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Unitary representations

Let G be a topological group.

Definition
A unitary representation of the group G on a Hilbert spaceH is a
strongly (or, equivalently, weakly) continuous homomorphism
π∶G → U(H).

The importance of unitary representations stems partly from the
fact that one can produce them from actions of the group on other
objects, for example, measure spaces or some combinatorial
objects.

Classically, the theory is usually restricted to locally compact groups
(because of the Haar measure).
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Irreducible representations

A closed subspaceK ⊆H is invariant under π if π(g)K ⊆ K for all
g ∈ G.

Complete reducibility: IfK is an invariant subspace, thenK⊥ is also
invariant, i.e., π splits as a direct sum of two representations, one on
K and one onK⊥.

Definition
A unitary representation π is irreducible if it has no non-trivial
invariant subspaces.

In general, it is not true that every representation is a sum of
irreducibles (think of the left-regular representationR↷ L2(R)).

Traditionally, one tries to understand the irreducible
representations of a given group and the way that some important
representations are built out of irreducibles.
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Permutation groups

Definition
A permutation group G ↷ X is a topological group G acting
continuously and faithfully on a countable set X.

If we denote by S(X) the group of all permutations of X, then
S(X)↷ X is naturally a permutation group, where S(X) is
equipped with the pointwise convergence topology (X is taken to
be discrete). This group is also known as S∞ (if X is infinite).

The group S∞ has a basis at 1 consisting of open subgroups (the
stabilizers of finite sets).

A permutation group G ↷ X is closed if G is a closed subgroup of
S(X). Every closed permutation group has a basis at 1 of open
subgroups (the converse is also true).
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Gelfland–Raikov

Theorem (Gelfland–Raikov)

Let G be a locally compact group. Then the irreducible unitary
representations separate points of G (i.e. for every 1 ≠ x ∈ G, there
exists an irreducible representation π with π(x) ≠ I).

This theorem fails in general for non-locally compact groups. For
example,Homeo(R) has no non-trivial representations and
L0(µ,T) has a faithful representation but no irreducible
representations.

Theorem
The conclusion of Gelfland–Raikov holds for closed subgroups of
S∞.

More general phenomenon: in some situations closed subgroups of
S∞ resemble locally compact groups (cf. the result of Glasner–Weiss
about boolean actions or Hjorth’s results on turbulence).



Gelfland–Raikov

Theorem (Gelfland–Raikov)

Let G be a locally compact group. Then the irreducible unitary
representations separate points of G (i.e. for every 1 ≠ x ∈ G, there
exists an irreducible representation π with π(x) ≠ I).

This theorem fails in general for non-locally compact groups. For
example,Homeo(R) has no non-trivial representations and
L0(µ,T) has a faithful representation but no irreducible
representations.

Theorem
The conclusion of Gelfland–Raikov holds for closed subgroups of
S∞.

More general phenomenon: in some situations closed subgroups of
S∞ resemble locally compact groups (cf. the result of Glasner–Weiss
about boolean actions or Hjorth’s results on turbulence).



Gelfland–Raikov

Theorem (Gelfland–Raikov)

Let G be a locally compact group. Then the irreducible unitary
representations separate points of G (i.e. for every 1 ≠ x ∈ G, there
exists an irreducible representation π with π(x) ≠ I).

This theorem fails in general for non-locally compact groups. For
example,Homeo(R) has no non-trivial representations and
L0(µ,T) has a faithful representation but no irreducible
representations.

Theorem
The conclusion of Gelfland–Raikov holds for closed subgroups of
S∞.

More general phenomenon: in some situations closed subgroups of
S∞ resemble locally compact groups (cf. the result of Glasner–Weiss
about boolean actions or Hjorth’s results on turbulence).



Gelfland–Raikov

Theorem (Gelfland–Raikov)

Let G be a locally compact group. Then the irreducible unitary
representations separate points of G (i.e. for every 1 ≠ x ∈ G, there
exists an irreducible representation π with π(x) ≠ I).

This theorem fails in general for non-locally compact groups. For
example,Homeo(R) has no non-trivial representations and
L0(µ,T) has a faithful representation but no irreducible
representations.

Theorem
The conclusion of Gelfland–Raikov holds for closed subgroups of
S∞.

More general phenomenon: in some situations closed subgroups of
S∞ resemble locally compact groups (cf. the result of Glasner–Weiss
about boolean actions or Hjorth’s results on turbulence).



Classification of irreducible representations

Theorem (Peter–Weyl)

Let G be a compact group. Then the following hold:
▸ Every irreducible representation of G is finite-dimensional and
every representation is a direct sum of irreducibles.

▸ The left-regular representation G ↷ L2(G) contains as direct
summands all irreducible representations.

▸ In particular, if G is metrizable, G has only countably many
irreducible representations. If G is finite, there are only finitely
many.

Theorem
If G is a countable, discrete group which is not abelian-by-finite,
then unitary equivalence of irreducible representations of G
▸ (Thoma, 1968) is not smooth;
▸ (Hjorth, 1997) is not classifiable by countable structures.
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Some non-locally compact groups

A complete classification of the unitary representations has been
established for:
▸ S∞ (Lieberman 1972; another proof by Olshanski 1985);
▸ The unitary group and related groups (infinite-dimensional
orthogonal, symplectic) (Kirilov 1973; later many proofs by
Olshanski);

▸ GL(∞, Fq) (Olshanski 1991).

The proofs of Olshanski use his semigroupmethod.

All of the proofs use essentially the fact that there is an inductive
limit of compact subgroups dense in G. Olshanski’s semigroup
method also relies on certain sets of double cosets having a
semigroup structure.



Uniformities on a group

Let G be a topological group.

A function f ∶G → C is left uniformly continuous if for every є > 0,
there existsU a neighborhood of 1 such that

x−1y ∈ U Ô⇒ ∣ f (x) − f (y)∣ < є.

f is right uniformly continuous if for every є > 0, there existsU a
neighborhood of 1 such that

xy−1 ∈ U Ô⇒ ∣ f (x) − f (y)∣ < є.

A function f ∶G → C is uniformly continuous if it is both left and
right uniformly continuous.

The three corresponding uniformities on G are called the left, right
and lower (or Roelcke) uniformity, respectively.
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Roelcke precompact groups

Definition
A topological group G is called Roelcke precompact if its lower
uniformity is precompact. Equivalently, G is Roelcke precompact iff
for every neighborhood U of 1, there exists a finite set F such that
G = UFU .

Basic observations:
▸ If G is Roelcke precompact, then every uniformly continuous
function on G is bounded.

▸ A locally compact group is Roelcke precompact iff it is
compact. Indeed, if U is a compact neighborhood of e,
G = UFU is compact.

▸ An abelian (or, more generally, a SIN) group is Roelcke
precompact iff it is precompact.
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Examples of Roelcke precompact groups

The following groups are Roelcke precompact:
▸ Homeo(R)with the compact-open topology (Roelcke);
▸ the unitary groupU(H) of a separable Hilbert spaceH with
the strong operator topology (Uspenskiĭ);

▸ Aut(X , µ), the group of measure-preserving automorphisms
of a standard probability space (X , µ) (Glasner);

▸ Iso(U1), the isometry group of the Urysohn metric space of
diameter 1 (Uspenskiĭ);

▸ oligomorphic permutation groups.

Closure properties:
▸ Roelcke precompact groups are stable under open subgroups,
products, inverse limits, group extensions, and
homomorphisms with dense image.

▸ They are not stable under taking closed subgroups.
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Some easy consequences

Definition (Rosendal)

A topological group G has property (OB) if every time G acts by
isometries on a metric space X so that for each x ∈ X, the map
G → X, g ↦ g ⋅ x is continuous, then every orbit is bounded.

Proposition

Every Roelcke precompact group has property (OB).

Proof.
If x0 is any point, the function g ↦ d(x0, g ⋅ x0) is uniformly
continuous.

The property of Roelcke precompactness is likely to be important
every time uniformly continuous functions are involved, for
example, matrix coefficients of unitary representations:

G → C, g ↦ ⟨π(g)ξ, η⟩.
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Oligomorphic groups

Definition
A closed permutation group G ↷ X is called oligomorphic if the
induced action G ↷ Xn has finitely many orbits for each n. G is
called oligomorphic if it can be realized as an oligomorphic
permutation group.

A closed subgroup of S∞ is Roelcke precompact if for every open
subgroup V ≤ G, the set of double cosets {VxV ∶ x ∈ G} is finite.

Theorem
For a closed subgroup G ≤ S∞, the following are equivalent:
▸ G is Roelcke precompact;
▸ for every continuous transitive action G ↷ X on a countable
set X, the permutation group G ↷ X is oligomorphic;

▸ G is an inverse limit of oligomorphic groups.
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Oligomorphic groups in model theory

▸ Closed permutation groups are studied in model theory as
automorphism groups of countable structures.

▸ Oligomorphic groups are especially important because there is
a direct correspondence between properties of the
permutation group and model-theoretic properties of the
structure and its theory.

Theorem (Engeler, Ryll-Nardzewski, Svenonius)

Let G be the automorphism group of a countable structure X. Then
the following are equivalent:
▸ the permutation group G ↷ X is oligomorphic;
▸ the structure X is ω-categorical (X is the unique countable
model of the first-order theory of X).



ω-categorical structures via Fraïssé’s construction

A countable structure X is called homogeneous if every
isomorphism between finite substructures of X extends to a full
automorphism of X.

Every homogeneous structure in a relational language with finitely
many symbols in each arity is ω-categorical.

Fraïssé’s construction:

class of finite structuresÐ→ an homogeneous infinite structure.

Examples:
▸ {finite sets}Ð→ (countably infinite set);
▸ {finite linear orders}Ð→ (Q, <);
▸ {finite graphs}Ð→ (the random graph);
▸ {finite vector spaces over Fq}Ð→
(countable-dimensional vector space over Fq);

▸ {finite boolean algebras}Ð→ (Clopen(2N)).
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Commensurators

Two subgroups H1,H2 ≤ G are commensurate if H1 ∩H2 has finite
index in both H1 and H2. The commensurator of H in G is

CommG(H) = {g ∈ G ∶ H and Hg are commensurate}.

If G is oligomorphic and V ≤ G is open, then
▸ V has finite index in CommG(V);
▸ CommG(CommG(V)) = CommG(V).

Call H ≤ G a commensurator if it is open and H = CommG(H).
Commensurators are exactly the open subgroups that have no
finite index supergroups.
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Induced representations

Let G be a group, H an open subgroup, and σ a representation of H.

The induced representation IndGH(σ) is defined as follows. Let T be
a complete system of left coset representatives of H in G. LetM be
the space of all functions f ∶G →H(σ) for which

f (gh) = σ(h−1) f (g) for all g ∈ G , h ∈ H.

For f ∈ M, define

∥ f ∥ = (∑
g∈T
∥ f (g)∥2 )

1/2

Let
H = { f ∈ M ∶ ∥ f ∥ <∞} ≅ ℓ2(G/H,H(σ)).

The representation IndGH(σ) onH is defined by

( IndGH(σ)(g) ⋅ f )(x) = f (g−1x).



Some representations of permutation groups

Natural representations of closed subgroups of S∞ are the
quasi-regular representations:

G ↷ ℓ2(G/V).
for V ≤ G an open subgroup.

If V ⊴ N ≤ G, then
ℓ2(G/V) ≅ IndGV(1V) ≅ IndGN ( IndNV (1V)) ≅ IndGN(λN/V) ≅⊕σ IndGN(σ).

Proposition

Let G be an oligomorphic group. Then the following hold:
▸ If H is a commensurator, V ⊴ H, and σ is a representation of
H/V , then IndGH(σ) is irreducible iff σ is.

▸ If H1,H2 are commensurators, V1 ⊴ H1, V2 ⊴ H2, and σ1, σ2 are
irreducible representations of H1/V1, H2/V2, respectively, then
IndGH1(σ1) ≅ Ind

G
H2(σ2) iff there exists g ∈ G such that H2 = Hg

1
and σ2 ≅ σ g1 .
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The representations of oligomorphic groups

Theorem
Suppose that G is oligomorphic. Then every unitary representation
of G is a sum of irreducible representations of the form IndGH(σ),
where H is a commensurator and σ is an irreducible representation
of H that factors through a finite factor of H.

Fact: Every oligomorphic group has only countably many open
subgroups.

Corollary

If G is oligomorphic, then it has only countably many irreducible
representations and it is of type I.
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Isolating the open subgroups

A Fraïssé limit has the strong amalgamation property (SAP) if the
stabilizer of every finite substructure has only infinite orbits.

Theorem (Cameron)

Let G = Aut(X) be the automorphism group of a Fraïssé limit with
SAP such that stabilizers of finite substructures act primitively on
their orbits (i.e. without invariant equivalence relations). Then for
every open subgroup V ≤ G, there exists a unique A ⊆ X such that
GA ≤ V ≤ G(A).

Theorem
Suppose that X is as above and in addition ω-categorical. Then

{IndGG(A)(σ) ∶ A ⊆ X and σ is an irred rep of G(A)/GA = Aut(A)}

is a complete list of the irreducible representations of Aut(X)
without repetitions.
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Some concrete examples

The following ω-categorical structures with SAP satisfy the
condition above and therefore their automorphism groups satisfy
the theorem from the previous slide:
▸ the countable set without structure;
▸ the dense linear ordering without endpoints;
▸ countable-dimensional vector spaces over a finite field;
▸ the countable atomless boolean algebra;
▸ the random graph.

This recovers the older results of Lieberman and Olshanski.
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The case of Aut(Q)

▸ The commensurators in Aut(Q) are the setwise stabilizers of
finite substructures and they have no proper subgroups of
finite index.

▸ Hence,
{Aut(Q)↷ ℓ2(Q[n]) ∶ n ∈ N}

is a complete list of the irreducible representations of G. (Q[n]
denotes the set of n-element subsets ofQ).

▸ Aut(Q) embeds as a dense subgroup ofHomeo(R).
▸ Direct sums of the representations above clearly do not extend
to representations ofHomeo(R).

▸ Thus, we recover a partial version of a result of Megrelishvili:
Homeo(R) has no non-trivial unitary representations.
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Property (T)

Definition
Let G be a group, Q ⊆ G, є > 0. If π is a unitary representation of G,
we say that a unit vector ξ ∈H(π) is (Q , є)-almost invariant if for all
x ∈ Q, ∥π(x)ξ − ξ∥ < є. The topological group G is said to have
Kazhdan’s property (T) if there exist a compact Q ⊆ G and є > 0 such
that every representation π of G that has a (Q , є)-almost invariant
vector, actually has an invariant vector. G has the strong property
(T) if Q can be chosen to be finite.



Property (T) (cont.)

Using the classification of the representations of the unitary group
by Kirilov and Olshanski, Bekka showed thatU(H) has property (T)
and exhibited an explicit Kazhdan pair.

A similar method can be used to show the following:

Theorem
The following groups have the strong property (T):
▸ S∞;
▸ Aut(Q);
▸ Homeo(2N);
▸ the automorphism group of the random graph;
▸ GL(∞, Fq).



An example of Cherlin

▸ Let En be a relation symbol of arity 2n that is interpreted as an
equivalence relation on n-element subsets.

▸ LetK be the class of all finite structures where each En has at
most 2 equivalence classes.

▸ This is a Fraïssé class. Let X be the limit and G the
automorphism group (which is oligomorphic).

▸ Then G surjects on (Z/2Z)N.
▸ Bekka showed that if a compact group is amenable as a
discrete group, then it does not have the strong property (T).

▸ Conclusion: G does not have the strong property (T).

Question

Let G be the automorphism group of a relational, ω-categorical
Fraïssé limit Xwith SAP. Is the action G ↷ X always non-amenable,
i.e. does there exist a finite set Q ⊆ G and є > 0 such that for every
finite F ⊆ X, there is g ∈ Q such that ∣g ⋅ F △ F∣/∣F∣ > є.
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Automatic continuity

Many oligomorphic groups G satisfy the following automatic
continuity property:

Automatic continuity

Every homomorphism from G into a separable group is continuous.

The following groups are known to satisfy this property:
▸ S∞,GL(∞, Fq), or, more generally, the automorphism group of
any ω-stable, ω-categorical structure
(Hodges–Hodkinson–Lascar–Shelah, Kechris–Rosendal);

▸ the automorphism group of the random graph (ibid.);
▸ Aut(Q),Homeo(2N) (Rosendal–Solecki).

Corollary

For any G from the list above, the theorem holds for any
representation of (G ,discrete) on a separable Hilbert space.
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