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Model
Random walk

Py is a Random Walk on Z9 with steps in Z C Z9 bounded
d > 1 is arbitrary

Without loss of generality: jumps to z € Z are equally likely
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Model
Random walk

Py is a Random Walk on Z9 with steps in Z C Z9 bounded
d > 1 is arbitrary

Without loss of generality: jumps to z € Z are equally likely
Examples:

e Simple random walk: #Z = {*ey,..., teq4}

e Directed simple random walk: Z = {e1 £ e,...,e1 L e4}

(or {e1,...,eq})
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Model
Polymer in random potential

(Q,B,P,{T, : z € G}): ergodic system
(G is group generated by #Z and Q is compact)

Measurable V : Q x #! — R is a Random Potential

Firas Rassoul-Agha, University of Utah LDP—+Free Energy for quenched RWRP



Model
Polymer in random potential

(Q,B,P,{T, : z € G}): ergodic system
(G is group generated by #Z and Q is compact)

Measurable V : Q x #! — R is a Random Potential

Quenched measures are

exp { - ZZ;é V(Tka, Zk+1,k+£)}

zVwe

dQVw = dP,

Zij = (Xi = Xi—1,- - X — Xj—1)
ZY* is the normalizing constant (partition function)
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Model
SETIES

e RWRE: / =1 and V(w,z) = — logm ,(w)
e Nearest-neighbor polymers or directed polymers: ¢ =0 (V(w))

e Stretched polymers: £ =1 and V(w,z) = V(w) —h-z
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Model

Assumptions on V

e Bounded, or
ed=1and VelLl or

ed>2and Q= QOZd and P is i.i.d.
and \/(w,ZL@) = \U(wO,Zl’g) eLP, p> 2(d + 1)
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Model

Assumptions on V

e Bounded, or
ed=1and VelLl or

ed>2and Q= QOZd and P is i.i.d.
and \/(w,ZL@) = \U(wO,Zl’g) eLP, p> 2(d + 1)

Examples: Ber, Geo, Poi, Exp, Gau, Gam, log Gam, etc

For simplicity: think of V bounded continuous
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Model
Earlier Work: Polymers

We are interested in LDP for QY *“{X,/n € -}
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Model
Earlier Work: Polymers

We are interested in LDP for QY*“{X,/n € -}
Sznitman ‘94: Brownian motion among Poisson potential

Zerner '98: nearest-neighbor polymers
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Model
Earlier Work: Polymers

We are interested in LDP for QY*“{X,/n € -}

Sznitman ‘94: Brownian motion among Poisson potential
Zerner '98: nearest-neighbor polymers

Carmona-Hu ‘04: directed polymers in Gaussian potential

Comets-Shiga-Yoshida '03: directed polymers
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Model
Earlier Work: Polymers

We are interested in LDP for QY*“{X,/n € -}

Sznitman ‘94: Brownian motion among Poisson potential
Zerner '98: nearest-neighbor polymers

Carmona-Hu ‘04: directed polymers in Gaussian potential
Comets-Shiga-Yoshida '03: directed polymers

(all have V(w) and so RWRE is not covered)
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Earlier Work: static RWRE

Greven-den Hollander ‘94, Comets-Gantert-Zeitouni ‘00,
Yilmaz ‘09: d =1

Zerner ‘98, Varadhan ‘03: d >1
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Earlier Work: static RWRE

Greven-den Hollander ‘94, Comets-Gantert-Zeitouni ‘00,
Yilmaz ‘09: d =1

Zerner ‘98, Varadhan ‘03: d >1

Kosygina-Rezakhanlou-Varadhan ‘06: Diffusion in random
potential

Rosenbluth ‘06: variational formula for rate (level 1)
Yilmaz ‘09: univariate level 2

R’-Seppaldinen ‘11: level 3
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Earlier Work: static RWRE

Greven-den Hollander ‘94, Comets-Gantert-Zeitouni ‘00,
Yilmaz ‘09: d =1

Zerner ‘98, Varadhan ‘03: d >1

Kosygina-Rezakhanlou-Varadhan ‘06: Diffusion in random
potential

Rosenbluth ‘06: variational formula for rate (level 1)
Yilmaz ‘09: univariate level 2
R’-Seppaldinen ‘11: level 3

(All require loops to be allowed. Space-Time not covered.)
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Earlier Work: dynamic RWRE

Yilmaz ‘09: i.i.d. and near asymptotic velocity

Avena-den Hollander-Redig '10: spin-flip particle system
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Earlier Work: dynamic RWRE

Yilmaz ‘09: i.i.d. and near asymptotic velocity
Avena-den Hollander-Redig '10: spin-flip particle system

Kosygina-Varadhan ‘08: diffusion in space-time potential
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Quenched LDP

Quenched LDP

We are interested in LDP under Q,\,/’w

Our result is a level 3 LDP, but for simplicity will focus on level 1
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Quenched LDP

Quenched LDP

We are interested in LDP under Q,\,/’w
Our result is a level 3 LDP, but for simplicity will focus on level 1

Py already has an LDP. So maybe can use Varadhan's theorem?
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Quenched LDP
Quenched LDP

We are interested in LDP under Q,\,/’w
Our result is a level 3 LDP, but for simplicity will focus on level 1

Py already has an LDP. So maybe can use Varadhan's theorem?

Need LDP for (Tx,w, Zky1) (level 2)
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Quenched LDP
Quenched LDP

We are interested in LDP under Q,\,/’w

Our result is a level 3 LDP, but for simplicity will focus on level 1
Py already has an LDP. So maybe can use Varadhan's theorem?
Need LDP for (Tx,w, Zky1) (level 2)

Key ingredient: Free Energy

n—1

Neg) = lim n~*log Eo [eXp { > g(Tka)H
k=0
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Free Energy
Point-to-Point Free Energy

Mg.€) = lim n~"log o [exp { nig (Txew) } = [nél}
k=0

exists by subadditivity and A(g) = sup¢ A(g, §)
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Free Energy
Lower Bound: Change of Measure

Ng) = nIl_)rr;() ntlog Eo [exp { "z_:l g( Tka)H
k=0

> szp{E“[g] — H(u)} = H*(g)-
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Free Energy
Lower Bound: Change of Measure

Ng) = nIl_)rr;() ntlog Eo [exp { "z_:l g( Tka)H
k=0

> szp{E“[g] — H(u)} = H*(g)-

H(p) = inf{H(u x q|p x p) : pg = p}

p(w, T, ):ﬁforzeﬁ.

g is Markov kernel on Q. (supported on shifts { T,w : z € #Z})
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Free Energy
Lower Bound: Change of Measure

Ng) = nIl_)rr;() ntlog Eo [exp { "z_:l g( Tka)H
k=0

> szp{E“[g] — H(u)} = H*(g).
H(p) = inf{H(u x q|p x p) : pg = p}

p(w, T, ):ﬁforzeﬁ.
g is Markov kernel on Q. (supported on shifts { T,w : z € #Z})

H(p) = oo if p & P (only relevant measures)
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Free Energy
Upper Bound: Goal

Will show that A(g) < K(g) < H*(g). (will define K(g))
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Free Energy
Upper Bound: Goal

Will show that A(g) < K(g) < H*(g). (will define K(g))
Conclusions: A(g) = K(g) = H*(g). Two variational formulas.

And quenched LDP.

In particular: for space-time RWRE.
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Free Energy
Class of Correctors

F:Q x % — R such that
e F(w,z) € L}(P) for each z € % (moment)

e E[F(w,z)] =0 for each z € # (mean-zero)

n—1 m—1
° Z F(Tqw, zkt1) = Z F(Txw,Zj1) if xp = Xm (closed-loop)
k=0 j=0
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Free Energy
Class of Correctors

F:Q x % — R such that
e F(w,z) € L}(P) for each z € % (moment)

e E[F(w,z)] =0 for each z € # (mean-zero)

n—1 m—1
° Z F(Tqw, zkt1) = Z F(Txw,Zj1) if xp = Xm (closed-loop)
k=0 j=0

Examples: Gradients h( T,w) — h(w) with h € L}(P)
and their L1-limits
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Free Energy
Class of Correctors

F:Q x % — R such that
e F(w,z) € L}(P) for each z € % (moment)

e E[F(w,z)] =0 for each z € # (mean-zero)

n—1 m—1
° Z F(Tqw, zkt1) = Z F(Txw,Zj1) if xp = Xm (closed-loop)
k=0 j=0

Examples: Gradients h( T,w) — h(w) with h € L}(P)
and their L1-limits

Lemma: That's alll
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Free Energy

Sublinearity

n—1
Can define a path integral f(x,w) = Z F(Tyw, Zkt1)

k=0
for any path with x, = x
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Free Energy
Sublinearity

n—1
Can define a path integral f(x,w) = Z F(Tyw, Zkt1)

k=0
for any path with x, = x

Lemma: For any &, n~f([né],w) — 0 as.

Proof: Trivial for gradients. Then approximate
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Upper Bound: Part 1

1
KF(g) = [P-esssup Iog Z @eg(w)-i-f:(w,z)

1
= = inf P- 3 L))
K(g) = ”}f Kr(g) = n;fIP’ esssgp log d 7 eg
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Upper Bound: Part 1

1
KF(g) = [P-esssup Iog Z @eg(w)-i-f:(w,z)

1
— — infP- (W) +F(w:2)
K(g) = n;f Ke(g) = n;fIP’ esssgp log EZ 7 e8

Eo [exp {g(w) 4ot g(TXn_lw)}, X, = [ng]]
< W py [exp {g(w) + F(w, Z1) + -

+8(Tx, ,w) + F(Tx,_w, Zn)H

< eS(WIn=gnKe(8) (by the Markov property)
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Upper Bound: Part 1

Ke(g) = P—esssuplogz ‘%|eg(w)+F(wz)

1
— — infP- (W) +F(w:2)
K(g) = n;f Ke(g) = n;fIP’ esssgp log EZ 7 e8

E [exp {g(w) +- 4 g(Txn_lw)} Xn = [”5]]
< eWrgy {exp {g(w) + Flw, 1) +

+8(Tx, ,w) + F(Tx,_w, Zn)H

< eS(WIn=gnKe(8) (by the Markov property)

So A(g) = sup: N(g,§) < K(g)
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Upper Bound: Part 2

H*(g) = Si%{E“[g] —inf{H(ux q|px p):pg=p}}
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Upper Bound: Part 2

H*(g) = sup {E"[g] —inf{H(1u < q|px p): pg = p}}

= sup{E"[g] — Sup E*[h — log p(e")]} (Entropy Variational Formula)
p<P
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Upper Bound: Part 2

H*(g) = sup {E"[g] —inf{H(u x q|px p): pg = p}}

u<P
= sup{E"[g] — Sup E*[h — log p(e")]} (Entropy Variational Formula)
p<P
= inf sup E*| lo —eg(“’)+h(Tzw)_h(“’) min-max??
¥ sup ¢ [log 2 15 I ’
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Upper Bound: Part 2

H*(g) = sup {E"[g] —inf{H(u x q|px p): pg = p}}

u<P
= sup{E"[g] — Sup E*[h — log p(e")]} (Entropy Variational Formula)
p<P
= inf sup E*| lo —eg(“’)+h(Tzw)_h(“’) min-max??
i sup B [log 2 15 I ’
> K(g)
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Upper Bound: Part 2

H*(g) = sup {E"[g] —inf{H(u x q|px p): pg = p}}

u<P
= sup{E"[g] — Sup E*[h — log p(e")]} (Entropy Variational Formula)
p<P
= inf sup E*| lo —eg(“’)+h(Tzw)_h(“’) min-max??
i sup B [log 2 15 I ’
> K(g)

Problem: {u: u < P} is not compact
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Upper Bound: Part 2

H*(g) = sup {E"[g] —inf{H(u x q|px p): pg = p}}

u<P
= sup{E"[g] — Sup E*[h — log p(e")]} (Entropy Variational Formula)
p<P
= inf sup E*| lo —eg(“’)+h(Tzw)_h(“’) min-max??
i sup B [log 2 15 I ’
> K(g)

Problem: {u: u < P} is not compact

Solution: Approximate with finite B
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Upper Bound: Part 2

1
* > i ( = 8(W)+h(Trw)—h(w)
H*(g) > sup u;fE [Iog Ez ’%|e }

du
Fia By-meas

i 1 w)+h(T,w)—h(w
=inf sup Eu[bgg:%eg()( )()}

du
o Bik-meas
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Upper Bound: Part 2

1
(o) > inf EX g(w)+h(Tzw)—h(w)
H*(g) >  sup u;fE [Iog EZ ’%,|e }

du
i By-meas

i 1 w)+h(T,w)—h(w
=inf sup Eu[bgg:%eg()( )()}

dp
o Bik-meas

We get hy(T,w) — he(w) < C — g(w)
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Upper Bound: Part 2

1
(o) > inf EX g(w)+h(Tzw)—h(w)
H*(g) >  sup u;fE [Iog EZ ’%,|e }

du
i By-meas

i 1 w)+h(T,w)—h(w
=inf sup Eu[bgg:%eg()( )()}

Z—g By-meas
We get hi(T,w) — he(w) < € — g(w)

If loops are allowed (e.g. —z OK), then
he(w) — he(Tow) < € — g(Tw)
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Upper Bound: Part 2

1
(o) > inf EX g(w)+h(Tzw)—h(w)
H*(g) >  sup u;fE [Iog EZ ’%,|e }

du
i By-meas

i 1 w)+h(T,w)—h(w
=inf sup Eu[bgg:%eg()( )()}

Z—g By-meas
We get hi(T,w) — he(w) < € — g(w)

If loops are allowed (e.g. —z OK), then
he(w) — he(Tow) < € — g(Tw)

Uniform integrability gives a limit F(w, z) that is a corrector

H*(g) > K(g) as desired
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Free Energy

Upper Bound: Part 2

What to do if loops are not allowed?
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Upper Bound: Part 2

What to do if loops are not allowed?

Lemma: (Kosygina-Varadhan) If g, > 0 with E[g,] < C, then Ja,
such that along a subsequence g,1{g, < a,} is u.i. and
gnll{gn > an} — 0 in probability.
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Upper Bound: Part 2

What to do if loops are not allowed?

Lemma: (Kosygina-Varadhan) If g, > 0 with E[g,] < C, then Ja,
such that along a subsequence g,1{g, < a,} is u.i. and
gnll{gn > an} — 0 in probability.

Mean-zero gives
E[(he(Tzw) — he(w)) 7] = E[(he(Tzw) — hi(w)) "] < C

So: can throw away the bad part! (Note that it is nonnegative)
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Upper Bound: Part 2

What to do if loops are not allowed?

Lemma: (Kosygina-Varadhan) If g, > 0 with E[g,] < C, then Ja,
such that along a subsequence g,1{g, < a,} is u.i. and
gnll{gn > an} — 0 in probability.

Mean-zero gives
E[(he(Tzw) — he(w)) 7] = E[(he(Tzw) — hi(w)) "] < C

So: can throw away the bad part! (Note that it is nonnegative)

Problem: Throwing away the bad part ruins mean-zero!
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Upper Bound: Part 2

What to do if loops are not allowed?

Lemma: (Kosygina-Varadhan) If g, > 0 with E[g,] < C, then Ja,
such that along a subsequence g,1{g, < a,} is u.i. and
gnll{gn > an} — 0 in probability.

Mean-zero gives
E[(he(Tzw) — he(w)) 7] = E[(he(Tzw) — hi(w)) "] < C

So: can throw away the bad part! (Note that it is nonnegative)
Problem: Throwing away the bad part ruins mean-zero!

Solution: The resulting F(w, z) has E[F(w, z)] = ¢(z) > 0.
So redefine as F(w, z) — ¢(z)
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Upper Bound: Part 2

Closed-loop for F(w, z) implies same for ¢(z)
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Upper Bound: Part 2

Closed-loop for F(w, z) implies same for ¢(z)

Inequality goes the right way because c(z) >0
1
H*(g) > P-esssuplog >  — e8@)+F(w.2)
(g) u Zz: @
> P-esssup,, log ), ﬁeg(w)JrF(w,z)_c(z)

> K(g)
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Free Energy
Result

Ng) = nIer;O ntlog Eg [exp { HZE g( Tka)H
k=0

= SL:LP{E“[g] — H(w)}

g(w)+F(w.2)

1
= inf P-esssuplo —e
n up ggw

The IID: Infinite Improbability Drive
(The Hitchhiker's Guide to the Galaxy)
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Free Energy
Reason for Moment Assumptions

We need E[|V|P] < oo for p > 1 to apply ergodic arguments.
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Free Energy
Reason for Moment Assumptions

We need E[|V|P] < oo for p > 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:

Let (Yi)jcza be nonnegative and ergodic. Assume E[YP] < oo for
p “large enough.” Fix z € Z9. Then,

lim Tim n=Ysup |Yipz + -+ Yipenz| = 0.
€0 n—0c0 lil<n
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Free Energy
Reason for Moment Assumptions

We need E[|V|P] < oo for p > 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:

Let (Yi)jcza be nonnegative and ergodic. Assume E[YP] < oo for
p “large enough.” Fix z € Z¢. Then,

lim Tim n=Ysup |Yipz + -+ Yipenz| = 0.
€0 n—0c0 lil<n

Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).
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Free Energy
Reason for Moment Assumptions

We need E[|V|P] < oo for p > 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:

Let (Yi)icza be nonnegative and ergodic. Assume E[YP] < oo for
p “large enough.” Fix z € Z9. Then,

lim lim nil sup ‘Yi-i-z + o+ Yi-i-anz| =0.
e-0n=co ji<p

Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).

Question 1: does it work under any large enough but finite p and
mere ergodicity?
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Free Energy
Reason for Moment Assumptions

We need E[|V|P] < oo for p > 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:

Let (Y;);ezes be nonnegative and ergodic. Assume E[YP] < oo for
p “large enough.” Fix z € Z9. Then,

lim m n_l sup |Yi+z AF oo AR Yi—|—enz| =0.

e—0 n—oo |i|<n

Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).

Question 2: does it work under i.i.d. and only p > d?
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Free Energy
Reason for Moment Assumptions

We need E[|V|P] < oo for p > 1 to apply ergodic arguments.

The only place where one needs p to be large enough is:

Let (Y;);ezes be nonnegative and ergodic. Assume E[YP] < oo for
p “large enough.” Fix z € Z9. Then,

lim m n_l sup |Yi+z AF oo AR Yi—|—enz| =0.

e—0 n—oo |i|<n

Trivial if variables are bounded. Works by the SLLN if d = 1.
Works by Borel-Cantelli if variables are i.i.d. and p > 2(d + 1).

Question 3: what about just ergodicity and p > d?
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