s proof)

@ Local:
Analytic part: Neishtadt's single frequency averaging.
Geometric part.
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Nekhoroshev Theorem(Lochak’s proof) ometric part

analytical part

@ Local:
Analytic part: Neishtadt's single frequency averaging.
Geometric part.

@ From Local to global:
Number theoretical part: Dirichlet's simultaneous
approximation theorem.
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Nekhoroshev Theorem(Lochak’s proof)

Neishtadt's theorem on single frequency averaging

b =w(l)+f(1,0) ] d=90.e) +ealdv)
I =eg(l,6) (1,0) € R™ x T" J=c¢(J,e) +eB(J, )

Ifh=1, «,8~exp(—C/e)

C is determined by the complex singularity of 6 (Treschev).
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Nekhoroshev Theorem(Lochak’s proof) ometric part

analytical part

We need to fix a rational frequency w* € Q" and expand the
Hamiltonian in the following form:

H={l,w")+ G(I)+eH +eH
If we do the Fourier expansion of the perturbation eHy, then

_ , OH

H:{k,w*)y=0 t — V=0
(k,w™) , resonant, <w,89>

H: (k,w*) # 0, nonresonant
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Nekhoroshev Theorem(Lochak’s proof) netric part
part

Example

Consider frequency w* = (1,0, ...,0) € Q",

H=H(,0,0s,..0,), %0 (=0
H=H(,01,0,..,0,), %0 kg #£0
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Nekhoroshev Theorem(Lochak’s proof) metric part
| part

almost first integral

If we can kill the H term to be exponentially small, we get an
“almost first integral”
(W, 1)

In the sense that:

d

d RRLAGR) . OH(1,0)
dt

w*, ) = —¢( 20 ) = —e(w", 90

) = 0(e)

Over exponentially long time.
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Nekhoroshev Theorem(Lochak’s proof) The geometric part
analytical part

intersection of a hyperplane with energy surface

We have two first integrals: the Hamiltonian and (w*, /), we
consider their intersection.

{{w", (1(t) = kb)) = 0} ({{Ho(/()) = Ho(lo)}

{hyperplane} ﬂ{convex energy surface}

Jinxin Xue Continuous averaging proof of the Nekhoroshev theorem



Nekhoroshev Theorem(Lochak’s proof) The geometric part
analytical part

analytic part

Recall:
H = Ho(l)+eHi(1,0)

Split it in the form:
H=(w*1)+ G(I)+eH(I,0) + cH(l,0)

Goal: Use the continuous averaging, kill H to

ex _ 2
P\TMTRT

R : size of working region. |I| <R
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Nekhoroshev Theorem(Lochak’s proof) The geometric part
analytical part

From local to global:

Dirichlet theorem for simultaneous approximation:
Forany a € R",Q € R, and Q > 1.
There exists an integer g, 1 < g < Q, s.t.

lga — 27| < QY7
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Treschev's Continuous averaging

Derivation of continuous averaging

LrH = {H, F}
Hs = {H,F}

Change of variables vs. evolution of Hamiltonian
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Treschev's Continuous averaging

The Hilbert transform

Fourier expansion

k
Then Define: '
F(1,0) =i oxH*(1)e'*?
k
o = sign((k, "))
Example:
- eix _ e—ix
sinx = 57
eIX + e X
Cos X =
2
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Treschev's Continuous averaging

Figure
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Treschev's Continuous averaging
comparison with the iterative Lie method

H(1,0) = Ho(l) + cH1(1,0)

dH
E :‘CEFH: {H7€F}

1
efFH =H+ {H,eF} + SUH.eF}eF} +
= Ho + eHy + e{Ho, F} + O(£?)
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Treschev's Continuous averaging

cohomological equation,
Hy + {H07 F} =0

Fourier expansion gives:

Hi(1,0) =) " H(1)e™

kEZ

F(1,0) = 30 FX(1)e

kEZ
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Treschev's Continuous averaging

In fact, we are only able to solve
Hi— H® +{Ho,F} =0
Fourier coefficients:

H5 (1) + i(k,w)F* =0, k #0
H*(I)  OHo

w =

(k,w)y —

Fk=i
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Treschev's Continuous averaging

Continuous averaging for Nekhoroshev

Hs = —{F,H}
Hs = —{F,(w*, )} —{F,G} — {F,eH} — {F,cH}
_—

FI(S = _{S’Elv 'EI}

Fls = —{€H, (", 1)} — (€M, G} — {¢H.eH} — {¢F,<H)
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Treschev's Continuous averaging

Use the antisymmetricity of the Poisson bracket, we obtain the
following.

Hs = —2ic{H,H}

_ — +
Hy = —i{H", Ho} — ie{H" , H} — 2ie{H* H~}
Hs = i{H™, Ho} + ie{H~, H} — 2i{H+ H-}
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Treschev's Continuous averaging
Linearization

Hs =0

OHT 0G OH*
+ . + * _ » O L OFT
Hf = —i{H",(w", ) + G} = i(w", 80> 58
- 0G OH™

Hy = ifH (W 1)+ G) = —ifw, 20y 4

o0 ' " ""a1 o0

Jinxin Xue Continuous averaging proof of the Nekhoroshev theorem



Treschev's Continuous averaging

Property of the rational frequency

*

1
w* is a rational vector —(p1, p2, ..., Pn), Pi,q € Z.
q

So the period T of this vector is:
1
2w/ T = Eg.c.d.(pl,pz, vy Pn)

Those k's with (w*, k) # 0, give us

2T

1
k,w*)| = —|k. >
‘( , W >‘ q’ (P17P2a apn)’_ T
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Treschev's Continuous averaging

decay of Fourier coefficients, |

1. For (k,w*) >0, Hkei(k6)

L OH*
H; = I<UJ 7w>
Hé(ei(k,e) _ i(w*, %(eri(kﬂ)» _ _‘<k7w*>‘eri<k,0)
27

— HK(§) = e Ik Hk(0) < &= 77 |HK(0)|
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Treschev's Continuous averaging

decay of Fourier coefficients, Il

2. For (k,w*) < 0, Hke/(k0)

OH~
Hy = —i{w, S
1 I<W ? 89 >
H(é(ei<k,0) _ —i(w*, %(er/ﬂ(,e)» _ —|<k,w*>|eri<k’9>

27

— H*(0) = e IO Hk(0) < =77 |HK(0)]
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Treschev's Continuous averaging
imaginary flow

0G OH™
+ _ v on
e =51 a0
The imaginary flow,
do  .dG .

Characteristic method,

dH*
ds
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Treschev's Continuous averaging

imaginary flow: continued

HK i (k0) ~ a—Iklp itk 0(0)+iG'8)

— e~ |klp=(k,G'8) i(k,0(0))
|klp > |(k, G'6)]
Speed of the imaginary flow has upper bound
221 < MR

P
M+R

— i<

The Stopping time
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Treschev's Continuous averaging

estimate of constant

MTRS < p
2o
e T
2mp
— e MtRT
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Treschev's Continuous averaging

THANK YOU!
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