Entropy in Measurable Dynamics Lewis Bowen Fields Institute, October 2010 Let (X, μ) be a standard probability space. Let (X, μ) be a standard probability space. Let G be a countable discrete group acting by measure-preserving transformations on (X, μ) . Let (X, μ) be a standard probability space. Let G be a countable discrete group acting by measure-preserving transformations on (X, μ) . The triple (G, X, μ) is a *dynamical system*. Let (X, μ) be a standard probability space. Let G be a countable discrete group acting by measure-preserving transformations on (X, μ) . The triple (G, X, μ) is a *dynamical system*. Two systems (G, X_1, μ_1) and (G, X_2, μ_2) are *isomorphic* if there exists a measure-space isomorphism $\phi: X_1 \to X_2$ with $\phi(gx) = g\phi(x)$ for a.e. $x \in X_1$ and for all $g \in G$. Main Problem: Classify systems up to isomorphism. • Let (K, κ) be a standard probability space. • Let (K, κ) be a standard probability space. $$\bullet \ K^G = \{x : G \to K\}.$$ • Let (K, κ) be a standard probability space. $$\bullet \ K^G = \{x : G \to K\}.$$ • κ^G is the product measure on K^G . • Let (K, κ) be a standard probability space. $$\bullet \ K^G = \{x : G \to K\}.$$ • κ^G is the product measure on K^G . • G acts on K^G by shifting. $(gx)(f) = x(g^{-1}f)$ for all $x \in K^G, g, f \in G$. - Let (K, κ) be a standard probability space. - $\bullet \ K^G = \{x : G \to K\}.$ - κ^G is the product measure on K^G . - G acts on K^G by shifting. $(gx)(f) = x(g^{-1}f)$ for all $x \in K^G, g, f \in G$. - (G, K^G, κ^G) is the Bernoulli shift over G with base space (K, κ) . # von Neumann's question ## von Neumann's question If |K| = n and κ is the uniform probability measure on K then (G, K^G, κ^G) is the *full n-shift* over G. ## von Neumann's question If |K| = n and κ is the uniform probability measure on K then (G, K^G, κ^G) is the *full n-shift* over G. von Neumann's question: Is the full 2-shift over $\mathbb Z$ isomorphic to the full 3-shift over $\mathbb Z$? Let $x \in X$ be a point unknown to us. Let $E \subset X$. Let $x \in X$ be a point unknown to us. Let $E \subset X$. Goal: quantify the "amount of information" we gain by being told that $x \in E$. Let $x \in X$ be a point unknown to us. Let $E \subset X$. Goal: quantify the "amount of information" we gain by being told that $x \in E$. This amount, denoted I(E), should depend only on $\mu(E)$. So write $I(E) = I(\mu(E))$. Let $x \in X$ be a point unknown to us. Let $E \subset X$. Goal: quantify the "amount of information" we gain by being told that $x \in E$. This amount, denoted I(E), should depend only on $\mu(E)$. So write $I(E) = I(\mu(E))$. I(t) for $0 \le t \le 1$ should satisfy: - **1** $I(t) \geq 0$. - I(t) is continuous. - **3** I(ts) = I(t) + I(s). So $I(t) = -\log_b(t)$ for some b > 1. An *observable* is a measurable map $\phi: X \to A$ into a finite (or countable) set A. An *observable* is a measurable map $\phi: X \to A$ into a finite (or countable) set A. The *Shannon entropy* of ϕ is the average amount of information one gains by learning the value of ϕ . I.e., $$H(\phi) = -\sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a))\right).$$ An *observable* is a measurable map $\phi: X \to A$ into a finite (or countable) set A. The *Shannon entropy* of ϕ is the average amount of information one gains by learning the value of ϕ . I.e., $$H(\phi) = -\sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a))\right).$$ If $\phi: X \to A$ and $\psi: X \to B$ are two observables then their join is defined by $\phi \lor \psi(x) := (\phi(x), \psi(x)) \in A \times B$. An *observable* is a measurable map $\phi: X \to A$ into a finite (or countable) set A. The *Shannon entropy* of ϕ is the average amount of information one gains by learning the value of ϕ . I.e., $$H(\phi) = -\sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a))\right).$$ If $\phi: X \to A$ and $\psi: X \to B$ are two observables then their join is defined by $\phi \lor \psi(x) := (\phi(x), \psi(x)) \in A \times B$. Let $T: X \to X$ be measure-preserving. The *entropy rate* of ϕ w.r.t T is: $$h(T,\phi) = \lim_{n\to\infty} \frac{1}{2n+1} H\Big(\bigvee_{i=-n}^n \phi \circ T^i\Big).$$ ## Coding Let (G, X, μ) be a system and $\phi : X \to A$ an observable. # Coding Let (G, X, μ) be a system and $\phi : X \to A$ an observable. Define $\Phi: X \to A^G$ by $\Phi(x) := g \mapsto \phi(g^{-1}x)$. # Coding Let (G, X, μ) be a system and $\phi : X \to A$ an observable. Define $\Phi: X \to A^G$ by $\Phi(x) := g \mapsto \phi(g^{-1}x)$. ϕ is a generator if Φ is an isomorphism from (G, X, μ) to $(G, A^G, \Phi_*\mu)$. ## Kolmogorov's entropy ### Theorem (Kolmogorov, 1958) Let $T: X \to X$ be an automorphism of (X, μ) . If ϕ and ψ are finite-entropy generators for $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$ then $h(T, \phi) = h(T, \psi)$. ## Kolmogorov's entropy ### Theorem (Kolmogorov, 1958) Let $T: X \to X$ be an automorphism of (X, μ) . If ϕ and ψ are finite-entropy generators for $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$ then $h(T, \phi) = h(T, \psi)$. So $h(\mathbb{Z}, X, \mu) := h(T, \phi)$ is the entropy of the action. # Kolmogorov's entropy ## Theorem (Kolmogorov, 1958) Let $T: X \to X$ be an automorphism of (X, μ) . If ϕ and ψ are finite-entropy generators for $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$ then $h(T, \phi) = h(T, \psi)$. So $h(\mathbb{Z}, X, \mu) := h(T, \phi)$ is the entropy of the action. ## Theorem (Sinai, 1959) If ϕ is any finite-entropy observable then $h(T,\phi) \leq h(\mathbb{Z},X,\mu)$. Hence we may define the entropy of (\mathbb{Z},X,μ) to be $\sup_{\phi} h(T,\phi)$. For a probability space (K, κ) , define the *base entropy* by $$H(K, \kappa) := -\sum_{k \in K} \kappa(k) \log (\kappa(k)).$$ For a probability space (K, κ) , define the *base entropy* by $$H(K, \kappa) := -\sum_{k \in K} \kappa(k) \log (\kappa(k)).$$ A calculation reveals: $$h(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}) = H(K, \kappa).$$ For a probability space (K, κ) , define the *base entropy* by $$H(K, \kappa) := -\sum_{k \in K} \kappa(k) \log (\kappa(k)).$$ A calculation reveals: $$h(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}) = H(K, \kappa).$$ ## Theorem (Kolmogorov, 1958) If $(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}})$ is isomorphic to $(\mathbb{Z}, L^{\mathbb{Z}}, \lambda^{\mathbb{Z}})$ then $H(K, \kappa) = H(L, \lambda)$. So the full 2-shift is not isomorphic to the full 3-shift. ### Questions Does the converse hold? • What if \mathbb{Z} is replaced with some other group G? #### **Definition** A group G is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) . #### **Definition** A group G is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) . No finite group is Ornstein. #### **Definition** A group G is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) . - No finite group is Ornstein. - Z is Ornstein [Ornstein, 1970]. #### **Definition** A group G is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) . - No finite group is Ornstein. - Z is Ornstein [Ornstein, 1970]. - Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987]. #### The Converse #### **Definition** A group G is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) . - No finite group is Ornstein. - Z is Ornstein [Ornstein, 1970]. - Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987]. - If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975]. #### The Converse #### **Definition** A group G is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) . - No finite group is Ornstein. - ullet Z is Ornstein [Ornstein, 1970]. - Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987]. - If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975]. - Is every countably infinite group Ornstein? Theorem (Ornstein, 1970) Bernoulli shifts over \mathbb{Z} are completely classified by their entropy. J. C. Kieffer. *A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space*. Ann. Probability 3 (1975), no. 6, 1031–1037. - J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037. - D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141. - J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037. - D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141. #### **Theorem** If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy). - J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037. - D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141. #### **Theorem** If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy). What if G is nonamenable? #### **Definition** Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) . #### **Definition** Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) . Let G be amenable. #### **Definition** Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) . #### Let G be amenable. Entropy is nonincreasing under factor maps. #### Definition Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) . #### Let G be amenable. - Entropy is nonincreasing under factor maps. - The full *n*-shift over *G* has entropy log(*n*). #### Definition Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) . #### Let G be amenable. - Entropy is nonincreasing under factor maps. - The full *n*-shift over *G* has entropy log(*n*). - \implies the full 2-shift over G cannot factor onto the full 4-shift over G. # The Ornstein-Weiss Example ## Theorem (Ornstein-Weiss, 1987) If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F} . # The Ornstein-Weiss Example ## Theorem (Ornstein-Weiss, 1987) If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F} . Define $\phi:(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$ by # The Ornstein-Weiss Example ## Theorem (Ornstein-Weiss, 1987) If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F} . Define $$\phi: (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$ by $$\phi(x)(g) = \Big(x(g) + x(ga), x(g) + x(gb)\Big).$$ # More Counterexamples ## Theorem (Karen Ball, 2005) If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G. # More Counterexamples ## Theorem (Karen Ball, 2005) If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G. If G is any nonamenable group then there is some m > 0 such that the 2^m -shift over G factors onto every Bernoulli shift over G. # More Counterexamples ## Theorem (Karen Ball, 2005) If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G. If G is any nonamenable group then there is some m > 0 such that the 2^m -shift over G factors onto every Bernoulli shift over G. #### **Theorem** If G contains a nonabelian free subgroup then every nontrivial Bernoulli shift over G factors onto every other Bernoulli shift over G. #### **New Results** #### **Theorem** If G is a sofic group (e.g., a linear group) then Kolmogorov's direction holds. I.e., if (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) then $H(K, \kappa) = H(L, \lambda)$. Let $T: X \to X$ be an automorphism of (X, μ) . Let $T: X \to X$ be an automorphism of (X, μ) . Let $\phi: X \to A$ be an observable. Let $T: X \to X$ be an automorphism of (X, μ) . Let $\phi: X \to A$ be an observable. Let $x \in X$ be a typical element and consider the sequence $(\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)$. Let $T: X \to X$ be an automorphism of (X, μ) . Let $\phi: X \to A$ be an observable. Let $x \in X$ be a typical element and consider the sequence $(\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)$. The idea: For n > 0, count the number of sequences (a_1, a_2, \dots, a_n) with elements $a_i \in A$ that approximate the above sequence. #### Local statistics Let $W \subset \mathbb{Z}$ be finite. (W stands for window) #### Local statistics Let $W \subset \mathbb{Z}$ be finite. (W stands for window) Define $$\phi^W:X\to A^W=\underbrace{A\times A\times \ldots \times A}_W$$ by $$\phi^W(x):=\big(\phi(T^wx)\big)_{w\in W}.$$ #### Local statistics Let $W \subset \mathbb{Z}$ be finite. (W stands for window) Define $$\phi^W:X\to A^W=\underbrace{A\times A\times \ldots \times A}_W$$ by $$\phi^W(x):=\big(\phi(T^wx)\big)_{w\in W}.$$ $\phi_*^{W}\mu$ is a measure on A^{W} that encodes the local statistics . Let $\psi : \{1, \dots, n\} \rightarrow A$ be a map. Let $\psi : \{1, \dots, n\} \rightarrow A$ be a map. $$\psi^{W}:\{\mathbf{1},\ldots,n\} \to \mathbf{A}^{W} \text{ is defined by }$$ $$\psi^{W}(j) = (\psi(j+w))_{w \in W}.$$ Let $\psi : \{1, \dots, n\} \to A$ be a map. $\psi^{\textit{W}}:\{\textbf{1},\dots,\textbf{n}\}\rightarrow \textit{A}^{\textit{W}} \text{ is defined by }$ $$\psi^{W}(j) = (\psi(j+w))_{w \in W}.$$ (define it arbitrarily if $j + w \notin \{1, ..., n\}$) Let $\psi : \{1, \dots, n\} \rightarrow A$ be a map. $\psi^{\textit{W}}:\{\textbf{1},\dots,\textbf{n}\}\rightarrow \textit{A}^{\textit{W}} \text{ is defined by }$ $$\psi^{W}(j) = (\psi(j+w))_{w \in W}.$$ (define it arbitrarily if $j + w \notin \{1, ..., n\}$) Let u be the uniform measure on $\{1,\ldots,n\}$. $\psi_*^W u$ is a measure on A^W that encodes the local statistics of the sequence $(\psi(1),\ldots,\psi(n))\in A^n$. # Entropy as a growth rate Let $d_W(\phi, \psi)$ be the I^1 -distance between $\phi_*^W \mu$ and $\psi_*^W u$: # Entropy as a growth rate Let $d_W(\phi, \psi)$ be the I^1 -distance between $\phi_*^W \mu$ and $\psi_*^W u$: $$d_{W}(\phi, \psi) := \sum_{\alpha \in A^{W}} \left| \phi_{*}^{W} \mu(\alpha) - \psi_{*}^{W} u(\alpha) \right|.$$ # Entropy as a growth rate Let $d_W(\phi, \psi)$ be the I^1 -distance between $\phi_*^W \mu$ and $\psi_*^W u$: $$d_{W}(\phi,\psi) := \sum_{\alpha \in A^{W}} \left| \phi_{*}^{W} \mu(\alpha) - \psi_{*}^{W} u(\alpha) \right|.$$ #### **Theorem** $$h(T,\phi) = \inf_{W \subset \mathbb{Z}} \inf_{\epsilon > 0} \lim_{n \to \infty} \frac{1}{n} \log \left| \left\{ \psi : \{1,\ldots,n\} \to A : d_W(\phi,\psi) < \epsilon \right\} \right|.$$ # Sofic Groups Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$. # Sofic Groups Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$. Let *G* be a group and $\sigma: G \to \operatorname{Sym}(m)$ a map. # Sofic Groups Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$. Let G be a group and $\sigma: G \to \operatorname{Sym}(m)$ a map. σ is not necessarily a homomorphism! Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$. Let G be a group and $\sigma: G \to \operatorname{Sym}(m)$ a map. σ is not necessarily a homomorphism! For $W \subset G$, let $\mathcal{G}(W) \subset \{1, \dots, m\}$ be the set of all p such that $$\sigma(fg)p = \sigma(f)\sigma(g)p \ \forall f,g \in W \text{ with } fg \in W, \\ \sigma(f)p \neq \sigma(g)p \leftarrow f \neq g \in W.$$ Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$. Let G be a group and $\sigma: G \to \operatorname{Sym}(m)$ a map. σ is **not** necessarily a homomorphism! For $W \subset G$, let $\mathcal{G}(W) \subset \{1, \dots, m\}$ be the set of all p such that $$\sigma(fg)p = \sigma(f)\sigma(g)p \ \forall f,g \in W \text{ with } fg \in W, \\ \sigma(f)p \neq \sigma(g)p \leftarrow f \neq g \in W.$$ σ is a (W, ϵ) -approximation to G if $|\mathcal{G}(W)| \geq (1 - \epsilon)m$. A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \operatorname{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (W_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$). A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \operatorname{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (W_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$). A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \operatorname{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (W_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$). G is *sofic* if there exists a sofic approximation to G. LEF groups (Gordon-Vershik) A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \operatorname{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (W_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$). - LEF groups (Gordon-Vershik) - (Gromov, 1999), (Weiss, 2000). A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \operatorname{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (W_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$). - LEF groups (Gordon-Vershik) - (Gromov, 1999), (Weiss, 2000). - Residually finite groups are sofic. Hence all linear groups are sofic. A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \operatorname{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (W_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$). - LEF groups (Gordon-Vershik) - (Gromov, 1999), (Weiss, 2000). - Residually finite groups are sofic. Hence all linear groups are sofic. - Amenable groups are sofic. A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \operatorname{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (W_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$). - LEF groups (Gordon-Vershik) - (Gromov, 1999), (Weiss, 2000). - Residually finite groups are sofic. Hence all linear groups are sofic. - Amenable groups are sofic. - Is every countable group sofic? Let (G, X, μ) be a system, Let (G, X, μ) be a system, $\Sigma = \{\sigma_i\}$ be a sofic approximation to G where $\sigma_i : G \to \operatorname{Sym}(m_i)$, Let (G, X, μ) be a system, $\Sigma = \{\sigma_i\}$ be a sofic approximation to G where $\sigma_i : G \to \operatorname{Sym}(m_i)$, $\phi: X \to A$ be a measurable map into a finite set. Let (G, X, μ) be a system, $\Sigma = \{\sigma_i\}$ be a sofic approximation to G where $\sigma_i : G \to \operatorname{Sym}(m_i)$, $\phi: X \to A$ be a measurable map into a finite set. The idea: Count the number of observables $\psi : \{1, \dots, m_i\} \to A$ so that $(G, [m_i], u_i, \psi)$ approximates (G, X, μ, ϕ) . # **Approximating** If $W \subset G$ is finite, let $\phi^W : X \to A^W$ be the map $\phi^W(x) := (\phi(wx))_{w \in W}$. # **Approximating** If $W \subset G$ is finite, let $\phi^W : X \to A^W$ be the map $\phi^W(x) := (\phi(wx))_{w \in W}$. Given $$\psi: \{1, \dots, m_i\} \to A$$, $\psi^W: \{1, \dots, m_i\} \to A^W$ is the map $$\psi^W(j) := \left(\psi(\sigma(w)j)\right)_{w \in W}.$$ # **Approximating** If $W \subset G$ is finite, let $\phi^W : X \to A^W$ be the map $\phi^W(x) := (\phi(wx))_{w \in W}$. Given $$\psi: \{1, \dots, m_i\} \to A$$, $\psi^W: \{1, \dots, m_i\} \to A^W$ is the map $$\psi^W(j) := \left(\psi(\sigma(w)j)\right)_{w \in W}.$$ Let $d_W(\phi, \psi)$ be the I^1 -distance between $\phi_*^W \mu$ and $\psi_*^W u$. $$h(\Sigma,\phi) := \inf_{W \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log \left| \{\psi : \{1,\ldots,m_i\} \to A : d_W(\phi,\psi) \le \epsilon\} \right|}{m_i}.$$ $$h\big(\Sigma,\phi\big):=\inf_{W\subset G}\inf_{\epsilon>0}\limsup_{i\to\infty}\frac{\log\left|\{\psi:\{1,\ldots,m_i\}\to A\ :\ d_W(\phi,\psi)\leq\epsilon\}\right|}{m_i}.$$ #### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. $$h\big(\Sigma,\phi\big):=\inf_{W\subset G}\inf_{\epsilon>0}\limsup_{i\to\infty}\frac{\log\left|\{\psi:\{1,\ldots,m_i\}\to A\ :\ d_W(\phi,\psi)\leq\epsilon\}\right|}{m_i}.$$ #### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. #### **Theorem** If G is amenable then $h(\Sigma, G, X, \mu)$ is the classical entropy of (G, X, μ) . $$h\big(\Sigma,\phi\big):=\inf_{W\subset G}\inf_{\epsilon>0}\limsup_{i\to\infty}\frac{\log\left|\{\psi:\{1,\ldots,m_i\}\to A\ :\ d_W(\phi,\psi)\leq\epsilon\}\right|}{m_i}.$$ ### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. ### **Theorem** If G is amenable then $h(\Sigma, G, X, \mu)$ is the classical entropy of (G, X, μ) . ### **Theorem** $$h(\Sigma, G, K^G, \kappa^G) = H(K, \kappa).$$ #### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. #### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. Two observables $\phi: X \to A$, $\psi: X \to B$ are equivalent if the partitions $\{\phi^{-1}(a): a \in A\}, \{\psi^{-1}(b): b \in B\}$ agree up to measure zero. #### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. Two observables $\phi: X \to A$, $\psi: X \to B$ are equivalent if the partitions $\{\phi^{-1}(a): a \in A\}, \{\psi^{-1}(b): b \in B\}$ agree up to measure zero. Let \mathcal{P} be the set of all equivalence classes of observables ϕ with $\mathcal{H}(\phi)<\infty$. #### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. Two observables $\phi: X \to A$, $\psi: X \to B$ are equivalent if the partitions $\{\phi^{-1}(a): a \in A\}$, $\{\psi^{-1}(b): b \in B\}$ agree up to measure zero. Let \mathcal{P} be the set of all equivalence classes of observables ϕ with $\mathcal{H}(\phi) < \infty$. ### Definition (Rohlin distance) $$d(\phi,\psi) := 2H(\phi \vee \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).$$ #### **Theorem** If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number. Two observables $\phi: X \to A$, $\psi: X \to B$ are equivalent if the partitions $\{\phi^{-1}(a): a \in A\}$, $\{\psi^{-1}(b): b \in B\}$ agree up to measure zero. Let \mathcal{P} be the set of all equivalence classes of observables ϕ with $\mathcal{H}(\phi) < \infty$. ### Definition (Rohlin distance) $$d(\phi,\psi) := 2H(\phi \vee \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).$$ ### Definition ϕ refines ψ if $H(\psi \lor \phi) = H(\phi)$. ### **Definition** ϕ refines ψ if $H(\psi \lor \phi) = H(\phi)$. ### **Definition** ϕ and ψ are *combinatorially equivalent* if there exists finite subsets $K, L \subset G$ such that ϕ^K refines ψ and ψ^L refines ϕ . #### **Theorem** If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables. #### **Theorem** If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables. #### Lemma $h(\Sigma, \phi)$ is upper semi-continuous in ϕ . #### **Theorem** If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables. #### Lemma $h(\Sigma, \phi)$ is upper semi-continuous in ϕ . ### **Theorem** If ϕ and ψ are combinatorially equivalent then $h(\Sigma, \phi) = h(\Sigma, \psi)$. #### **Definition** ϕ is a *simple splitting* of ψ if there exists $f \in G$ and an observable ω refined by ψ such that $$\phi = \psi \vee \omega \circ f.$$ ϕ is a *splitting* of ψ if it can be obtained from ψ by a sequence of simple splittings. ### **Definition** ϕ is a *simple splitting* of ψ if there exists $f \in G$ and an observable ω refined by ψ such that $$\phi = \psi \vee \omega \circ \mathbf{f}.$$ ϕ is a *splitting* of ψ if it can be obtained from ψ by a sequence of simple splittings. #### Lemma If ϕ and ψ are equivalent then there exists an observable ω that is a splitting of both ϕ and ψ . ### **Definition** ϕ is a *simple splitting* of ψ if there exists $f \in G$ and an observable ω refined by ψ such that $$\phi = \psi \vee \omega \circ f.$$ ϕ is a *splitting* of ψ if it can be obtained from ψ by a sequence of simple splittings. #### Lemma If ϕ and ψ are equivalent then there exists an observable ω that is a splitting of both ϕ and ψ . ### **Proposition** If ϕ is a simple splitting of ψ then $h(\Sigma, \phi) = h(\Sigma, \psi)$. ## Applications: von Neumann algebras A system (G, X, μ) gives rise in a natural way to a *crossed product von Neumann algebra* $L^{\infty}(X, \mu) \rtimes G$. ## Applications: von Neumann algebras A system (G, X, μ) gives rise in a natural way to a *crossed product von Neumann algebra* $L^{\infty}(X, \mu) \rtimes G$. If the action is ergodic and free and G is infinite then $L^{\infty}(X, \mu) \rtimes G$ is a II_1 factor. Major problem: classify these algebras up to isomorphism in terms of the group/action data. # Applications: von Neumann algebras A system (G, X, μ) gives rise in a natural way to a *crossed product von Neumann algebra* $L^{\infty}(X, \mu) \rtimes G$. If the action is ergodic and free and G is infinite then $L^{\infty}(X, \mu) \rtimes G$ is a II_1 factor. Major problem: classify these algebras up to isomorphism in terms of the group/action data. ### Theorem (Connes, 1976) If G is infinite and amenable and the action $G \curvearrowright (X, \mu)$ is free and ergodic then $L^{\infty}(X, \mu) \rtimes G$ is hyperfinite. In particular, all such algebras are isomorphic. # Rigidity #### **Definition** (G_1, X_1, μ_1) and (G_2, X_2, μ_2) are von Neumann equivalent (vNE) if $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$. # Rigidity ### **Definition** (G_1, X_1, μ_1) and (G_2, X_2, μ_2) are von Neumann equivalent (vNE) if $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$. ### Theorem (Popa, 2006) If G is an ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic. # Rigidity ### **Definition** (G_1, X_1, μ_1) and (G_2, X_2, μ_2) are von Neumann equivalent (vNE) if $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$. ### Theorem (Popa, 2006) If G is an ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic. ### Corollary If, in addition, G is sofic and Ornstein then Bernoulli shifts over G are classified up to vNE by base measure entropy. E.g., this occurs when $G = PSL_n(\mathbb{Z})$ for n > 2. # Applications: orbit equivalence #### **Definition** (G_1, X_1, μ_1) is orbit equivalent (OE) to (G_2, X_2, μ_2) if there exists a measure-space isomorphism $\phi: X_1 \to X_2$ such that $\phi(G_1x) = G_2\phi(x)$ for a.e. $x \in X_1$. # Applications: orbit equivalence #### Definition (G_1, X_1, μ_1) is orbit equivalent (OE) to (G_2, X_2, μ_2) if there exists a measure-space isomorphism $\phi: X_1 \to X_2$ such that $\phi(G_1x) = G_2\phi(x)$ for a.e. $x \in X_1$. ### Theorem (Dye 1959, Connes-Feldman-Weiss 1981) If G_1 and G_2 are amenable and infinite and their respective actions are ergodic and free then (G_1, X_1, μ_1) is OE to (G_2, X_2, μ_2) . # **OE** rigidity ### Theorem (Kida, 2008) Let G be the mapping class group of a genus g surface with n holes. Assume 3g + n - 4 > 0 and $(g, n) \notin \{(1, 2), (2, 0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if (G_2, X_2, μ_2) is free, ergodic and OE to (G, X, μ) then it is isomorphic to (G, X, μ) . # **OE** rigidity ### Theorem (Kida, 2008) Let G be the mapping class group of a genus g surface with n holes. Assume 3g + n - 4 > 0 and $(g, n) \notin \{(1, 2), (2, 0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if (G_2, X_2, μ_2) is free, ergodic and OE to (G, X, μ) then it is isomorphic to (G, X, μ) . ### Corollary If G is as above then Bernoulli shifts over G are classified up to OE by base measure entropy. Let $\mathbb{F} = \langle s_1, \dots, s_r \rangle$. Let \mathbb{F} act on (X, μ) . Let $\mathbb{F} = \langle s_1, \dots, s_r \rangle$. Let \mathbb{F} act on (X, μ) . Given an observable $\phi: X \to A$, define $$F(\phi) := -(2r-1)H(\phi) + \sum_{i=1}^{r} H(\phi \lor \phi \circ s_i);$$ $$f(\phi) := \inf_{n} F(\phi^{B(e,n)}).$$ Let $\mathbb{F} = \langle s_1, \dots, s_r \rangle$. Let \mathbb{F} act on (X, μ) . Given an observable $\phi: X \to A$, define $$F(\phi) := -(2r-1)H(\phi) + \sum_{i=1}^{r} H(\phi \lor \phi \circ s_i);$$ $$f(\phi) := \inf_{n} F\left(\phi^{B(e,n)}\right).$$ #### **Theorem** If ϕ_1 and ϕ_2 are generating then $f(\phi_1) = f(\phi_2)$. So we may define $f(\mathbb{F}, X, \mu) = f(\phi_1)$. Moreover, $f(\mathbb{F}, K^{\mathbb{F}}, \kappa^{\mathbb{F}}) = H(K, \kappa)$. For each $n \ge 1$, let $\sigma_n : \mathbb{F} = \langle s_1, \dots, s_r \rangle \to \operatorname{Sym}(n)$ be chosen uniformly at random. For each $n \ge 1$, let $\sigma_n : \mathbb{F} = \langle s_1, \dots, s_r \rangle \to \operatorname{Sym}(n)$ be chosen uniformly at random. Define $$h_*(\phi) := \inf_{W} \inf_{\epsilon > 0} \limsup_{n o \infty} rac{\log \mathbb{E} \Big[ig| \{ \psi : \{1, \dots, n\} o A \ : \ d_W(\phi, \psi) \le \epsilon \} ig| \Big]}{n}.$$ For each $n \ge 1$, let $\sigma_n : \mathbb{F} = \langle s_1, \dots, s_r \rangle \to \operatorname{Sym}(n)$ be chosen uniformly at random. #### Define $$h_*(\phi) := \inf_{W} \inf_{\epsilon > 0} \limsup_{n \to \infty} \frac{\log \mathbb{E}\Big[\big| \{\psi : \{1, \dots, n\} \to A : d_W(\phi, \psi) \le \epsilon\} \big| \Big]}{n}$$ ### **Theorem** $$h_*(\phi) = f(\phi).$$ # A Markov chain example # A Markov chain example # The Cayley graph # The Ising model Let μ_{ϵ} be the probability measure on $\{\text{magenta, brown}\}^{\mathbb{F}}$ determined by this process. Let μ_{ϵ} be the probability measure on $\{\text{magenta, brown}\}^{\mathbb{F}}$ determined by this process. Let $\phi: \{ \text{magenta, brown} \}^{\mathbb{F}} \to \{ \text{magenta, brown} \}$ be evaluation at the identity. Let μ_{ϵ} be the probability measure on $\{\text{magenta, brown}\}^{\mathbb{F}}$ determined by this process. Let $\phi: \{ \text{magenta, brown} \}^{\mathbb{F}} \to \{ \text{magenta, brown} \}$ be evaluation at the identity. Then $$F(\mu_{\epsilon}, \phi) = -2\epsilon \log(\epsilon) - 2(1 - \epsilon) \log(1 - \epsilon) - \log(2).$$ Let μ_{ϵ} be the probability measure on $\{\text{magenta, brown}\}^{\mathbb{F}}$ determined by this process. Let $\phi: \{ \text{magenta, brown} \}^{\mathbb{F}} \to \{ \text{magenta, brown} \}$ be evaluation at the identity. Then $$F(\mu_{\epsilon}, \phi) = -2\epsilon \log(\epsilon) - 2(1 - \epsilon) \log(1 - \epsilon) - \log(2).$$ ### **Theorem** $$F(\mu_{\epsilon}, \phi) = h_*(\mathbb{F}, \{magenta, brown\}^{\mathbb{F}}, \mu_{\epsilon}).$$ Let $\mathcal G$ be a compact separable group and let $T:\mathcal G\to\mathcal G$ be a group automorphism fixing a closed normal subgroup $\mathcal N.$ Let $\mathcal G$ be a compact separable group and let $T:\mathcal G\to\mathcal G$ be a group automorphism fixing a closed normal subgroup $\mathcal N.$ ### Theorem (Yuzvinskii, 1965) $$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$ Let $\mathcal G$ be a compact separable group and let $T:\mathcal G\to\mathcal G$ be a group automorphism fixing a closed normal subgroup $\mathcal N.$ ### Theorem (Yuzvinskii, 1965) $$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$ ### Theorem (Bowen 2009, Gutman 2010) Let $\mathcal G$ be a compact separable group and let $\mathcal T:\mathcal G\to\mathcal G$ be a group automorphism fixing a closed normal subgroup $\mathcal N.$ ## Theorem (Yuzvinskii, 1965) $$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$ ### Theorem (Bowen 2009, Gutman 2010) Let $$\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$. Let $\mathcal{N}=\{\mathbf{0},\mathbf{1}\}$. By Ornstein-Weiss' example, $$\mathcal{G}/\mathcal{N}\cong\mathcal{G}\times\mathcal{G}=(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}.$$ Let $\mathcal G$ be a compact separable group and let $T:\mathcal G\to\mathcal G$ be a group automorphism fixing a closed normal subgroup $\mathcal N.$ ## Theorem (Yuzvinskii, 1965) $$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$ ### Theorem (Bowen 2009, Gutman 2010) Let $$\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$. Let $\mathcal{N}=\{\mathbf{0},\mathbf{1}\}$. By Ornstein-Weiss' example, $$\mathcal{G}/\mathcal{N}\cong\mathcal{G}\times\mathcal{G}=(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}.$$ $$f(\mathbb{F}, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, \operatorname{Haar}_{\mathcal{G}/\mathcal{N}})$$ Let $\mathcal G$ be a compact separable group and let $T:\mathcal G\to\mathcal G$ be a group automorphism fixing a closed normal subgroup $\mathcal N.$ ### Theorem (Yuzvinskii, 1965) $$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$ ### Theorem (Bowen 2009, Gutman 2010) Let $$\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$. Let $\mathcal{N}=\{\mathbf{0},\mathbf{1}\}$. By Ornstein-Weiss' example, $$\mathcal{G}/\mathcal{N}\cong\mathcal{G}\times\mathcal{G}=(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}.$$ $$f(\mathbb{F}, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, \operatorname{Haar}_{\mathcal{G}/\mathcal{N}})$$ $\log(2) = -\log(2) + \log(4).$ Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc. - Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc. - Random regular graphs: bisection width, independence ratio, chromatic number, etc. - Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc. - Random regular graphs: bisection width, independence ratio, chromatic number, etc. - Topological entropy. (D. Kerr, H. Li) - Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc. - Random regular graphs: bisection width, independence ratio, chromatic number, etc. - Topological entropy. (D. Kerr, H. Li) - Noncommutative entropy. - Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc. - Random regular graphs: bisection width, independence ratio, chromatic number, etc. - Topological entropy. (D. Kerr, H. Li) - Noncommutative entropy. - Extend the f-invariant to more general groups.