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Random walk

P0 is a Random Walk on Zd with steps in R ⊂ Zd bounded

d ≥ 1 is arbitrary

Without loss of generality: jumps to z ∈ R are equally likely

Examples:

• Simple random walk: R = {±e1, . . . ,±ed}

• Directed simple random walk: R = {e1 ± e2, . . . , e1 ± ed}
(or {e1, . . . , ed})
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Polymer in random potential

(Ω,B,P, {Tz : z ∈ G}): ergodic system
(G is group generated by R and Ω is compact)

Measurable V : Ω×R` → R is a Random Potential

Quenched measures are

dQV ,ω
n =

exp
{
−
∑n−1

k=0 V (Txk
ω, zk+1,k+`)

}
ZV ,ω

n

dP0

zi ,j = (xi − xi−1, . . . , xj − xj−1)

ZV ,ω
n is the normalizing constant (partition function)
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Examples

• RWRE: ` = 1 and V (ω, z) = − log π0,z(ω)

• Nearest-neighbor polymers or directed polymers: ` = 0 (V (ω))

• Stretched polymers: ` = 1 and V (ω, z) = Ψ(ω)− h · z
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Assumptions on V

• Bounded, or

• d = 1 and V ∈ L1, or

• d ≥ 2 and Ω = ΩZd

0 and P is i.i.d.
and V (ω, z1,`) = Ψ(ω0, z1,`) ∈ Lp, p > 2(d + 1)

Examples: Ber, Geo, Poi, Exp, Gau, Gam, log Gam, etc

For simplicity: think of V bounded continuous

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 6/22
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Earlier Work: Polymers

We are interested in LDP for QV ,ω
n {Xn/n ∈ ·}

Sznitman ‘94: Brownian motion among Poisson potential

Zerner ‘98: nearest-neighbor polymers

Carmona-Hu ‘04: directed polymers in Gaussian potential

Comets-Shiga-Yoshida ‘03: directed polymers

(all have V (ω) and so RWRE is not covered)
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Earlier Work: static RWRE

Greven-den Hollander ‘94, Comets-Gantert-Zeitouni ‘00,
Yilmaz ‘09: d = 1

Zerner ‘98, Varadhan ‘03: d ≥ 1

Kosygina-Rezakhanlou-Varadhan ‘06: Diffusion in random
potential

Rosenbluth ‘06: variational formula for rate (level 1)

Yilmaz ‘09: univariate level 2

R’-Seppäläinen ‘11: level 3

(All require loops to be allowed. Space-Time not covered.)

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 8/22
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Earlier Work: dynamic RWRE

Yilmaz ‘09: i.i.d. and near asymptotic velocity

Avena-den Hollander-Redig ‘10: spin-flip particle system

Kosygina-Varadhan ‘08: diffusion in space-time potential

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 9/22
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Quenched LDP

We are interested in LDP under QV ,ω
n

Our result is a level 3 LDP, but for simplicity will focus on level 1

P0 already has an LDP. So maybe can use Varadhan’s theorem?

Need LDP for (TXk
ω,Zk+1) (level 2)

Key ingredient: Free Energy

Λ(g) = lim
n→∞

n−1 log E0

[
exp

{ n−1∑
k=0

g(TXk
ω)
}]

(g = −V )
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Point-to-Point Free Energy

Λ(g , ξ) = lim
n→∞

n−1 log E0

[
exp

{ n−1∑
k=0

g(TXkω)
}
, Xn = [nξ]

]
exists by subadditivity and Λ(g) = supξ Λ(g , ξ)

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 11/22
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Lower Bound: Change of Measure

Λ(g) = lim
n→∞

n−1 log E0

[
exp

{ n−1∑
k=0

g(TXk
ω)
}]

≥ sup
µ
{Eµ[g ]− H(µ)} = H∗(g).

H(µ) = inf{H(µ× q |µ× p) : µq = µ}

p(ω,Tzω) = 1
|R| for z ∈ R.

q is Markov kernel on Ω. (supported on shifts {Tzω : z ∈ R})

H(µ) =∞ if µ 6� P (only relevant measures)
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Upper Bound: Goal

Will show that Λ(g) ≤ K (g) ≤ H∗(g). (will define K (g))

Conclusions: Λ(g) = K (g) = H∗(g). Two variational formulas.

And quenched LDP.

In particular: for space-time RWRE.

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 13/22
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Class of Correctors

F : Ω×R → R such that

• F (ω, z) ∈ L1(P) for each z ∈ R (moment)

• E[F (ω, z)] = 0 for each z ∈ R (mean-zero)

•
n−1∑
k=0

F (Txk
ω, zk+1) =

m−1∑
j=0

F (Tx̄jω, z̄j+1) if xn = x̄m (closed-loop)

Examples: Gradients h(Tzω)− h(ω) with h ∈ L1(P)
and their L1-limits

Lemma: That’s all!

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 14/22
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Sublinearity

Can define a path integral f (x , ω) =
n−1∑
k=0

F (Txk
ω, zk+1)

for any path with xn = x

Lemma: For any ξ, n−1f ([nξ], ω)→ 0 a.s.

Proof: Trivial for gradients. Then approximate

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 15/22
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Upper Bound: Part 1

KF (g) = P-ess sup
ω

log
∑

z

1

|R|
eg(ω)+F (ω,z)

K (g) = inf
F

KF (g) = inf
F

P-ess sup
ω

log
∑

z

1

|R|
eg(ω)+F (ω,z)

E0

[
exp

{
g(ω) + · · ·+ g(TXn−1ω)

}
, Xn = [nξ]

]
≤ ec(ω)nεE0

[
exp

{
g(ω) + F (ω,Z1) + · · ·

+ g(TXn−1ω) + F (TXn−1ω,Zn)
}]

≤ ec(ω)nεenKF (g) (by the Markov property)

So Λ(g) = supξ Λ(g , ξ) ≤ K (g)

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 16/22
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Upper Bound: Part 2

H∗(g) = sup
µ�P

{
Eµ[g ]− inf{H(µ× q |µ× p) : µq = µ}

}

= sup
µ�P
{Eµ[g ]− sup

h
Eµ[h − log p(eh)]} (Entropy Variational Formula)

= inf
h

sup
µ�P

Eµ
[

log
∑

z

1

|R|
eg(ω)+h(Tzω)−h(ω)

]
(min-max??)

≥ K (g)

Problem: {µ : µ� P} is not compact

Solution: Approximate with finite Bk

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 17/22
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Upper Bound: Part 2

H∗(g) ≥ sup
dµ
dP Bk -meas

inf
h

Eµ
[

log
∑

z

1

|R|
eg(ω)+h(Tzω)−h(ω)

]
= inf

h
sup

dµ
dP Bk -meas

Eµ
[

log
∑

z

1

|R|
eg(ω)+h(Tzω)−h(ω)

]

We get hk(Tzω)− hk(ω) ≤ C − g(ω)

If loops are allowed (e.g. −z OK), then
hk(ω)− hk(Tzω) ≤ C − g(Tzω)

Uniform integrability gives a limit F (ω, z) that is a corrector

H∗(g) ≥ K (g) as desired

Firas Rassoul-Agha, University of Utah LDP+Free Energy for quenched RWRP 18/22
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H∗(g) ≥ K (g) as desired
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Outline Model Quenched LDP Free Energy

Upper Bound: Part 2

What to do if loops are not allowed?

Lemma: (Kosygina-Varadhan) If gn ≥ 0 with E [gn] ≤ C , then ∃an

such that along a subsequence gn1I{gn ≤ an} is u.i. and
gn1I{gn > an} → 0 in probability.

Mean-zero gives
E[(hk(Tzω)− hk(ω))−] = E[(hk(Tzω)− hk(ω))+] ≤ C

So: can throw away the bad part! (Note that it is nonnegative)

Problem: Throwing away the bad part ruins mean-zero!

Solution: The resulting F (ω, z) has E[F (ω, z)] = c(z) ≥ 0.
So redefine as F (ω, z)− c(z)
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Outline Model Quenched LDP Free Energy

Upper Bound: Part 2

Closed-loop for F (ω, z) implies same for c(z)

Inequality goes the right way because c(z) ≥ 0

H∗(g) ≥ P-ess sup
ω

log
∑

z

1

|R|
eg(ω)+F (ω,z)

≥ P-ess supω log
∑

z
1
|R|e

g(ω)+F (ω,z)−c(z)

≥ K (g)
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Outline Model Quenched LDP Free Energy

Result

Λ(g) = lim
n→∞

n−1 log E0

[
exp

{ n−1∑
k=0

g(TXkω)
}]

= sup
µ
{Eµ[g ]− H(µ)}

= inf
F

P-ess sup
ω

log
∑

z

1

|R|
eg(ω)+F (ω,z)

The IID: Infinite Improbability Drive
(The Hitchhiker’s Guide to the Galaxy)
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Outline Model Quenched LDP Free Energy

Reason for Moment Assumptions

We need E[|V |p] <∞ for p ≥ 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:

Lemma

Let (Yi )i∈Zd be nonnegative and ergodic. Assume E [Y p] <∞ for
p “large enough.” Fix z ∈ Zd . Then,

lim
ε→0

lim
n→∞

n−1 sup
|i |≤n
|Yi+z + · · ·+ Yi+εnz | = 0.

Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).
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Reason for Moment Assumptions

We need E[|V |p] <∞ for p ≥ 1 to apply ergodic arguments.
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lim
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Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).

Question 1: does it work under any large enough but finite p and
mere ergodicity?
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Reason for Moment Assumptions

We need E[|V |p] <∞ for p ≥ 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:
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p “large enough.” Fix z ∈ Zd . Then,

lim
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lim
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Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).

Question 2: does it work under i.i.d. and only p > d?
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Reason for Moment Assumptions

We need E[|V |p] <∞ for p ≥ 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:

Lemma

Let (Yi )i∈Zd be nonnegative and ergodic. Assume E [Y p] <∞ for
p “large enough.” Fix z ∈ Zd . Then,

lim
ε→0

lim
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|Yi+z + · · ·+ Yi+εnz | = 0.

Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).

Question 3: what about just ergodicity and p > d?
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