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Notation
Let (X, 1) be a standard probability space.

Let G be a countable discrete group acting by measure-preserving
transformations on (X, ).

The triple (G, X, 1) is a dynamical system .

Two systems (G, X1, u1) and (G, Xo, u2) are isomorphic if there exists a
measure-space isomorphism ¢ : X; — X with ¢(gx) = go(x) for a.e.
x € Xyandforall g € G.

Main Problem: Classify systems up to isomorphism.
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Bernoulli shifts

@ Let (K, k) be a standard probability space.
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Bernoulli shifts
@ Let (K, k) be a standard probability space.
@ K¢ ={x:G— K}.
@ Y% is the product measure on KC.

@ G acts on K€ by shifting. (gx)(f) = x(g~'f) for all
xe K% g, feg.
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Bernoulli shifts

@ Let (K, k) be a standard probability space.
@ K¢ ={x:G— K}.
@ Y% is the product measure on KC.

@ G acts on K€ by shifting. (gx)(f) = x(g~'f) for all
xe K% g, feg.

@ (G,KGC, k%) is the Bernoulli shift over G with base space (K, k).
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von Neumann'’s question
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von Neumann'’s question

If |K| = nand & is the uniform probability measure on K then
(G, K@, kC) is the full n-shift over G.
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von Neumann'’s question

If |K| = nand & is the uniform probability measure on K then
(G, K@, kC) is the full n-shift over G.

von Neumann’s question: Is the full 2-shift over Z isomorphic to the full
3-shift over Z7?

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics 4/42



Ideas from Information Theory

Let x € X be a point unknown to us. Let E C X.
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Let x € X be a point unknown to us. Let E C X.

Goal: quantify the “amount of information” we gain by being told that
x € E.

This amount, denoted /(E), should depend only on p(E). So write
I(E) = I(1(E)).-
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Ideas from Information Theory
Let x € X be a point unknown to us. Let E C X.

Goal: quantify the “amount of information” we gain by being told that
x € E.

This amount, denoted /(E), should depend only on p(E). So write
I(E) = I(u(E)).

I(t) for 0 < t < 1 should satisfy:
Q@ /(t)>0.

@ /(1) is continuous.

Q I(ts) = I(t) + I(s).

So I(t) = —log,(t) for some b > 1.

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics 5/42



Entropy

An observable is a measurable map ¢ : X — Ainto a finite (or
countable) set A.
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Entropy

An observable is a measurable map ¢ : X — Ainto a finite (or
countable) set A.

The Shannon entropy of ¢ is the average amount of information one
gains by learning the value of ¢. l.e.,

== u(o7"(@)1og (n(67"(@)).
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Entropy

An observable is a measurable map ¢ : X — Ainto a finite (or
countable) set A.

The Shannon entropy of ¢ is the average amount of information one
gains by learning the value of ¢. l.e.,

== > u(e”(@)log (n(s7'(a))).

acA

If¢o: X — Aand ¢ : X — B are two observables then their join is
defined by ¢ Vv ¢(x) := (¢(x),¥(x)) € Ax B.

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics

6/42



Entropy

An observable is a measurable map ¢ : X — A into a finite (or
countable) set A.

The Shannon entropy of ¢ is the average amount of information one
gains by learning the value of ¢. l.e.,

== > u(e”(@)log (n(s7'(a))).

acA

If¢o: X — Aand ¢ : X — B are two observables then their join is
defined by ¢ Vv ¢(x) := (¢(x),¥(x)) € Ax B.

Let T : X — X be measure-preserving. The entropy rate of ¢ w.r.t T is:

h(T,¢) = lim

1 ! :
n—oo 2N + 1H<_\/ 9o TI>'

I=—n
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Coding

Let (G, X, 1) be a system and ¢ : X — A an observable.
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Coding

Let (G, X, 1) be a system and ¢ : X — A an observable.

Define & : X — AG by &(x) := g — ¢(g~'x).
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Coding

Let (G, X, 1) be a system and ¢ : X — A an observable.

Define & : X — AG by &(x) := g — ¢(g~'x).

¢ is a generator if ® is an isomorphism from (G, X, 1) to (G, AC, b, p).
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Kolmogorov’s entropy

Theorem (Kolmogorov, 1958)

Let T : X — X be an automorphism of (X, n). If $ and+ are
finite-entropy generators for (Z, X, 1) = ((T), X, u) then
h(T,¢) = h(T, ).
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Kolmogorov’s entropy

Theorem (Kolmogorov, 1958)

Let T : X — X be an automorphism of (X, n). If $ and+ are
finite-entropy generators for (Z, X, 1) = ((T), X, u) then
h(T,¢) = h(T, ).

So h(Z, X, 1) := h(T, ¢) is the entropy of the action.

Theorem (Sinai, 1959)

If ¢ is any finite-entropy observable then h(T, ¢) < h(Z, X, 1). Hence
we may define the entropy of (Z, X, j1) to be sup, h(T, ¢).
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Bernoulli shifts

For a probability space (K, k), define the base entropy by

H(K, k) ==Y _ k(k)log (r(k)).

kekK
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Bernoulli shifts

For a probability space (K, k), define the base entropy by

H(K, k) ==Y _ k(k)log (r(k)).

kekK

A calculation reveals:

h(Z, K%, k%) = H(K, k).
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Bernoulli shifts

For a probability space (K, k), define the base entropy by

H(K, k) ==Y _ k(k)log (r(k)).

kekK

A calculation reveals:

h(Z, K%, k%) = H(K, k).

Theorem (Kolmogorov, 1958)

If (Z, K%, k%) is isomorphic to (Z, L%, \%) then H(K, k) = H(L,\). So
the full 2-shift is not isomorphic to the full 3-shift.
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Questions

@ Does the converse hold?

@ What if Z is replaced with some other group G?
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The Converse
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The Converse

Definition
A group G is Ornstein if whenever (K, k), (L, \) are two standard

probability spaces with H(x) = H()) then (G, K€, k%) is isomorphic to
(G, LG, \O).
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The Converse

Definition
A group G is Ornstein if whenever (K, k), (L, \) are two standard

probability spaces with H(x) = H()) then (G, K€, k%) is isomorphic to
(G, LG, \O).

@ No finite group is Ornstein.
@ Z is Ornstein [Ornstein, 1970].
@ Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].

@ If G contains an Ornstein subgroup H then G is Ornstein [Stepin,
1975].

@ |s every countably infinite group Ornstein?
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Classification

Theorem (Ornstein, 1970)
Bernoulli shifts over Z. are completely classified by their entropy.
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Classification

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action

of an amenable group on a probability space. Ann. Probability 3
(1975), no. 6, 1031-1037.
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(1975), no. 6, 1031-1037.

D. Ornstein and B. Weiss. Entropy and isomorphism theorems for
actions of amenable groups. J. Analyse Math. 48 (1987), 1—-141.
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Classification

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action

of an amenable group on a probability space. Ann. Probability 3
(1975), no. 6, 1031-1037.

D. Ornstein and B. Weiss. Entropy and isomorphism theorems for
actions of amenable groups. J. Analyse Math. 48 (1987), 1—-141.

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely
classified by their entropy (which equals their base measure entropy).

What if G is nonamenable?
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Factor maps

Definition
Let (G, X, 1), (G, Y,v) be two systems and ¢ : X — Y a measurable

map with ¢.u = v, ¢(gx) = go(x) fora.e. x e X and all g € G. Then ¢
is a factor map from (G, X, u) to (G, Y, v).
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Factor maps

Definition
Let (G, X, 1), (G, Y,v) be two systems and ¢ : X — Y a measurable

map with ¢.u = v, ¢(gx) = go(x) fora.e. x e X and all g € G. Then ¢
is a factor map from (G, X, u) to (G, Y, v).

Let G be amenable.

@ Entropy is nonincreasing under factor maps.
@ The full n-shift over G has entropy log(n).

= the full 2-shift over G cannot factor onto the full 4-shift over G.
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The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)

IfF = (a, b) is the rank 2 free group then the full 2-shift over IF factors
onto the full 4-shift overF.
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The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)

IfF = (a, b) is the rank 2 free group then the full 2-shift over IF factors
onto the full 4-shift overF.

Define ¢ : (Z/2Z2)F — (/27 x 7./27)F by
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The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)

IfF = (a, b) is the rank 2 free group then the full 2-shift over IF factors
onto the full 4-shift overF.

Define ¢ : (Z/2Z2)F — (/27 x 7./27)F by

6(x)(9) = (x(9) + x(ga). x(g) + x(gb)).
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More Counterexamples

Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every
Bernoulli shift over G.
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More Counterexamples

Theorem (Karen Ball, 2005)
If G has infinitely many ends then the 2-shift over G factors onto every
Bernoulli shift over G.

If G is any nonamenable group then there is some m > 0 such that the
2M-shift over G factors onto every Bernoulli shift over G.

Theorem

If G contains a nonabelian free subgroup then every nontrivial
Bernoulli shift over G factors onto every other Bernoulli shift over G.
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New Results

Theorem

If G is a sofic group (e.g., a linear group) then Kolmogorov’s direction
holds. l.e., if (G, K@, k9) is isomorphic to (G, L%, \C) then
H(K,x) = H(L,\).
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The case G = Z.

Let T : X — X be an automorphism of (X, ).
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Let T : X — X be an automorphism of (X, ).

Let ¢ : X — A be an observable.
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The case G = Z.
Let T : X — X be an automorphism of (X, ).
Let ¢ : X — A be an observable.

Let x € X be a typical element and consider the sequence

(.., (T~ x), 9(x), &(Tx),...).
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The case G = Z.
Let T : X — X be an automorphism of (X, ).
Let ¢ : X — A be an observable.

Let x € X be a typical element and consider the sequence

(.., (T~ x), 9(x), &(Tx),...).

The idea: For n > 0, count the number of sequences (ay, a, ..., an)
with elements a; € A that approximate the above sequence.
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Local statistics

Let W C Z be finite. (W stands for window )
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Local statistics
Let W C Z be finite. (W stands for window )
Define o : X — AW = Ax Ax ... x Aby

w

0" (x) = (S(T"X)) yew-
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Local statistics

Let W C Z be finite. (W stands for window )

Define ¢ : X — AW = Ax Ax ... x Aby
w

0" (x) = (S(T"X)) yew-

% 11 is a measure on AW that encodes the local statistics .
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Sequences

Lety : {1,...,n} — Abe a map.
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Sequences
Lety : {1,...,n} — Abe a map.

YW {1,...,n} — AW is defined by

DYG) = (00 + W) e
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Sequences
Lety : {1,...,n} — Abe a map.

oW {1,..., n} — AW is defined by

DYG) = (00 + W) e

(define it arbitrarily if j+w ¢ {1,...,n})
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Sequences
Lety : {1,...,n} — Abe a map.
oW {1,..., n} — AW is defined by
DY) = WG+ W) e
(define it arbitrarily if j+w ¢ {1,...,n})

Let u be the uniform measure on {1,...,n}. ¥ u is a measure on AW
that encodes the local statistics of the sequence (y(1),...,¢(n)) € A".
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Entropy as a growth rate

Let dw (o, 1) be the I'-distance between ¢V, and ¢/ u:
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Entropy as a growth rate

Let dw (o, 1) be the I'-distance between ¢V, and ¢/ u:

dw(o,0) == > |6 u(e) — ¢ u(a)|.

acAW
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Entropy as a growth rate

Let dw (o, 1) be the I'-distance between ¢V and v u

ol () — vV u(a)|.

dw(d, )=

acAW

Theorem

h(T,$) = inf inf lim —Iog’{zp (,...,n} = A : dw($,v) < e}

WCZ e>0 n—oo
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Sofic Groups

Let Sym(m) be the symmetric group on {1,..., m}.
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Sofic Groups

Let Sym(m) be the symmetric group on {1,..., m}.
Let G be a group and o : G — Sym(m) a map.

o is not necessarily a homomorphism!

For W C G, let G(W) c {1,..., m} be the set of all p such that

o(fg)p = o(f)o(g)p Vf,ge W withfg e W,
of)p # o(@p <f#geW.
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Sofic Groups

Let Sym(m) be the symmetric group on {1,..., m}.
Let G be a group and o : G — Sym(m) a map.

o is not necessarily a homomorphism!

For W C G, let G(W) c {1,..., m} be the set of all p such that

o(fg)p = o(f)o(g)p Vf,ge W withfg e W,
of)p # o(@p <f#geW.

oisa (W, e)-approximationto Gif |G(W)| > (1 —e)m.
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Sofic Groups

A sequence X = {0}, of maps o; : G — Sym(m;) is a sofic

approximation if o is an (W;, ¢;)-approximation with ¢; — 0 and
W, = G (ie., Uply N2, Wi = G).
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Sofic Groups

A sequence X = {0}, of maps o; : G — Sym(m;) is a sofic
approximation if o is an (W;, ¢;)-approximation with ¢; — 0 and
W — G (e, Ul NZ, Wi = G).

G is sofic if there exists a sofic approximation to G.

@ LEF groups (Gordon-Vershik)

@ (Gromov, 1999), (Weiss, 2000).

@ Residually finite groups are sofic. Hence all linear groups are
sofic.

@ Amenable groups are sofic.

@ Is every countable group sofic?
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Entropy for Sofic Groups
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Y = {0} be a sofic approximation to G where ¢; : G — Sym(m;),

¢ : X — A be a measurable map into a finite set.
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Entropy for Sofic Groups

Let (G, X, 1) be a system,

Y = {0} be a sofic approximation to G where ¢; : G — Sym(m;),
¢ : X — A be a measurable map into a finite set.

The idea: Count the number of observables ¢ : {1,...,m;} — Aso
that (G, [mj], u;,v) approximates (G, X, i, ¢).
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Approximating

It W c Gis finite, let 6": X — AW be the map ¢ (x) = (#(wx)) i
w
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Approximating

It W c Gis finite, let 6": X — AW be the map ¢ (x) = (#(wx)) i
w

Givenv : {1,....mj} = A »": {1,...,m} — AW is the map

oG = (v (ow)))

WGW.
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Approximating

It W c Gis finite, let 6": X — AW be the map ¢ (x) = (#(wx)) >
w

Givenv : {1,....mj} = A »": {1,...,m} — AW is the map

W) = (v(o(w))))

WGW.

Let dw (o, 1)) be the I'-distance between ¢V, and Y u.
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Entropy for sofic groups

. A i — : <
h(X,¢) = inf_inf limsup log [{v: {1,....mi} = A : dw(¢,¥) < e}\.
WCGe>0 m;
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Entropy for sofic groups

h(X,¢) = inf_inf limsup og|{v: {1.....mi} w(o.¥) < e}\.
WcCGex>0 i—o0 m;

Theorem

If $1 and ¢, are generating then h(X, ¢1) = h(Z, ¢2). So let
h(X%, G, X, 1) be this common number.
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Entropy for sofic groups

I {1, ... v — A <
h(X,¢) = inf_inf limsup og|{v: {1.....mi} dw(e, ¥) < e}\.
WcCGex>0 i—o0 m;

Theorem

If $1 and ¢, are generating then h(X, ¢1) = h(Z, ¢2). So let
h(X%, G, X, 1) be this common number.

Theorem
If G is amenable then h(X, G, X, 1) is the classical entropy of (G, X, 1)

v

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics 26/ 42



Entropy for sofic groups

I {1, ... v — A <
h(X,¢) = inf_inf limsup og|{v: {1.....mi} dw(e, ¥) < e}\.
WcCGex>0 i—o0 m;

Theorem

If $1 and ¢, are generating then h(X, ¢1) = h(Z, ¢2). So let
h(X%, G, X, 1) be this common number.

Theorem
If G is amenable then h(X, G, X, 1) is the classical entropy of (G, X, 1)

v

Theorem
h(Z, G, K9, K‘,G) = H(K, k).
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Proof sketch

Theorem

If $1 and ¢, are generating then h(X, ¢1) = h(X, ¢2). So let
h(x, G, X, 1) be this common number.
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Proof sketch

Theorem

If $1 and ¢, are generating then h(X, ¢1) = h(X, ¢2). So let
h(Xx, G, X, i) be this common number.

Two observables ¢ : X — A, ¢ : X — B are equivalent if the partitions
{¢p="(a) : ac A}, {¥(b) : bc B} agree up to measure zero.
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Theorem

If $1 and ¢, are generating then h(X, ¢1) = h(X, ¢2). So let
h(Xx, G, X, i) be this common number.

Two observables ¢ : X — A, ¢ : X — B are equivalent if the partitions
{¢p="(a) : ac A}, {¥(b) : bc B} agree up to measure zero.

Let P be the set of all equivalence classes of observables ¢ with
H(¢) < .
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Proof sketch

Theorem

If 1 and ¢ are generating then h(Z, 1) = h(X, ¢2). So let
h(Xx, G, X, i) be this common number.

Two observables ¢ : X — A, ¢ : X — B are equivalent if the partitions
{¢p="(a) : ac A}, {¥(b) : bc B} agree up to measure zero.

Let P be the set of all equivalence classes of observables ¢ with
H(¢) < .

Definition (Rohlin distance)

d(¢, ) := 2H(o V ¢) — H(¥) — H(¢) = H(¢ly) + H(|9)- J

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics 27/ 42



Proof sketch

Theorem

If 1 and ¢ are generating then h(Z, 1) = h(X, ¢2). So let
h(Xx, G, X, i) be this common number.

Two observables ¢ : X — A, ¢ : X — B are equivalent if the partitions
{¢p="(a) : ac A}, {¥(b) : bc B} agree up to measure zero.

Let P be the set of all equivalence classes of observables ¢ with
H(¢) < .

Definition (Rohlin distance)

d(¢, ) := 2H(o V ¢) — H(¥) — H(¢) = H(¢ly) + H(|9)- J
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Proof sketch

Definition
¢ refines ¢ if H(yp v ¢) = H(¢).
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Proof sketch

Definition

¢ refines ¢ if H(y Vv ¢) = H(¢). J
Definition

¢ and ¢ are combinatorially equivalent if there exists finite subsets

K, L c G such that ¢X refines ¥ and '’ refines ¢.
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Proof sketch

Theorem

If ¢ is a generator then its combinatorial equivalence class is dense in
the space of all generating observables.
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Proof sketch

Theorem

If ¢ is a generator then its combinatorial equivalence class is dense in
the space of all generating observables.

Lemma
h(%, ¢) is upper semi-continuous in ¢. J
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Proof sketch

Theorem

If ¢ is a generator then its combinatorial equivalence class is dense in
the space of all generating observables.

Lemma
h(%, ¢) is upper semi-continuous in ¢. J

Theorem
If » and ¢ are combinatorially equivalent then h(X, ¢) = h(X, ). J
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Proof sketch

Definition
¢ is a simple splitting of 1 if there exists f € G and an observable w
refined by ¢ such that

p=1vVwof.

¢ is a splitting of v if it can be obtained from 1 by a sequence of simple

splittings.

v
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Proof sketch

Definition
¢ is a simple splitting of 1 if there exists f € G and an observable w
refined by ¢ such that

p=1vVwof.

¢ is a splitting of v if it can be obtained from 1 by a sequence of simple
splittings.

v

Lemma

If  and ) are equivalent then there exists an observable w that is a
splitting of both ¢ and .
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Proof sketch

Definition
¢ is a simple splitting of 1 if there exists f € G and an observable w
refined by ¢ such that

p=1vVwof.

¢ is a splitting of v if it can be obtained from 1 by a sequence of simple
splittings.

o

Lemma

If  and ) are equivalent then there exists an observable w that is a
splitting of both ¢ and .

Proposition
If ¢ is a simple splitting of v then h(¥X, ¢) = h(¥Z, ).

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics 30/42



Applications: von Neumann algebras

A system (G, X, 1) gives rise in a natural way to a crossed product von
Neumann algebra L>(X, u) x G.
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Applications: von Neumann algebras

A system (G, X, 1) gives rise in a natural way to a crossed product von
Neumann algebra L>(X, u) x G.

If the action is ergodic and free and G is infinite then L>(X, ) x Gis a
Iy factor.

Major problem: classify these algebras up to isomorphism in terms of
the group/action data.
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Applications: von Neumann algebras

A system (G, X, 1) gives rise in a natural way to a crossed product von
Neumann algebra L*>(X, u) x G.

If the action is ergodic and free and G is infinite then L>(X, 1) x Gis a
Iy factor.

Major problem: classify these algebras up to isomorphism in terms of
the group/action data.

Theorem (Connes, 1976)

If G is infinite and amenable and the action G ~ (X, ) is free and

ergodic then L>=(X, 1) x G is hyperfinite. In particular, all such
algebras are isomorphic.
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Rigidity
Definition

(G1, X1, 1) and (Go, Xz, pup) are von Neumann equivalent (vNE) if
Lo(Xq, 1) x Gy = L®(Xo, p2) » Go.
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Rigidity

Definition

(G1, X1, 1) and (Go, Xz, pup) are von Neumann equivalent (vNE) if
Lo(Xq, 1) x Gy = L®(Xo, p2) » Go.

Theorem (Popa, 2006)

If G is an ICC property T group then any two von Neumann equivalent
Bernoulli shifts over G are isomorphic.
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Rigidity

Definition
(G1, X1, 1) and (Go, Xz, pup) are von Neumann equivalent (vNE) if
Lo(Xq, 1) x Gy = L®(Xo, p2) » Go.

Theorem (Popa, 2006)

If G is an ICC property T group then any two von Neumann equivalent
Bernoulli shifts over G are isomorphic.

Corollary

If, in addition, G is sofic and Ornstein then Bernoulli shifts over G are
classified up to vNE by base measure entropy. E.g., this occurs when
G = PSLy(Z) forn > 2.
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Applications: orbit equivalence

Definition

(Gi, X1, 1) is orbit equivalent (OE) to (Gz, Xz, p2) if there exists a
measure-space isomorphism ¢ : X; — X5 such that ¢(Gix) = Go¢(x)
for a.e. x € Xj.
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Applications: orbit equivalence

Definition

(G, X1, 1) is orbit equivalent (OE) to (Gp, Xz, u2) if there exists a
measure-space isomorphism ¢ : X; — X5 such that ¢(Gix) = Go¢(x)
for a.e. x € Xj.

Theorem (Dye 1959, Connes-Feldman-Weiss 1981)

If Gy and Go are amenable and infinite and their respective actions are
ergodic and free then (G, X1, 1) is OE to (Ga, Xo, u2).
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OE rigidity

Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes.
Assume3g+n—4>0and(g,n) ¢ {(1,2),(2,0)}. If (G, X, n) Is free
and ergodic then it is strongly orbitally rigid. l.e., if (Gz, X2, u12) is free,
ergodic and OE to (G, X, i) then it is isomorphic to (G, X, ).
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OE rigidity

Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes.
Assume3g+n—4>0and(g,n) ¢ {(1,2),(2,0)}. If (G, X, n) Is free
and ergodic then it is strongly orbitally rigid. l.e., if (Gz, X2, u12) is free,
ergodic and OE to (G, X, i) then it is isomorphic to (G, X, ).

Corollary

If G is as above then Bernoulli shifts over G are classified up to OE by
base measure entropy.
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Free Groups: a special case

LetF = (sy,...,8r). LetF acton (X, p).
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Free Groups: a special case
LetF = (sy,...,8r). LetF acton (X, p).

Given an observable ¢ : X — A, define

F(¢):=—(2r—1)H(¢) + > _H(¢V ¢os));

i=1

f(8) = irr17fF<¢B(e’”)).
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Free Groups: a special case
LetF = (sy,...,5r). Let Facton (X, p).
Given an observable ¢ : X — A, define
r
F(¢):=—@2r—1)H(¢) + Y _H($V os);
i=1

(@) := inf F(¢B(ev">).

Theorem

If 1 and ¢ are generating then f(¢1) = f(¢2). So we may define
f(F, X, 1) = f(¢1). Moreover, f(F, K¥, k¥) = H(K, k).
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Free Groups: a special case

Foreachn>1,leto,: F = (sq,...,s) — Sym(n) be chosen uniformly
at random.
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Free Groups: a special case

Foreachn>1,leto,: F = (sq,...,s) — Sym(n) be chosen uniformly
at random.
Define

o logE[[{w: {1,..,n} = At dw(6,) < ¢}
hy(¢) = infinf lim sup

W e>0 nooo n )
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Free Groups: a special case

Foreachn>1,leto,: F = (sq,...,s) — Sym(n) be chosen uniformly
at random.
Define

o logE[[{w: {1,..,n} = At dw(6,) < ¢}
hy(¢) = infinf lim sup

W e>0 nooo n )

Theorem

h.(¢) = f(¢). J
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A Markov chain example
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A Markov chain example

m | m
1€ ¢ 1-e
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The Cayley graph
1
"+

4
. i +
i 2}
r.*»

ST
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The Ising model

39/42
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Example

Let . be the probability measure on {magenta, brown}¥ determined
by this process.
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Example

Let . be the probability measure on {magenta, brown}¥ determined
by this process.

Let ¢ : {magenta, brown}* — {magenta, brown} be evaluation at the
identity.
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Example

Let . be the probability measure on {magenta, brown}¥ determined
by this process.

Let ¢ : {magenta, brown}* — {magenta, brown} be evaluation at the
identity.
Then

F(pe, ) = —2¢log(e) —2(1 — €) log(1 — €) — log(2).
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Example

Let . be the probability measure on {magenta, brown}¥ determined
by this process.

Let ¢ : {magenta, brown}* — {magenta, brown} be evaluation at the
identity.

Then
F(pe, ) = —2¢log(e) — 2(1 — €)log(1 — €) — log(2).

Theorem

F(pe, ¢) = hy (IF, {magenta, brown}¥, ,ue).
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Systems of algebraic origin
Let G be a compact separable group and let T : G — G be a group
automorphism fixing a closed normal subgroup V.
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Systems of algebraic origin
Let G be a compact separable group and let T : G — G be a group
automorphism fixing a closed normal subgroup V.

Theorem (Yuzvinskii, 1965)
h(T,G,Haarg) = h(T,N,Haary) + h(T,G /N, Haarg ).
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Systems of algebraic origin
Let G be a compact separable group and let T : G — G be a group
automorphism fixing a closed normal subgroup V.

Theorem (Yuzvinskii, 1965)
h(T,G,Haarg) = h(T,N,Haary) + h(T,G /N, Haarg ).

Theorem (Bowen 2009, Gutman 2010)

If T acts by automorphisms on G with closed normal subgroup N then
f(F,G,Haarg) = f(F, N, Haary') + f(F,G /N, Haarg ).
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Systems of algebraic origin

Let G be a compact separable group and let T : G — G be a group
automorphism fixing a closed normal subgroup V.

Theorem (Yuzvinskii, 1965)
h(T,G,Haarg) = h(T,N,Haary) + h(T,G /N, Haarg ).

Theorem (Bowen 2009, Gutman 2010)

If T acts by automorphisms on G with closed normal subgroup N then
f(F,G,Haarg) = f(F, N, Haary') + f(F,G /N, Haarg ).

Let G = (Z/2Z)F. Let N = {0,1}. By Ornstein-Weiss’ example,
G/IN =G x G = (Z/2Z x T.|2Z)".
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Systems of algebraic origin

Let G be a compact separable group and let T : G — G be a group
automorphism fixing a closed normal subgroup V.

Theorem (Yuzvinskii, 1965)
h(T,G,Haarg) = h(T,N,Haary) + h(T,G /N, Haarg ).

Theorem (Bowen 2009, Gutman 2010)

If T acts by automorphisms on G with closed normal subgroup N then
f(F,G,Haarg) = f(F, N, Haary') + f(F,G /N, Haarg ).

Let G = (Z/2Z)F. Let N = {0,1}. By Ornstein-Weiss’ example,
G/IN =G x G = (Z/2Z x T.|2Z)".

f(F,G,Haarg) = f(F,N,HaarN)+f(IF,g/N,Haarg/N)
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Systems of algebraic origin

Let G be a compact separable group and let T : G — G be a group
automorphism fixing a closed normal subgroup V.

Theorem (Yuzvinskii, 1965)
h(T,G,Haarg) = h(T,N ,Haary') + h(T, Q/N,Haarg/N).

Theorem (Bowen 2009, Gutman 2010)

If T acts by automorphisms on G with closed normal subgroup N then
f(F,G,Haarg) = f(F, N, Haary') + f(F,G /N, Haarg ).

Let G = (Z/2Z)F. Let N = {0,1}. By Ornstein-Weiss’ example,
G/IN =G x G =(Z)2Z x 7.J2T)".

f(F,G,Haarg) = f(IF, N',Haary) + f(F,G/N Haarg, )
log(2) = —log(2)+ log(4).
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Further Results & Open Questions

@ Ornstein theory for free groups: factors of Bernoulli shifts, factors
onto Bernoulli shifts, mixing Markov chains, etc.
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@ Random regular graphs: bisection width, independence ratio,
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Further Results & Open Questions

@ Ornstein theory for free groups: factors of Bernoulli shifts, factors
onto Bernoulli shifts, mixing Markov chains, etc.

@ Random regular graphs: bisection width, independence ratio,
chromatic number, etc.

@ Topological entropy. (D. Kerr, H. Li)
@ Noncommutative entropy.

@ Extend the f-invariant to more general groups.
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