## Entropy in Measurable Dynamics

Lewis Bowen

Fields Institute, October 2010

Let  $(X, \mu)$  be a standard probability space.

Let  $(X, \mu)$  be a standard probability space.

Let G be a countable discrete group acting by measure-preserving transformations on  $(X, \mu)$ .

Let  $(X, \mu)$  be a standard probability space.

Let G be a countable discrete group acting by measure-preserving transformations on  $(X, \mu)$ .

The triple  $(G, X, \mu)$  is a *dynamical system*.

Let  $(X, \mu)$  be a standard probability space.

Let G be a countable discrete group acting by measure-preserving transformations on  $(X, \mu)$ .

The triple  $(G, X, \mu)$  is a *dynamical system*.

Two systems  $(G, X_1, \mu_1)$  and  $(G, X_2, \mu_2)$  are *isomorphic* if there exists a measure-space isomorphism  $\phi: X_1 \to X_2$  with  $\phi(gx) = g\phi(x)$  for a.e.  $x \in X_1$  and for all  $g \in G$ .

Main Problem: Classify systems up to isomorphism.

• Let  $(K, \kappa)$  be a standard probability space.

• Let  $(K, \kappa)$  be a standard probability space.

$$\bullet \ K^G = \{x : G \to K\}.$$

• Let  $(K, \kappa)$  be a standard probability space.

$$\bullet \ K^G = \{x : G \to K\}.$$

•  $\kappa^G$  is the product measure on  $K^G$ .

• Let  $(K, \kappa)$  be a standard probability space.

$$\bullet \ K^G = \{x : G \to K\}.$$

•  $\kappa^G$  is the product measure on  $K^G$ .

• G acts on  $K^G$  by shifting.  $(gx)(f) = x(g^{-1}f)$  for all  $x \in K^G, g, f \in G$ .

- Let  $(K, \kappa)$  be a standard probability space.
- $\bullet \ K^G = \{x : G \to K\}.$
- $\kappa^G$  is the product measure on  $K^G$ .
- G acts on  $K^G$  by shifting.  $(gx)(f) = x(g^{-1}f)$  for all  $x \in K^G, g, f \in G$ .
- $(G, K^G, \kappa^G)$  is the Bernoulli shift over G with base space  $(K, \kappa)$ .

# von Neumann's question

## von Neumann's question

If |K| = n and  $\kappa$  is the uniform probability measure on K then  $(G, K^G, \kappa^G)$  is the *full n-shift* over G.

## von Neumann's question

If |K| = n and  $\kappa$  is the uniform probability measure on K then  $(G, K^G, \kappa^G)$  is the *full n-shift* over G.

von Neumann's question: Is the full 2-shift over  $\mathbb Z$  isomorphic to the full 3-shift over  $\mathbb Z$ ?

Let  $x \in X$  be a point unknown to us. Let  $E \subset X$ .

Let  $x \in X$  be a point unknown to us. Let  $E \subset X$ .

Goal: quantify the "amount of information" we gain by being told that  $x \in E$ .

Let  $x \in X$  be a point unknown to us. Let  $E \subset X$ .

Goal: quantify the "amount of information" we gain by being told that  $x \in E$ .

This amount, denoted I(E), should depend only on  $\mu(E)$ . So write  $I(E) = I(\mu(E))$ .

Let  $x \in X$  be a point unknown to us. Let  $E \subset X$ .

Goal: quantify the "amount of information" we gain by being told that  $x \in E$ .

This amount, denoted I(E), should depend only on  $\mu(E)$ . So write  $I(E) = I(\mu(E))$ .

I(t) for  $0 \le t \le 1$  should satisfy:

- **1**  $I(t) \geq 0$ .
- I(t) is continuous.
- **3** I(ts) = I(t) + I(s).

So  $I(t) = -\log_b(t)$  for some b > 1.

An *observable* is a measurable map  $\phi: X \to A$  into a finite (or countable) set A.

An *observable* is a measurable map  $\phi: X \to A$  into a finite (or countable) set A.

The *Shannon entropy* of  $\phi$  is the average amount of information one gains by learning the value of  $\phi$ . I.e.,

$$H(\phi) = -\sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a))\right).$$

An *observable* is a measurable map  $\phi: X \to A$  into a finite (or countable) set A.

The *Shannon entropy* of  $\phi$  is the average amount of information one gains by learning the value of  $\phi$ . I.e.,

$$H(\phi) = -\sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a))\right).$$

If  $\phi: X \to A$  and  $\psi: X \to B$  are two observables then their join is defined by  $\phi \lor \psi(x) := (\phi(x), \psi(x)) \in A \times B$ .

An *observable* is a measurable map  $\phi: X \to A$  into a finite (or countable) set A.

The *Shannon entropy* of  $\phi$  is the average amount of information one gains by learning the value of  $\phi$ . I.e.,

$$H(\phi) = -\sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a))\right).$$

If  $\phi: X \to A$  and  $\psi: X \to B$  are two observables then their join is defined by  $\phi \lor \psi(x) := (\phi(x), \psi(x)) \in A \times B$ .

Let  $T: X \to X$  be measure-preserving. The *entropy rate* of  $\phi$  w.r.t T is:

$$h(T,\phi) = \lim_{n\to\infty} \frac{1}{2n+1} H\Big(\bigvee_{i=-n}^n \phi \circ T^i\Big).$$

## Coding

Let  $(G, X, \mu)$  be a system and  $\phi : X \to A$  an observable.

# Coding

Let  $(G, X, \mu)$  be a system and  $\phi : X \to A$  an observable.

Define  $\Phi: X \to A^G$  by  $\Phi(x) := g \mapsto \phi(g^{-1}x)$ .

# Coding

Let  $(G, X, \mu)$  be a system and  $\phi : X \to A$  an observable.

Define  $\Phi: X \to A^G$  by  $\Phi(x) := g \mapsto \phi(g^{-1}x)$ .

 $\phi$  is a generator if  $\Phi$  is an isomorphism from  $(G, X, \mu)$  to  $(G, A^G, \Phi_*\mu)$ .

## Kolmogorov's entropy

### Theorem (Kolmogorov, 1958)

Let  $T: X \to X$  be an automorphism of  $(X, \mu)$ . If  $\phi$  and  $\psi$  are finite-entropy generators for  $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$  then  $h(T, \phi) = h(T, \psi)$ .

## Kolmogorov's entropy

### Theorem (Kolmogorov, 1958)

Let  $T: X \to X$  be an automorphism of  $(X, \mu)$ . If  $\phi$  and  $\psi$  are finite-entropy generators for  $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$  then  $h(T, \phi) = h(T, \psi)$ .

So  $h(\mathbb{Z}, X, \mu) := h(T, \phi)$  is the entropy of the action.

# Kolmogorov's entropy

## Theorem (Kolmogorov, 1958)

Let  $T: X \to X$  be an automorphism of  $(X, \mu)$ . If  $\phi$  and  $\psi$  are finite-entropy generators for  $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$  then  $h(T, \phi) = h(T, \psi)$ . So  $h(\mathbb{Z}, X, \mu) := h(T, \phi)$  is the entropy of the action.

## Theorem (Sinai, 1959)

If  $\phi$  is any finite-entropy observable then  $h(T,\phi) \leq h(\mathbb{Z},X,\mu)$ . Hence we may define the entropy of  $(\mathbb{Z},X,\mu)$  to be  $\sup_{\phi} h(T,\phi)$ .

For a probability space  $(K, \kappa)$ , define the *base entropy* by

$$H(K, \kappa) := -\sum_{k \in K} \kappa(k) \log (\kappa(k)).$$

For a probability space  $(K, \kappa)$ , define the *base entropy* by

$$H(K, \kappa) := -\sum_{k \in K} \kappa(k) \log (\kappa(k)).$$

A calculation reveals:

$$h(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}) = H(K, \kappa).$$

For a probability space  $(K, \kappa)$ , define the *base entropy* by

$$H(K, \kappa) := -\sum_{k \in K} \kappa(k) \log (\kappa(k)).$$

A calculation reveals:

$$h(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}) = H(K, \kappa).$$

## Theorem (Kolmogorov, 1958)

If  $(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}})$  is isomorphic to  $(\mathbb{Z}, L^{\mathbb{Z}}, \lambda^{\mathbb{Z}})$  then  $H(K, \kappa) = H(L, \lambda)$ . So the full 2-shift is not isomorphic to the full 3-shift.

### Questions

Does the converse hold?

• What if  $\mathbb{Z}$  is replaced with some other group G?

#### **Definition**

A group G is *Ornstein* if whenever  $(K, \kappa)$ ,  $(L, \lambda)$  are two standard probability spaces with  $H(\kappa) = H(\lambda)$  then  $(G, K^G, \kappa^G)$  is isomorphic to  $(G, L^G, \lambda^G)$ .

#### **Definition**

A group G is *Ornstein* if whenever  $(K, \kappa)$ ,  $(L, \lambda)$  are two standard probability spaces with  $H(\kappa) = H(\lambda)$  then  $(G, K^G, \kappa^G)$  is isomorphic to  $(G, L^G, \lambda^G)$ .

No finite group is Ornstein.

#### **Definition**

A group G is *Ornstein* if whenever  $(K, \kappa)$ ,  $(L, \lambda)$  are two standard probability spaces with  $H(\kappa) = H(\lambda)$  then  $(G, K^G, \kappa^G)$  is isomorphic to  $(G, L^G, \lambda^G)$ .

- No finite group is Ornstein.
- Z is Ornstein [Ornstein, 1970].

#### **Definition**

A group G is *Ornstein* if whenever  $(K, \kappa)$ ,  $(L, \lambda)$  are two standard probability spaces with  $H(\kappa) = H(\lambda)$  then  $(G, K^G, \kappa^G)$  is isomorphic to  $(G, L^G, \lambda^G)$ .

- No finite group is Ornstein.
- Z is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].

#### The Converse

#### **Definition**

A group G is *Ornstein* if whenever  $(K, \kappa)$ ,  $(L, \lambda)$  are two standard probability spaces with  $H(\kappa) = H(\lambda)$  then  $(G, K^G, \kappa^G)$  is isomorphic to  $(G, L^G, \lambda^G)$ .

- No finite group is Ornstein.
- Z is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975].

#### The Converse

#### **Definition**

A group G is *Ornstein* if whenever  $(K, \kappa)$ ,  $(L, \lambda)$  are two standard probability spaces with  $H(\kappa) = H(\lambda)$  then  $(G, K^G, \kappa^G)$  is isomorphic to  $(G, L^G, \lambda^G)$ .

- No finite group is Ornstein.
- ullet Z is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975].
- Is every countably infinite group Ornstein?

Theorem (Ornstein, 1970)

Bernoulli shifts over  $\mathbb{Z}$  are completely classified by their entropy.

J. C. Kieffer. *A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space*. Ann. Probability 3 (1975), no. 6, 1031–1037.

- J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037.
- D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141.

- J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037.
- D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141.

#### **Theorem**

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

- J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037.
- D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141.

#### **Theorem**

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

What if G is nonamenable?

#### **Definition**

Let  $(G, X, \mu)$ ,  $(G, Y, \nu)$  be two systems and  $\phi : X \to Y$  a measurable map with  $\phi_*\mu = \nu$ ,  $\phi(gx) = g\phi(x)$  for a.e.  $x \in X$  and all  $g \in G$ . Then  $\phi$  is a *factor map* from  $(G, X, \mu)$  to  $(G, Y, \nu)$ .

#### **Definition**

Let  $(G, X, \mu)$ ,  $(G, Y, \nu)$  be two systems and  $\phi : X \to Y$  a measurable map with  $\phi_*\mu = \nu$ ,  $\phi(gx) = g\phi(x)$  for a.e.  $x \in X$  and all  $g \in G$ . Then  $\phi$  is a *factor map* from  $(G, X, \mu)$  to  $(G, Y, \nu)$ .

Let G be amenable.

#### **Definition**

Let  $(G, X, \mu)$ ,  $(G, Y, \nu)$  be two systems and  $\phi : X \to Y$  a measurable map with  $\phi_*\mu = \nu$ ,  $\phi(gx) = g\phi(x)$  for a.e.  $x \in X$  and all  $g \in G$ . Then  $\phi$  is a *factor map* from  $(G, X, \mu)$  to  $(G, Y, \nu)$ .

#### Let G be amenable.

Entropy is nonincreasing under factor maps.

#### Definition

Let  $(G, X, \mu)$ ,  $(G, Y, \nu)$  be two systems and  $\phi : X \to Y$  a measurable map with  $\phi_*\mu = \nu$ ,  $\phi(gx) = g\phi(x)$  for a.e.  $x \in X$  and all  $g \in G$ . Then  $\phi$  is a *factor map* from  $(G, X, \mu)$  to  $(G, Y, \nu)$ .

#### Let G be amenable.

- Entropy is nonincreasing under factor maps.
- The full *n*-shift over *G* has entropy log(*n*).

#### Definition

Let  $(G, X, \mu)$ ,  $(G, Y, \nu)$  be two systems and  $\phi : X \to Y$  a measurable map with  $\phi_*\mu = \nu$ ,  $\phi(gx) = g\phi(x)$  for a.e.  $x \in X$  and all  $g \in G$ . Then  $\phi$  is a *factor map* from  $(G, X, \mu)$  to  $(G, Y, \nu)$ .

#### Let G be amenable.

- Entropy is nonincreasing under factor maps.
- The full *n*-shift over *G* has entropy log(*n*).
- $\implies$  the full 2-shift over G cannot factor onto the full 4-shift over G.

# The Ornstein-Weiss Example

## Theorem (Ornstein-Weiss, 1987)

If  $\mathbb{F} = \langle a, b \rangle$  is the rank 2 free group then the full 2-shift over  $\mathbb{F}$  factors onto the full 4-shift over  $\mathbb{F}$ .

# The Ornstein-Weiss Example

## Theorem (Ornstein-Weiss, 1987)

If  $\mathbb{F} = \langle a, b \rangle$  is the rank 2 free group then the full 2-shift over  $\mathbb{F}$  factors onto the full 4-shift over  $\mathbb{F}$ .

Define  $\phi:(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$  by

# The Ornstein-Weiss Example

## Theorem (Ornstein-Weiss, 1987)

If  $\mathbb{F} = \langle a, b \rangle$  is the rank 2 free group then the full 2-shift over  $\mathbb{F}$  factors onto the full 4-shift over  $\mathbb{F}$ .

Define 
$$\phi: (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$
 by 
$$\phi(x)(g) = \Big(x(g) + x(ga), x(g) + x(gb)\Big).$$

# More Counterexamples

## Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.

# More Counterexamples

## Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.

If G is any nonamenable group then there is some m > 0 such that the  $2^m$ -shift over G factors onto every Bernoulli shift over G.

# More Counterexamples

## Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.

If G is any nonamenable group then there is some m > 0 such that the  $2^m$ -shift over G factors onto every Bernoulli shift over G.

#### **Theorem**

If G contains a nonabelian free subgroup then every nontrivial Bernoulli shift over G factors onto every other Bernoulli shift over G.

#### **New Results**

#### **Theorem**

If G is a sofic group (e.g., a linear group) then Kolmogorov's direction holds. I.e., if  $(G, K^G, \kappa^G)$  is isomorphic to  $(G, L^G, \lambda^G)$  then  $H(K, \kappa) = H(L, \lambda)$ .

Let  $T: X \to X$  be an automorphism of  $(X, \mu)$ .

Let  $T: X \to X$  be an automorphism of  $(X, \mu)$ .

Let  $\phi: X \to A$  be an observable.

Let  $T: X \to X$  be an automorphism of  $(X, \mu)$ .

Let  $\phi: X \to A$  be an observable.

Let  $x \in X$  be a typical element and consider the sequence  $(\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)$ .

Let  $T: X \to X$  be an automorphism of  $(X, \mu)$ .

Let  $\phi: X \to A$  be an observable.

Let  $x \in X$  be a typical element and consider the sequence  $(\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)$ .

The idea: For n > 0, count the number of sequences  $(a_1, a_2, \dots, a_n)$  with elements  $a_i \in A$  that approximate the above sequence.

#### Local statistics

Let  $W \subset \mathbb{Z}$  be finite. (W stands for window)

#### Local statistics

Let  $W \subset \mathbb{Z}$  be finite. (W stands for window)

Define 
$$\phi^W:X\to A^W=\underbrace{A\times A\times \ldots \times A}_W$$
 by 
$$\phi^W(x):=\big(\phi(T^wx)\big)_{w\in W}.$$

#### Local statistics

Let  $W \subset \mathbb{Z}$  be finite. (W stands for window)

Define 
$$\phi^W:X\to A^W=\underbrace{A\times A\times \ldots \times A}_W$$
 by 
$$\phi^W(x):=\big(\phi(T^wx)\big)_{w\in W}.$$

 $\phi_*^{W}\mu$  is a measure on  $A^{W}$  that encodes the local statistics .

Let  $\psi : \{1, \dots, n\} \rightarrow A$  be a map.

Let  $\psi : \{1, \dots, n\} \rightarrow A$  be a map.

$$\psi^{W}:\{\mathbf{1},\ldots,n\} \to \mathbf{A}^{W} \text{ is defined by }$$

$$\psi^{W}(j) = (\psi(j+w))_{w \in W}.$$

Let  $\psi : \{1, \dots, n\} \to A$  be a map.

 $\psi^{\textit{W}}:\{\textbf{1},\dots,\textbf{n}\}\rightarrow \textit{A}^{\textit{W}} \text{ is defined by }$ 

$$\psi^{W}(j) = (\psi(j+w))_{w \in W}.$$

(define it arbitrarily if  $j + w \notin \{1, ..., n\}$ )

Let  $\psi : \{1, \dots, n\} \rightarrow A$  be a map.

 $\psi^{\textit{W}}:\{\textbf{1},\dots,\textbf{n}\}\rightarrow \textit{A}^{\textit{W}} \text{ is defined by }$ 

$$\psi^{W}(j) = (\psi(j+w))_{w \in W}.$$

(define it arbitrarily if  $j + w \notin \{1, ..., n\}$ )

Let u be the uniform measure on  $\{1,\ldots,n\}$ .  $\psi_*^W u$  is a measure on  $A^W$  that encodes the local statistics of the sequence  $(\psi(1),\ldots,\psi(n))\in A^n$ .

# Entropy as a growth rate

Let  $d_W(\phi, \psi)$  be the  $I^1$ -distance between  $\phi_*^W \mu$  and  $\psi_*^W u$ :

# Entropy as a growth rate

Let  $d_W(\phi, \psi)$  be the  $I^1$ -distance between  $\phi_*^W \mu$  and  $\psi_*^W u$ :

$$d_{W}(\phi, \psi) := \sum_{\alpha \in A^{W}} \left| \phi_{*}^{W} \mu(\alpha) - \psi_{*}^{W} u(\alpha) \right|.$$

# Entropy as a growth rate

Let  $d_W(\phi, \psi)$  be the  $I^1$ -distance between  $\phi_*^W \mu$  and  $\psi_*^W u$ :

$$d_{W}(\phi,\psi) := \sum_{\alpha \in A^{W}} \left| \phi_{*}^{W} \mu(\alpha) - \psi_{*}^{W} u(\alpha) \right|.$$

#### **Theorem**

$$h(T,\phi) = \inf_{W \subset \mathbb{Z}} \inf_{\epsilon > 0} \lim_{n \to \infty} \frac{1}{n} \log \left| \left\{ \psi : \{1,\ldots,n\} \to A : d_W(\phi,\psi) < \epsilon \right\} \right|.$$

# Sofic Groups

Let Sym(m) be the symmetric group on  $\{1, \ldots, m\}$ .

# Sofic Groups

Let Sym(m) be the symmetric group on  $\{1, \ldots, m\}$ .

Let *G* be a group and  $\sigma: G \to \operatorname{Sym}(m)$  a map.

# Sofic Groups

Let Sym(m) be the symmetric group on  $\{1, \ldots, m\}$ .

Let G be a group and  $\sigma: G \to \operatorname{Sym}(m)$  a map.

 $\sigma$  is not necessarily a homomorphism!

Let Sym(m) be the symmetric group on  $\{1, \ldots, m\}$ .

Let G be a group and  $\sigma: G \to \operatorname{Sym}(m)$  a map.

 $\sigma$  is not necessarily a homomorphism!

For  $W \subset G$ , let  $\mathcal{G}(W) \subset \{1, \dots, m\}$  be the set of all p such that

$$\sigma(fg)p = \sigma(f)\sigma(g)p \ \forall f,g \in W \text{ with } fg \in W, \\
\sigma(f)p \neq \sigma(g)p \leftarrow f \neq g \in W.$$

Let Sym(m) be the symmetric group on  $\{1, \ldots, m\}$ .

Let G be a group and  $\sigma: G \to \operatorname{Sym}(m)$  a map.

 $\sigma$  is **not** necessarily a homomorphism!

For  $W \subset G$ , let  $\mathcal{G}(W) \subset \{1, \dots, m\}$  be the set of all p such that

$$\sigma(fg)p = \sigma(f)\sigma(g)p \ \forall f,g \in W \text{ with } fg \in W, \\
\sigma(f)p \neq \sigma(g)p \leftarrow f \neq g \in W.$$

 $\sigma$  is a  $(W, \epsilon)$ -approximation to G if  $|\mathcal{G}(W)| \geq (1 - \epsilon)m$ .

A sequence  $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$  of maps  $\sigma_i : G \to \operatorname{Sym}(m_i)$  is a *sofic* approximation if  $\sigma_i$  is an  $(W_i, \epsilon_i)$ -approximation with  $\epsilon_i \to 0$  and  $W_i \to G$  (i.e.,  $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$ ).

A sequence  $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$  of maps  $\sigma_i : G \to \operatorname{Sym}(m_i)$  is a *sofic* approximation if  $\sigma_i$  is an  $(W_i, \epsilon_i)$ -approximation with  $\epsilon_i \to 0$  and  $W_i \to G$  (i.e.,  $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$ ).

A sequence  $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$  of maps  $\sigma_i : G \to \operatorname{Sym}(m_i)$  is a *sofic* approximation if  $\sigma_i$  is an  $(W_i, \epsilon_i)$ -approximation with  $\epsilon_i \to 0$  and  $W_i \to G$  (i.e.,  $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$ ).

G is *sofic* if there exists a sofic approximation to G.

LEF groups (Gordon-Vershik)

A sequence  $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$  of maps  $\sigma_i : G \to \operatorname{Sym}(m_i)$  is a *sofic* approximation if  $\sigma_i$  is an  $(W_i, \epsilon_i)$ -approximation with  $\epsilon_i \to 0$  and  $W_i \to G$  (i.e.,  $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$ ).

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).

A sequence  $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$  of maps  $\sigma_i : G \to \operatorname{Sym}(m_i)$  is a *sofic* approximation if  $\sigma_i$  is an  $(W_i, \epsilon_i)$ -approximation with  $\epsilon_i \to 0$  and  $W_i \to G$  (i.e.,  $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$ ).

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.

A sequence  $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$  of maps  $\sigma_i : G \to \operatorname{Sym}(m_i)$  is a *sofic* approximation if  $\sigma_i$  is an  $(W_i, \epsilon_i)$ -approximation with  $\epsilon_i \to 0$  and  $W_i \to G$  (i.e.,  $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$ ).

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
- Amenable groups are sofic.

A sequence  $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$  of maps  $\sigma_i : G \to \operatorname{Sym}(m_i)$  is a *sofic* approximation if  $\sigma_i$  is an  $(W_i, \epsilon_i)$ -approximation with  $\epsilon_i \to 0$  and  $W_i \to G$  (i.e.,  $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$ ).

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
- Amenable groups are sofic.
- Is every countable group sofic?

Let  $(G, X, \mu)$  be a system,

Let  $(G, X, \mu)$  be a system,

 $\Sigma = \{\sigma_i\}$  be a sofic approximation to G where  $\sigma_i : G \to \operatorname{Sym}(m_i)$ ,

Let  $(G, X, \mu)$  be a system,

 $\Sigma = \{\sigma_i\}$  be a sofic approximation to G where  $\sigma_i : G \to \operatorname{Sym}(m_i)$ ,

 $\phi: X \to A$  be a measurable map into a finite set.

Let  $(G, X, \mu)$  be a system,

 $\Sigma = \{\sigma_i\}$  be a sofic approximation to G where  $\sigma_i : G \to \operatorname{Sym}(m_i)$ ,

 $\phi: X \to A$  be a measurable map into a finite set.

The idea: Count the number of observables  $\psi : \{1, \dots, m_i\} \to A$  so that  $(G, [m_i], u_i, \psi)$  approximates  $(G, X, \mu, \phi)$ .

# **Approximating**

If  $W \subset G$  is finite, let  $\phi^W : X \to A^W$  be the map  $\phi^W(x) := (\phi(wx))_{w \in W}$ .

# **Approximating**

If  $W \subset G$  is finite, let  $\phi^W : X \to A^W$  be the map  $\phi^W(x) := (\phi(wx))_{w \in W}$ .

Given 
$$\psi: \{1, \dots, m_i\} \to A$$
,  $\psi^W: \{1, \dots, m_i\} \to A^W$  is the map 
$$\psi^W(j) := \left(\psi(\sigma(w)j)\right)_{w \in W}.$$

# **Approximating**

If  $W \subset G$  is finite, let  $\phi^W : X \to A^W$  be the map  $\phi^W(x) := (\phi(wx))_{w \in W}$ .

Given 
$$\psi: \{1, \dots, m_i\} \to A$$
,  $\psi^W: \{1, \dots, m_i\} \to A^W$  is the map 
$$\psi^W(j) := \left(\psi(\sigma(w)j)\right)_{w \in W}.$$

Let  $d_W(\phi, \psi)$  be the  $I^1$ -distance between  $\phi_*^W \mu$  and  $\psi_*^W u$ .

$$h(\Sigma,\phi) := \inf_{W \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log \left| \{\psi : \{1,\ldots,m_i\} \to A : d_W(\phi,\psi) \le \epsilon\} \right|}{m_i}.$$

$$h\big(\Sigma,\phi\big):=\inf_{W\subset G}\inf_{\epsilon>0}\limsup_{i\to\infty}\frac{\log\left|\{\psi:\{1,\ldots,m_i\}\to A\ :\ d_W(\phi,\psi)\leq\epsilon\}\right|}{m_i}.$$

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

$$h\big(\Sigma,\phi\big):=\inf_{W\subset G}\inf_{\epsilon>0}\limsup_{i\to\infty}\frac{\log\left|\{\psi:\{1,\ldots,m_i\}\to A\ :\ d_W(\phi,\psi)\leq\epsilon\}\right|}{m_i}.$$

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

#### **Theorem**

If G is amenable then  $h(\Sigma, G, X, \mu)$  is the classical entropy of  $(G, X, \mu)$ .

$$h\big(\Sigma,\phi\big):=\inf_{W\subset G}\inf_{\epsilon>0}\limsup_{i\to\infty}\frac{\log\left|\{\psi:\{1,\ldots,m_i\}\to A\ :\ d_W(\phi,\psi)\leq\epsilon\}\right|}{m_i}.$$

### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

### **Theorem**

If G is amenable then  $h(\Sigma, G, X, \mu)$  is the classical entropy of  $(G, X, \mu)$ .

### **Theorem**

$$h(\Sigma, G, K^G, \kappa^G) = H(K, \kappa).$$

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

Two observables  $\phi: X \to A$ ,  $\psi: X \to B$  are equivalent if the partitions  $\{\phi^{-1}(a): a \in A\}, \{\psi^{-1}(b): b \in B\}$  agree up to measure zero.

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

Two observables  $\phi: X \to A$ ,  $\psi: X \to B$  are equivalent if the partitions  $\{\phi^{-1}(a): a \in A\}, \{\psi^{-1}(b): b \in B\}$  agree up to measure zero.

Let  $\mathcal{P}$  be the set of all equivalence classes of observables  $\phi$  with  $\mathcal{H}(\phi)<\infty$ .

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

Two observables  $\phi: X \to A$ ,  $\psi: X \to B$  are equivalent if the partitions  $\{\phi^{-1}(a): a \in A\}$ ,  $\{\psi^{-1}(b): b \in B\}$  agree up to measure zero.

Let  $\mathcal{P}$  be the set of all equivalence classes of observables  $\phi$  with  $\mathcal{H}(\phi) < \infty$ .

### Definition (Rohlin distance)

$$d(\phi,\psi) := 2H(\phi \vee \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).$$

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$ . So let  $h(\Sigma, G, X, \mu)$  be this common number.

Two observables  $\phi: X \to A$ ,  $\psi: X \to B$  are equivalent if the partitions  $\{\phi^{-1}(a): a \in A\}$ ,  $\{\psi^{-1}(b): b \in B\}$  agree up to measure zero.

Let  $\mathcal{P}$  be the set of all equivalence classes of observables  $\phi$  with  $\mathcal{H}(\phi) < \infty$ .

### Definition (Rohlin distance)

$$d(\phi,\psi) := 2H(\phi \vee \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).$$

### Definition

 $\phi$  refines  $\psi$  if  $H(\psi \lor \phi) = H(\phi)$ .

### **Definition**

 $\phi$  refines  $\psi$  if  $H(\psi \lor \phi) = H(\phi)$ .

### **Definition**

 $\phi$  and  $\psi$  are *combinatorially equivalent* if there exists finite subsets  $K, L \subset G$  such that  $\phi^K$  refines  $\psi$  and  $\psi^L$  refines  $\phi$ .

#### **Theorem**

If  $\phi$  is a generator then its combinatorial equivalence class is dense in the space of all generating observables.

#### **Theorem**

If  $\phi$  is a generator then its combinatorial equivalence class is dense in the space of all generating observables.

#### Lemma

 $h(\Sigma, \phi)$  is upper semi-continuous in  $\phi$ .

#### **Theorem**

If  $\phi$  is a generator then its combinatorial equivalence class is dense in the space of all generating observables.

#### Lemma

 $h(\Sigma, \phi)$  is upper semi-continuous in  $\phi$ .

### **Theorem**

If  $\phi$  and  $\psi$  are combinatorially equivalent then  $h(\Sigma, \phi) = h(\Sigma, \psi)$ .

#### **Definition**

 $\phi$  is a *simple splitting* of  $\psi$  if there exists  $f \in G$  and an observable  $\omega$  refined by  $\psi$  such that

$$\phi = \psi \vee \omega \circ f.$$

 $\phi$  is a *splitting* of  $\psi$  if it can be obtained from  $\psi$  by a sequence of simple splittings.

### **Definition**

 $\phi$  is a *simple splitting* of  $\psi$  if there exists  $f \in G$  and an observable  $\omega$  refined by  $\psi$  such that

$$\phi = \psi \vee \omega \circ \mathbf{f}.$$

 $\phi$  is a *splitting* of  $\psi$  if it can be obtained from  $\psi$  by a sequence of simple splittings.

#### Lemma

If  $\phi$  and  $\psi$  are equivalent then there exists an observable  $\omega$  that is a splitting of both  $\phi$  and  $\psi$ .

### **Definition**

 $\phi$  is a *simple splitting* of  $\psi$  if there exists  $f \in G$  and an observable  $\omega$  refined by  $\psi$  such that

$$\phi = \psi \vee \omega \circ f.$$

 $\phi$  is a *splitting* of  $\psi$  if it can be obtained from  $\psi$  by a sequence of simple splittings.

#### Lemma

If  $\phi$  and  $\psi$  are equivalent then there exists an observable  $\omega$  that is a splitting of both  $\phi$  and  $\psi$ .

### **Proposition**

If  $\phi$  is a simple splitting of  $\psi$  then  $h(\Sigma, \phi) = h(\Sigma, \psi)$ .

## Applications: von Neumann algebras

A system  $(G, X, \mu)$  gives rise in a natural way to a *crossed product von Neumann algebra*  $L^{\infty}(X, \mu) \rtimes G$ .

## Applications: von Neumann algebras

A system  $(G, X, \mu)$  gives rise in a natural way to a *crossed product von Neumann algebra*  $L^{\infty}(X, \mu) \rtimes G$ .

If the action is ergodic and free and G is infinite then  $L^{\infty}(X, \mu) \rtimes G$  is a  $II_1$  factor.

Major problem: classify these algebras up to isomorphism in terms of the group/action data.

# Applications: von Neumann algebras

A system  $(G, X, \mu)$  gives rise in a natural way to a *crossed product von Neumann algebra*  $L^{\infty}(X, \mu) \rtimes G$ .

If the action is ergodic and free and G is infinite then  $L^{\infty}(X, \mu) \rtimes G$  is a  $II_1$  factor.

Major problem: classify these algebras up to isomorphism in terms of the group/action data.

### Theorem (Connes, 1976)

If G is infinite and amenable and the action  $G \curvearrowright (X, \mu)$  is free and ergodic then  $L^{\infty}(X, \mu) \rtimes G$  is hyperfinite. In particular, all such algebras are isomorphic.

# Rigidity

#### **Definition**

 $(G_1, X_1, \mu_1)$  and  $(G_2, X_2, \mu_2)$  are von Neumann equivalent (vNE) if  $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$ .

# Rigidity

### **Definition**

 $(G_1, X_1, \mu_1)$  and  $(G_2, X_2, \mu_2)$  are von Neumann equivalent (vNE) if  $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$ .

### Theorem (Popa, 2006)

If G is an ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic.

# Rigidity

### **Definition**

 $(G_1, X_1, \mu_1)$  and  $(G_2, X_2, \mu_2)$  are von Neumann equivalent (vNE) if  $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$ .

### Theorem (Popa, 2006)

If G is an ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic.

### Corollary

If, in addition, G is sofic and Ornstein then Bernoulli shifts over G are classified up to vNE by base measure entropy. E.g., this occurs when  $G = PSL_n(\mathbb{Z})$  for n > 2.

# Applications: orbit equivalence

#### **Definition**

 $(G_1, X_1, \mu_1)$  is orbit equivalent (OE) to  $(G_2, X_2, \mu_2)$  if there exists a measure-space isomorphism  $\phi: X_1 \to X_2$  such that  $\phi(G_1x) = G_2\phi(x)$  for a.e.  $x \in X_1$ .

# Applications: orbit equivalence

#### Definition

 $(G_1, X_1, \mu_1)$  is orbit equivalent (OE) to  $(G_2, X_2, \mu_2)$  if there exists a measure-space isomorphism  $\phi: X_1 \to X_2$  such that  $\phi(G_1x) = G_2\phi(x)$  for a.e.  $x \in X_1$ .

### Theorem (Dye 1959, Connes-Feldman-Weiss 1981)

If  $G_1$  and  $G_2$  are amenable and infinite and their respective actions are ergodic and free then  $(G_1, X_1, \mu_1)$  is OE to  $(G_2, X_2, \mu_2)$ .

# **OE** rigidity

### Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes. Assume 3g + n - 4 > 0 and  $(g, n) \notin \{(1, 2), (2, 0)\}$ . If  $(G, X, \mu)$  is free and ergodic then it is strongly orbitally rigid. I.e., if  $(G_2, X_2, \mu_2)$  is free, ergodic and OE to  $(G, X, \mu)$  then it is isomorphic to  $(G, X, \mu)$ .

# **OE** rigidity

### Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes. Assume 3g + n - 4 > 0 and  $(g, n) \notin \{(1, 2), (2, 0)\}$ . If  $(G, X, \mu)$  is free and ergodic then it is strongly orbitally rigid. I.e., if  $(G_2, X_2, \mu_2)$  is free, ergodic and OE to  $(G, X, \mu)$  then it is isomorphic to  $(G, X, \mu)$ .

### Corollary

If G is as above then Bernoulli shifts over G are classified up to OE by base measure entropy.

Let  $\mathbb{F} = \langle s_1, \dots, s_r \rangle$ . Let  $\mathbb{F}$  act on  $(X, \mu)$ .

Let  $\mathbb{F} = \langle s_1, \dots, s_r \rangle$ . Let  $\mathbb{F}$  act on  $(X, \mu)$ .

Given an observable  $\phi: X \to A$ , define

$$F(\phi) := -(2r-1)H(\phi) + \sum_{i=1}^{r} H(\phi \lor \phi \circ s_i);$$
$$f(\phi) := \inf_{n} F(\phi^{B(e,n)}).$$

Let  $\mathbb{F} = \langle s_1, \dots, s_r \rangle$ . Let  $\mathbb{F}$  act on  $(X, \mu)$ .

Given an observable  $\phi: X \to A$ , define

$$F(\phi) := -(2r-1)H(\phi) + \sum_{i=1}^{r} H(\phi \lor \phi \circ s_i);$$
 
$$f(\phi) := \inf_{n} F\left(\phi^{B(e,n)}\right).$$

#### **Theorem**

If  $\phi_1$  and  $\phi_2$  are generating then  $f(\phi_1) = f(\phi_2)$ . So we may define  $f(\mathbb{F}, X, \mu) = f(\phi_1)$ . Moreover,  $f(\mathbb{F}, K^{\mathbb{F}}, \kappa^{\mathbb{F}}) = H(K, \kappa)$ .

For each  $n \ge 1$ , let  $\sigma_n : \mathbb{F} = \langle s_1, \dots, s_r \rangle \to \operatorname{Sym}(n)$  be chosen uniformly at random.

For each  $n \ge 1$ , let  $\sigma_n : \mathbb{F} = \langle s_1, \dots, s_r \rangle \to \operatorname{Sym}(n)$  be chosen uniformly at random.

Define

$$h_*(\phi) := \inf_{W} \inf_{\epsilon > 0} \limsup_{n o \infty} rac{\log \mathbb{E} \Big[ ig| \{ \psi : \{1, \dots, n\} o A \ : \ d_W(\phi, \psi) \le \epsilon \} ig| \Big]}{n}.$$

For each  $n \ge 1$ , let  $\sigma_n : \mathbb{F} = \langle s_1, \dots, s_r \rangle \to \operatorname{Sym}(n)$  be chosen uniformly at random.

#### Define

$$h_*(\phi) := \inf_{W} \inf_{\epsilon > 0} \limsup_{n \to \infty} \frac{\log \mathbb{E}\Big[ \big| \{\psi : \{1, \dots, n\} \to A : d_W(\phi, \psi) \le \epsilon\} \big| \Big]}{n}$$

### **Theorem**

$$h_*(\phi) = f(\phi).$$

# A Markov chain example



# A Markov chain example





# The Cayley graph



# The Ising model



Let  $\mu_{\epsilon}$  be the probability measure on  $\{\text{magenta, brown}\}^{\mathbb{F}}$  determined by this process.

Let  $\mu_{\epsilon}$  be the probability measure on  $\{\text{magenta, brown}\}^{\mathbb{F}}$  determined by this process.

Let  $\phi: \{ \text{magenta, brown} \}^{\mathbb{F}} \to \{ \text{magenta, brown} \}$  be evaluation at the identity.

Let  $\mu_{\epsilon}$  be the probability measure on  $\{\text{magenta, brown}\}^{\mathbb{F}}$  determined by this process.

Let  $\phi: \{ \text{magenta, brown} \}^{\mathbb{F}} \to \{ \text{magenta, brown} \}$  be evaluation at the identity.

Then

$$F(\mu_{\epsilon}, \phi) = -2\epsilon \log(\epsilon) - 2(1 - \epsilon) \log(1 - \epsilon) - \log(2).$$

Let  $\mu_{\epsilon}$  be the probability measure on  $\{\text{magenta, brown}\}^{\mathbb{F}}$  determined by this process.

Let  $\phi: \{ \text{magenta, brown} \}^{\mathbb{F}} \to \{ \text{magenta, brown} \}$  be evaluation at the identity.

Then

$$F(\mu_{\epsilon}, \phi) = -2\epsilon \log(\epsilon) - 2(1 - \epsilon) \log(1 - \epsilon) - \log(2).$$

### **Theorem**

$$F(\mu_{\epsilon}, \phi) = h_*(\mathbb{F}, \{magenta, brown\}^{\mathbb{F}}, \mu_{\epsilon}).$$

Let  $\mathcal G$  be a compact separable group and let  $T:\mathcal G\to\mathcal G$  be a group automorphism fixing a closed normal subgroup  $\mathcal N.$ 

Let  $\mathcal G$  be a compact separable group and let  $T:\mathcal G\to\mathcal G$  be a group automorphism fixing a closed normal subgroup  $\mathcal N.$ 

### Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

Let  $\mathcal G$  be a compact separable group and let  $T:\mathcal G\to\mathcal G$  be a group automorphism fixing a closed normal subgroup  $\mathcal N.$ 

### Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

### Theorem (Bowen 2009, Gutman 2010)

Let  $\mathcal G$  be a compact separable group and let  $\mathcal T:\mathcal G\to\mathcal G$  be a group automorphism fixing a closed normal subgroup  $\mathcal N.$ 

## Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

### Theorem (Bowen 2009, Gutman 2010)

Let 
$$\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$
. Let  $\mathcal{N}=\{\mathbf{0},\mathbf{1}\}$ . By Ornstein-Weiss' example, 
$$\mathcal{G}/\mathcal{N}\cong\mathcal{G}\times\mathcal{G}=(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}.$$

Let  $\mathcal G$  be a compact separable group and let  $T:\mathcal G\to\mathcal G$  be a group automorphism fixing a closed normal subgroup  $\mathcal N.$ 

## Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

### Theorem (Bowen 2009, Gutman 2010)

Let 
$$\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$
. Let  $\mathcal{N}=\{\mathbf{0},\mathbf{1}\}$ . By Ornstein-Weiss' example, 
$$\mathcal{G}/\mathcal{N}\cong\mathcal{G}\times\mathcal{G}=(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}.$$

$$f(\mathbb{F}, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, \operatorname{Haar}_{\mathcal{G}/\mathcal{N}})$$

Let  $\mathcal G$  be a compact separable group and let  $T:\mathcal G\to\mathcal G$  be a group automorphism fixing a closed normal subgroup  $\mathcal N.$ 

### Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

### Theorem (Bowen 2009, Gutman 2010)

Let 
$$\mathcal{G}=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$$
. Let  $\mathcal{N}=\{\mathbf{0},\mathbf{1}\}$ . By Ornstein-Weiss' example, 
$$\mathcal{G}/\mathcal{N}\cong\mathcal{G}\times\mathcal{G}=(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}.$$

$$f(\mathbb{F}, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, \operatorname{Haar}_{\mathcal{G}/\mathcal{N}})$$
  
 $\log(2) = -\log(2) + \log(4).$ 

 Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy. (D. Kerr, H. Li)

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy. (D. Kerr, H. Li)
- Noncommutative entropy.

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy. (D. Kerr, H. Li)
- Noncommutative entropy.
- Extend the f-invariant to more general groups.