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Pricing Weather Derivative: An Equilibrium Approach

Abstract

This paper proposes and implements an equilibrium framework for valuing weather derivatives.

We generalize the Lucas model of 1978 to include the daily temperature as a fundamental variable in

the economy. Temperature behavior in the past twenty years is closely studied for ¯ve major cities in

the U.S., and a model is proposed for the daily temperature variable which incorporates all the key

properties of temperature behavior including seasonal cycles and uneven variations throughout the

year. The model system is estimated using the 20-year data and numerical analyses are performed

for forward and option contracts on HDD's and CDD's. The key advantages of our model include

the use of weather forecasts as inputs and the ability to handle contracts of any maturity, for any

season. Numerical analyses show that within our framework, the market price of risk associated with

the temperature variable does not appear to impact the weather derivatives' value in a signi¯cant

way, which indirectly justi¯es the use of riskfree rate to derive weather derivatives' values as many

practitioners do in the industry. Finally, we show that the so-called historical simulation method

can lead to signi¯cant pricing errors due to its erroneous implicit assumptions.
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1. Introduction

It is estimated that about $ 1 trillion of the $ 7 trillion U.S. economy is weather-sensitive (Challis

1999 and Hanley 1999). Weather conditions directly a®ect the outputs of agricultural products

and the demand for energy products, and indirectly a®ect retail businesses. For example, the

inventory of winter coats at a department store depends on weather forecast for the coming winter

and eventual sales depend on the actual weather condition (Agins and Kranhold, 1999). Likewise,

earnings in the power industry depend on the retail prices and the sales quantities of electricity.

Although weather conditions may not play a key role in determining the electricity retail price,

it is certainly one of the most important factors a®ecting the electricity demand. Until 1997,

earnings stabilization for utility ¯rms was primarily achieved through price hedging mechanisms

while volumetric risks were largely left unhedged. The increasing competition caused by ongoing

deregulation has created incentives for utility ¯rms to stabilize revenues. It has become necessary

for companies to hedge against the volumetric risks caused by unexpected weather conditions. Such

needs have created a new family of over-the-counter weather derivatives. Meantime, the Chicago

Mercantile Exchange has introduced futures contracts on the temperature of several U.S. cities.

The underlying variables for weather contracts include temperatures, rainfall, snowfall and

precipitations.1 However, the most commonly used variables are Heating-Degree-Days (HDD) and

Cooling-Degree-Days (CDD) de¯ned on daily average temperatures. The daily average tempera-

ture, in turn, is the arithmetic average of the maximum and minimum temperature recorded on a

1For a complete survery, see Hanley (1999).
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midnight-to-midnight basis. The precise expressions of HDD and CDD are de¯ned below:

Daily HDD = max(65± degree Fahrenheit - daily average temperature, 0);

Daily CDD = max(daily average temperature - 65± degree Fahrenheit, 0).

To simplify the language in the text, we refer to the daily average temperature as daily temperature.

Intuitively, HDD measures the coldness of the day compared to a benchmark of 65 Fahrenheit for

the winter season while CDD measures the extent to which a summer day is hot. An HDD season

includes winter months from November to March and the CDD season (or summer season) from

May to September. April and October are commonly referred to as the shoulder months.

Because of the high correlation between the electricity consumption and HDD/CDD, most

contracts are written on the accumulation of HDD or CDD over a certain period (e.g., a calendar

month or a season) so that one contract can be used to hedge a particular period. The popular

transactions in the OTC market include HDD / CDD swaps and options for large cities like Atlanta,

Chicago, Dallas, New York and Philadelphia. 2 The swap contracts or forward contracts are similar

to the exchange-traded futures contracts. There are four basic elements in these contracts: (i) the

underlying variable: HDD or CDD; (ii) the accumulation period: a season or a calendar month;

(iii) a speci¯c weather station reporting daily temperatures for a particular city; and (iv) the tick

size: the dollar amount attached to each HDD or CDD. Table 1 presents the typical transactions

of an HDD swap (or forward) on New York and a CDD option on Chicago. In the New York HDD

swap, the tick size is set at $5,000 per HDD. XYZ Co. agrees to pay ABC Co. a ¯xed rate of

1,000 HDD and in return for a °oating rate which is the actual accumulated HDD during January,

1999. The realized HDD for January, 1999 is 956. Then the payo® for XYZ Co. at maturity is

$5000 £ (956 ¡ 1000) = ¡$220; 000: Similarly, the Chicago CDD option has a tick size of $5,000

2See Smithson and Choe (1999) for a brief survey of the market.
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and a strike level of 190 CDD. The actual accumulated CDD in June, 1999 is 196, which is higher

than the strike level. Thus, xyz Co. would exercise the call option at maturity and receive a payo®

of $5; 000 £ (196 ¡ 190) = $30; 000.

Table 1: Examples of HDD- and CDD-based Swap and Option

HDD Swap (or Forward) CDD Call Option

Location La Guardia Airport, New York O'Hare Airport, Chicago
Buyer YYY Co. (paying ¯xed rate) xyz Co. (paying call premium)
Seller AAA Co. (paying °oating rate) abc Co.
Accumulation
Period

January 1 - 31, 1999 June 1 - 30, 1999

Tick Size $5,000 per HDD $5,000 per CDD
Fixed Rate 1,000 HDD
Strike Level 190 CDD

Floating Rate
the actual HDD
for January, 1999

= 956 HDD

Settlement Price
the actual CDD
for June, 1999

= 196 CDD

Payo®s at Maturity
for the Buyer

(956 ¡ 1000) £ 5000 = ¡$220; 000 (196 ¡ 190) £ 5000 = $30; 000

Despite the rapid growth of weather derivatives in the OTC market, the bid / ask spread is still

very large and there is no e®ective pricing method accepted by all industry participants. In this

paper we propose an equilibrium model to price weather derivatives. Our objectives are three-fold.

First, we will present a realistic model for the dynamics of the daily average temperature, which is

very di®erent from that of a security price. For example, temperatures are seasonal and cyclical,

can be predicted accurately for the very near future, and will vary within a well-de¯ned range in

the long run. The traditional stochastic di®usion process used for modelling security prices will

not be suitable for temperature dynamics. Second, we would like to establish, in a rudimental way,

whether the market price of risk associated with the temperature variable signi¯cantly a®ects the
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valuation of weather derivatives. Third, we will develop a pricing framework for derivatives based

on the accumulated HDD or CDD. Challenges arise because the underlying is the accumulation of

the daily HDD/CDD which are non-linear in daily temperatures.

The key contributions of this paper lie in the accomplishments of the aforementioned objectives.

First, we propose an auto-regressive, mean-reverting dynamic system for the daily temperature.

This system is capable of capturing the seasonality and the global warming trend and can incorpo-

rate weather forecast information. Second, the market price of risk associated with the temperature

variable is analyzed in an equilibrium framework. Speci¯cally, we extend Lucas' (1978) equilibrium

asset-pricing model where fundamental uncertainties in the economy are generated by aggregate

dividend and a state variable representing the daily temperature. It is shown that the equilibrium

prices of weather derivatives depend on the agent's risk preference and the correlation between

the temperature variable and the aggregate dividend. Lastly, we use Maximum Likelihood method

to estimate the temperature dynamics for Atlanta, Chicago, Dallas, New York and Philadelphia.

Based on the estimated parameters, we simulate forward and option prices for seasonal and monthly

HDD / CDD contracts and examine the importance of the market price of risk thereof.

The paper is organized as follows. Section 2 presents the underlying equilibrium model, dis-

cusses the dynamics of the fundamental variables: the aggregate dividend and daily temperatures.

Section 3 discusses the equilibrium valuation of weather derivatives. Section 4 presents temperature

estimation results for ¯ve cities. Section 5 analyzes the simulated weather derivative prices. Section

6 concludes the paper. Proofs and exhibitions are collected in appendices.
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2. The Structure of the Economy

In a discrete-setting, consider an extension of the Lucas (1978) pure exchange economy with two

state variables: aggregate dividends (±) and weather conditions (Y ) which generate the fundamental

uncertainties in the economy. Aggregate dividends can be viewed as aggregate outputs or dividend

on the market portfolio. The weather variable can refer to temperatures, rainfall, snowfall or

precipitations. The dynamics governing the aggregate dividend and the temperature variable are

assumed to be exogenous processes on a given probability space (­, F , P). There is a representative

investor whose information structure is given by the ¯ltration Ft ´ ¾(±¿ ; Y¿ ; ¿ 2 (0; 1; 2; :::; t)). The

agent has an in¯nite lifetime horizon.

In the ¯nancial market, the representative agent can trade a single risky stock, pure discount

bonds and a ¯nite number of other contingent claims at any time. The risky stock can be viewed as

the market portfolio. Therefore, its dividend stream f±tg is understood as aggregate dividends in

the economy. The total supply is normalized to one share and the contingent claims are written on

the risky stock, the pure discount bond and the weather variable. The net supply of all contingent

claims and the riskless bond is zero.

In the following subsections, we specify the fundamentals in the economy: the agent's preference,

the dynamics of the aggregate dividend and the weather variable.

2.1. Agent's Preference and Aggregate Dividend Behavior

The agent's preference is described by a smooth time-additive expected utility function

V (c) = E0

Ã 1X

t=0

U(ct; t)

!
;
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where U : R+ £ (0;1) ! R is smooth on (0;1) £ (0;1) and, for each t 2 (0; 1; 2; :::;1),

U(¢; t) : R+ ! R is increasing, strictly concave, and has a continuous derivative Uc(¢; t) on (0;1).

For analytical tractability, the agent's period t utility is assumed to be the Constant-Relative-Risk-

Aversion (CRRA) type of preference:

Assumption 1. The representative agent's period utility is described by

U(ct; t) = e¡½t
c°+1t

° + 1
;

with the rate of time preference, ½ > 0 and the risk parameter ° 2 [¡1; 0].

For the aggregate dividend process, we appeal to Marsh and Merton (1987), whose estima-

tion results suggest mean-reversion in dividend rate changes. This feature is incorporated in the

following assumption:3

Assumption 2. The aggregate dividend, ±, evolves according to the following Markov process:

ln ±t = ® + ¹ ln ±t¡1 + ¾± ²t; 8 ¹ 6 1

where ²t is an independently and identically distributed standard normal random variable.

2.2. Dynamics of the Temperature Variable

We will focus on temperature-related weather derivatives since they are the most traded products.

The equilibrium model proposed here can be easily adapted to weather derivatives on other variables

such as rainfall, snowfall or precipitations.

3Lintner (1956) and Fama and Babiak (1968) study the dividend behavior for individual stocks. They use the
accounting earnings variable instead of the changes in stock prices.
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2.2.1. Summary of Temperature Behavior

To ensure accurate modeling of the temperature variable, we ¯rst study its behavior. We examine

20-year historical daily temperature data for Atlanta, Chicago, Dallas, New York and Philadelphia

obtained from the National Climate Data Center (NCDC), a subsidiary of the National Oceanic

Atmospheric Administration (NOAA). The sample period is from 1979 to 1998. Exhibits 1 and 2

summarize sample statistics and Exhibit 3 depicts the warming trend in Atlanta, which is typical

of all cities studied.4 The following remarks are in order.

Remark 1. The sample means of the two Southern cities (Atlanta and Dallas) are higher than

those of the three Northern counterparts. The highest and lowest sample means are 66 and 50 of

Dallas and Chicago, respectively.

Remark 2. Northern cities generally have larger standard deviations. Chicago has the highest

sample standard deviation (20 degrees), indicating large temperature swings. Atlanta has the

lowest sample standard deviation (15 degrees).

Remark 3. Correlations among the ¯ve cities are very high and are above 0.84. New York and

Philadelphia, the two nearest cities, present the highest correlation, 0.9853.

Remark 4. Daily temperatures exhibit strong auto-correlations.

Remark 5. Standard deviations of monthly CDD's for the two Southern cities are higher than

those of their Northern counterparts. The reserve is true for HDD standard deviations (Exhibit 2).

4To simplify the analysis, we have omitted the observations for February 29 from the sample. Therefore, each year
consists of 365 days and the sample size for 20 years is 7300.
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To facilitate further discussions, let us index the years in the sample period by yr, thus yr = 1

for 1979, yr = 2 for 1980, ..., yr = 20 for 1998. Also, index January 1 as t = 1 , January 2 as t = 2,

and so on for 365 days in a year. Denote Yyr;t as the temperature on date t in year yr. Below, we

de¯ne the mean (Y t) and the standard deviation (Ãt) for date t as

Y t = 1
20

P20
yr=1 Yyr;t & Ãt =

q
1
20

P20
yr=1

¡
Yyr;t ¡ Y t

¢2
; 8 t = 1; 2; :::; 365:

We plot in Exhibit 4 the daily standard deviations for Atlanta and Chicago, which show a clear

seasonal pattern: the temperature variation in the HDD season is larger than that in the CDD

season. This is common for all cities in consideration.

2.2.2. Modelling Daily Temperature Behavior

In light of the properties identi¯ed in the previous section, a model for the daily temperature must

possess the following features. First, it must capture the seasonal cyclical patterns; second, the daily

variations in temperature must be around some average \normal" temperature, to be elaborated

on later; third, it should allow forecasts to play a key role in projecting temperature paths in the

future; fourth, it should incorporate the autoregressive property in temperature changes (i.e., a

warmer day is most likely to be followed by another warmer day, and vice versa); ¯fth, the extent

of variation must be bigger in the winter and smaller in the summer; sixth, a projected temperature

path into the future should never wander outside of the normal range of the temperature for each

projected point in time; and seventh, the model must re°ect the global warming trend.

A di®usion process would fail most of the above requirements, especially the ¯rst and the sixth.

Even with the most plausible candidate, the mean-reverting process, it is always possible (and this

has been veri¯ed by our empirical estimation and subsequent simulations) that a particular path
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of temperatures does not resemble a temperature evolution at all. For this reason, we resort to a

discrete, autoregressive model. To this end, de¯ne the de-meaned and de-trended residual of the

daily temperature as Uyr;t,

Uyr;t = Yyr;t ¡ bY yr;t; 8 yr = 1; 2; :::; 20 & t = 1; 2; :::; 365: (2.1)

Assumption 3. The daily temperature residual, Uyr;t, is described by a k-lag autocorrelation

system: 5

Uyr;t =
Pk
i=1 ½iUyr;t¡i + ¾yr;t ¤ »yr;t

¾yr;t = ¾ ¡ ¾1 j sin(¼t=365 + Á) j;

»yr;t » i:i:d: N(0; 1);

8 yr = 1; 2; :::; 20; & t = 1; 2; :::; 365:

(2.2)

The correlation between » and ² (the white noise in aggregate dividend) is assumed to be:

corr(»yr;t ; ²yr0;t0) =

8
<
:

' if yr = yr0 and t = t0;

0 otherwise:

In the above, bY t serves the purpose of de-mean and de-trend. It is tempting to use the historical

daily average, Y t as an input for bY t: But this will be a poor choice, because for a very cold or

very warm year, all the realized temperatures could be below or above the historical averages. To

illustrate, let us consider a colder-than-normal winter in New York from November 1980 to March

1981. Panel A of Exhibit 5 compares date t's average temperature with the realized temperature.

(The plots are extended at both ends to have a complete view.) Although Y t was more or less in the

center of realized temperatures before the winter months, it was much higher for those extremely

cold days. To correct this problem, we make certain adjustments in the following steps. 1) For

5We confess a slight abuse of notation here. Notice that at the beginning of year yr; we must use the data from
the end of the previous year, (yr ¡ 1) to calculate the auto-regressive terms. It is understood that the index yr will
automatically take appropriate values when required.
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each month of the year, we average the daily means, Y t; 2) for the same year, we calculate the

realized, average temperature of each month; 3) for each month, we ¯nd the di®erence between

the averages from Step 2 and Step 1; and 4) we adjust the simple mean for each day of the month

by the quantity calculated in Step 3, and this adjusted mean is referred to as bY t: The period of

one month is chosen as a trade-o®. Too long a period will not solve the non-centering problem

and too short a period will unnecessarily exaggerate the short term °uctuations and diminish the

meaning of \average" or \mean". Needless to say, one could be more sophisticated in making the

adjustments. For instance, rather than following the calendar months, one could always center

the day in question in a 30 day (e.g.) period and make the above adjustments on a rolling basis.

However, as shown in Panel B of Exhibit 5, our scheme already works very well.

The volatility speci¯cation in (2.2) using the sine wave re°ects the ¯fth requirement and the

feature in Exhibit 4. The autocorrelation setup re°ects the fourth feature. The other features

(including the global warming trend) are captured by the speci¯cation of bY t: The correlation spec-

i¯cation indicates that the current temperature is correlated with the current aggregate dividend.6

2.3. Agent's Optimization Problem

Initially, the agent is endowed with one share of the risky stock. Denote his portfolio holdings at

time t as µt = (µst ; µBt ; µx0t ), where µst ; µBt and µx0t represent the number of shares invested in the

risky stock, the discount bond and other contingent claims, respectively. Also denote the security

prices at time t by a vector Xt and the corresponding vector of dividends by Dt. The agent's

consumption over time is ¯nanced by a trading strategy fµt; t ¸ 0g. His decision problem is to

6Amore general speci¯cation would allow the current aggregate dividend to be a®ected by the lagged temperatures.
This type of setup will make the estimation and valuation much more complicated, and we will leave it to future
research.
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choose an optimal trading strategy so as to maximize his expected lifetime utility. The ¯rst order

conditions yield the standard Euler equation:

Xt = Et

Ã 1X

¿=t+1

Uc(c¿ ; ¿)

Uc(ct; t)
D¿

!
:

Thus, the price of any security equals the expected discounted sum of its dividends, with the

marginal rate of substitution being the stochastic state price de°ator. 7

In equilibrium, both the ¯nancial market and the goods market clear so that aggregate con-

sumption equals the dividends generated from the risky stock. Therefore, for a riskless bond paying

1 unit of consumption goods at T and 0 at all other times, its equilibrium price at time t, denoted

by B(t; T ), is

B(t; T) =
1

Uc(±t; t)
Et (Uc(±T ; T)) ; 8 t 2 (0; T ): (2.3)

For any contingent claim with a payo® qT at maturity T , its price at time t, denoted by Ft(t; T ), is

F (t; T) =
1

Uc(±t; t)
Et (Uc(±T ; T )qT ) ; 8 t 2 (0; T ): (2.4)

For example, if K denotes the delivery level of a forward contract written on the temperature

variable, Y , and the tick size is assumed to be $1 per degree days, then qT = YT ¡ K is the payo®

of the contract at maturity.

3. Pricing HDD / CDD Derivatives

3.1. Term Structure of the Interest Rate under the CRRA Preference

Proposition 3.1. Under the CRRA utility and Assumption 2, the pure discount price at time t is

7All expectations in this paper are taken with respect to the ¯ltration speci¯ed in Assumptions 2 & 3.
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B(t; T ) = ±
°(¹T¡t¡1)
t exp

Ã
¡½(T ¡ t) +

TX

i=t+1

[®°¹T¡i +
1

2
°2¾2±¹

2(T¡i)]

!
;

and the yield-to-maturity de¯ned through e¡R(t;T )(T¡t) = B(t; T ) is

R(t; T ) = ½ ¡
PT
i=t+1[®°¹T¡i + 1

2°
2¾2±¹

2(T¡i)]

T ¡ t
¡ °(¹T¡t ¡ 1) ln ±t

T ¡ t
:

Proof: see Appendix A.

A special case is ¹ = 1 where changes in the dividend growth rate follow a random walk. In

this case, the pure discount bond price reduces to

B(t; T ) = exp

·µ
¡½ + ®° +

1

2
°2¾2±

¶
(T ¡ t)

¸
;

which yields a °at term structure R(t; T ) = ½ ¡ ®° ¡ 1
2°
2¾2± . In order to ensure a stable system,

the yield-to-maturity has to be positive, i.e., ½ ¡ ®° ¡ 1
2°
2¾2± > 0.

3.2. HDD / CDD Forward Prices and Market Price of Risk

Consider an HDD forward contract with a tick size of $1 and delivery price, K. The accumulation

period starts at T1 and ends at maturity T2 > T1. Denote HDD(T1; T2) =
PT2
¿=T1

max(65 ¡ Y¿ ; 0):

The value of the HDD forward contract at time t, fHDD(t; T1; T2; K), can be determined by equation

(2.4):

fHDD(t; T1; T2; K) = Et
³
Uc(±T2 ;T2)

Uc(±t;t)
[HDD(T1; T2) ¡ K]

´

= e¡½(T2¡t)Et

µ
±°T2
±
°
t

[HDD(T1; T2) ¡ K]

¶
:

(3.1)

When a forward contract is initiated, the delivery price, K is chosen so that the value of the

contract is zero. Therefore, the forward price at time t, FHDD(t; T1; T2), is the value of K which
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makes f = 0 in (3.1). That is,

FHDD(t; T1; T2) =
Et

³
±°T2HDD(T1; T2)

´

Et(±
°
T2

)
=

e¡½(T2¡t)±¡°t Et
³
±°T2HDD(T1; T2)

´

B(t; T2)
:

Similar expressions can be written for CDD contracts:

fCDD(t; T1; T2;K) = e¡½(T2¡t)Et

µ
±°T2
±°t

[CDD(T1; T2) ¡ K]

¶
;

FCDD(t; T1; T2) =
e¡½(T2¡t)±¡°t Et

³
±°T2

CDD(T1;T2)
´

B(t;T2)
:

It is easier to analyze the market price of risk or the risk premium with closed-form formulas. To

this end, we set the autocorrelation parameters to zero and obtain the following proposition.

Proposition 3.2. When ½i = 0 (i = 1; 2; ::; k); the equilibrium forward prices at time t < T1

before the accumulation period are

FHDD(t; T1; T2) =
PT2
¿=T1

³
[65 ¡ ¹0Y (¿)] ¢ N(

65¡¹0Y (¿)
¾yr;¿

) + ¾yr;¿p
2¼

exp
h
¡ (65¡¹0Y (¿))2

2¾2yr;¿

i´
;

FCDD(t; T1; T2) =
PT2
¿=T1

³
[¹0Y (¿) ¡ 65] ¢ N(

¹0Y (¿)¡65
¾yr;¿

) + ¾yr;¿p
2¼

exp
h
¡ (65¡¹0Y (¿))2

2¾2yr;¿

i´
;

with ¹0Y (¿) = bY ¿ + °'¹¿¡t¾±¾yr;¿ :

The equilibrium forward prices at time t 2 (T1; T2) during the accumulation period are

FHDD(t; T1; T2) = HDD(T1; t) +
PT2
¿=t+1

³
[65 ¡ ¹0Y (¿)] ¢ N(

65¡¹0Y (¿ )
¾yr;¿

) + ¾yr;¿p
2¼

exp
h
¡ (65¡¹0Y (¿))2

2¾2yr;¿

i´
;

FCDD(t; T1; T2) = CDD(T1; t) +
PT2
¿=t+1

³
[¹0Y (¿) ¡ 65] ¢ N(

¹0Y (¿)¡65
¾yr;¿

) + ¾yr;¿p
2¼

exp
h
¡ (65¡¹0Y (¿))2

2¾2yr;¿

i´
:

The equilibrium values of the forward contracts at time t are

fHDD(t; T1; T2;K) = B(t; T2)(FHDD(t; T1; T2) ¡ K) and

fCDD(t; T1; T2;K) = B(t; T2)(FCDD(t; T1; T2) ¡ K):

Proof: (see Appendix B).
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Remark 6. The equilibrium value of an HDD/CDD forward contract in Proposition 3.2 is the

present value of the di®erence between the forward price and the delivery price discounted at the

riskfree rate, which is consistent with results for stock or currency forward contracts when interest

rates are non-stochastic.

Remark 7. The equilibrium forward prices converge to the spot prices at maturity T2:

FHDD(T2; T1; T2) = HDD(T1; T2) and FCDD(T2; T1; T2) = CDD(T1; T2):

A special case of Proposition 3.2 is when ' = 0, i.e., when the temperature variable Y is not

correlated with the aggregate dividend. In this case, the forward prices at time t < T1 collapse to

F ¤
HDD(t; T1; T2) =

PT2
¿=T1

³
[65 ¡ ¹Y (¿)] ¢ N(65¡¹Y (¿)¾yr;¿

) + ¾yr;¿p
2¼

exp
h
¡ (65¡¹Y (¿))2

2¾2yr;¿

i´

F ¤
CDD(t; T1; T2) =

PT2
¿=T1

³
[¹Y (¿) ¡ 65] ¢ N(¹Y (¿)¡65¾yr;¿

) + ¾yr;¿p
2¼

exp
h
¡ (65¡¹Y (¿))2

2¾2yr;¿

i´

with ¹Y (¿) = bY ¿ :

It can be veri¯ed that the forward prices, F ¤
HDD and F ¤

CDD; are simply the expected values of HDD

and CDD, respectively, conditional on today's information on temperature. That is,

F ¤
HDD(t; T1; T2) = Et(HDD(T1; T2)) and F ¤

CDD(t; T1T2) = Et(CDD(T1; T2)):

No risk premium is required for the temperature variable in this case.

Given the parameter restrictions ¡1 < ° < 0 , 0 < ¹ 6 1 , ¾± > 0 and ¾yr;t > 0, parameter

' plays a key role in determining the relationship between the forward prices and the expected

HDD/CDD values. To gain more insights, we compute the following comparative statics:

@FHDD
@'

= ¡
T2X

¿=T1

µ
N(

65 ¡ ¹0Y (¿)

¾yr;¿
)°¹¿¡t¾±¾yr;¿

¶
> 0;
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@FCDD
@'

=
T2X

¿=T1

µ
N(

¹0Y (¿) ¡ 65

¾yr;¿
)°¹¿¡t¾±¾yr;¿

¶
< 0:

Since ' = 0 corresponds to the case where the forward prices are equal to the expect HDD/CDD,

we obtain the following relations:

Table 2: Comparative Statics

' < 0 ' > 0

FHDD < Et (HDD(T1; T2)) FHDD > Et (HDD(T1; T2))

FCDD > Et (CDD(T1; T2)) FCDD < Et (CDD(T1; T2))

Note: ¡1 < ° < 0 , 0 < ¹ 6 1 , ¾± > 0 and ¾yr;t > 0:

When the temperature is negatively correlated with the aggregate dividend, i.e., ' < 0, HDD

forward prices are lower than the expected HDD, but CDD forward prices are higher than the

expected CDD. The reverse is true when ' > 0. Simulation results in subsequent sections show

that the results in Table 2 still obtain when the auto-correlations are not zero.

3.3. Valuation of HDD and CDD Options

HDD and CDD options can be priced in a similar way as the corresponding forward contracts.

Consider a European option written on HDD(T1; T2) with maturity T2 and a strike price X.

Denote the call and put prices at time t as CHDD(t; T1; T2;X) and PHDD(t; T1; T2;X); respectively.

According to (2.4), the call and put values can be determined as

CHDD(t; T1; T2;X) = e¡½(T2¡t)±¡°t Et
³
±°T2 max(HDD(T1; T2) ¡ X; 0)

´
;

PHDD(t; T1; T2;X) = e¡½(T2¡t)±¡°t Et
³
±°T2 max(X ¡ HDD(T1; T2); 0)

´
:
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Similarly, call and put options written on CDD(T1; T2) can be priced as

CCDD(t; T1; T2;X) = e¡½(T2¡t)±¡°t Et
³
±°T2 max(CDD(T1; T2) ¡ X; 0)

´
;

PCDD(t; T1; T2;X) = e¡½(T2¡t)±¡°t Et
³
±°T2 max(X ¡ CDD(T1; T2); 0)

´
:

It is important to note that, when ' 6= 0, the above option pricing equations also incorporate

market price of risks for the temperature variable. When ' = 0, similar to forward prices, the

option prices can be determined by discounting the future payo®s at the riskfree rate, i.e.,

CHDD(t; T1; T2;X) = e¡½(T2¡t)±¡°t Et
³
±°T2 max(HDD(T1; T2) ¡ X; 0)

´
;

= e¡½(T2¡t)±¡°t Et
³
±°T2

´
Et (max(HDD(T1; T2) ¡ X; 0)) (when ' = 0)

= B(t; T2)Et (max(X ¡ HDD(T1; T2); 0)) (by Appendix A.1)

= e¡R(t;T2)(T2¡t)Et (max(X ¡ HDD(T1; T2); 0)) : (by de¯nition)

Since the above pricing equations do not admit closed-form formulas, we will perform the

analysis of market price of risk in Section 5 through simulations.

4. Estimation of Temperature Dynamics

Our setup calls for the estimation of the joint distribution of the aggregate dividend and the daily

temperature. The aggregate dividend can be approximated by several variables. To start with,

one could use the aggregate output, although the lower frequency of such data will make the joint

estimation di±cult since the temperature data are daily. One may also use the dividend yield of

a stock market index. Since our primary task in this paper is to lay out a pricing framework, we

will not perform a joint estimation. Instead, we only estimate the parameters for the temperature
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behavior. For simulations, parameters for the utility function (½, °) and the aggregate dividend

(®, ¹, ¾±) will be calibrated via the results in Proposition 3.1.

Let £ be the vector containing all the parameters (½1, ½2, ½3, ..., ½k; ¾, ¾1, Á), then the

log-likelihood function is

l(£;Y ) = ¡1

2

20X

yr=1

TX

t=1

Ã
[Yyr;t ¡ Eyr;t¡1(Yyr;t)]2

¾2yr;t
+ log

¡
2¼¾2yr;t

¢
!

with

Eyr;t¡1(Yyr;t) = bY yr;t +
kX

i=1

½iUyr;t¡i; ¾yr;t = ¾ ¡ ¾1 j sin(¼t=365 + Á) j;

8 yr = 1; 2; :::; 20; & t = 1; 2; :::; 365

Given the large sample size, the estimation variances can be computed based on the asymptotic

distribution of b£:

p
T (b£ ¡ £) ~ N [0; I(£)¡1] with I(£) ´ lim

T!1
¡E

µ
1

T

@2l(µ;Y )

@µ@µ0

¶
:

In order to determine k, the number of lags, we estimate the system separately for k = 1; 2; 3; :::,

and perform sequential maximum likelihood ratio tests (i.e. Â2 tests). We stop when the maximum

likelihood value ceases to improve. It turns out that three lags describe the data the best. For

brevity, we only report the estimation and testing results for k = 3, 4 in Exhibit 6.

Several observations are in order. First, for k = 3; almost all parameters are estimated with

very low standard errors, implying the proper speci¯cation of the estimation system. This is by no

means a °uke since we have extensively explored and eliminated many other systems. For instance,

we have estimated a system which utilizes the simple mean Y t together with a trending parameter.

The likelihood value of such a system is much smaller. Second, standard errors of the parameter
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¾1 is very small, implying the appropriateness of using the sine wave to ¯t the overall volatility

structure. (When the system is estimated by specifying a constant volatility throughout the year

(i.e. ¾1 = 0), the likelihood value is much smaller.) Third, the ¯rst order auto-regressive behavior

tends to be stronger for Southern cities, and ½1 has the highest value for Atlanta. Roughly, a

stronger auto-correlation means less dramatic changes in temperature, and vice versa. As shown

in Exhibit 1, Atlanta does have the lowest overall standard deviation in the sample period.

5. Numerical Analysis

5.1. Simulation Design

Broadly speaking, the simulation procedure consists of 1) generating bivariate paths for the dividend

process in Assumption 2 (by assuming ¹ = 1) and the daily temperature process in Assumption 3

(by using the parameters in Exhibit 6 for the case of k = 3); 2) tracking realized HDD/CDD values

of each path; 3) calculating the payo® of the derivative security in question according to (2.4) by

using CRRA utility; and 4) repeating steps 1 through 3 a large number of times and averaging the

payo®s to obtain the desired derivative security value. To accomplish the above we must ¯rst make

some speci¯cations and adopt certain simulation strategies.

To begin with, the riskfree rate does not explicitly enter the valuation equations in Sections 3.2

and 3.3. Instead, it is endogenously determined by ½; ®; °; and ¾±; as shown in Proposition 3.1.

The rate of time preference, ½ is typically set equal to, or estimated as the real riskfree interest rate.

We set it at 0.03. The volatility of the dividend growth rate, ¾± is set at 0.2, mimicking the average

volatility of a stock market index. The risk-aversion parameter, ° will serve as a comparative static

parameter in our analysis, ranging from -1 to 0. Given a value of °, we will assign a value to ® so
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that the riskfree rate is maintained at 0.06. The only other free standing parameter in the bi-variate

system is the correlation coe±cient, which we will also use as a comparative static parameter.

Next, we must decide on the inputs for the adjusted mean temperature, bY yr;t. In the estimation

context, bY yr;t serves as the \anchoring point" and the temperature dynamics are estimated around

these anchoring points. In the valuation context which by necessity is forward looking, bY yr;t can

naturally be considered as daily temperature forecasts. If the forecasts were of 100% accuracy, then

derivatives valuation becomes a simple arithmetic calculation using these forecasts. As a matter of

fact, derivative securities won't even exist in this case, because perfect planning is achievable. In

reality, it is precisely the uncertainty in the forecasts that drives the value of weather derivatives.

The random term in the temperature dynamic captures this uncertainty. (Indeed, this is one of

the key advantages of our model, since it allows forecasts to be used as inputs and is capable of

accommodating deviations from forecasts commensurate with history, i.e., data.) As for the choice

of forecasts, there are no restrictions. In our simulations, we will use two sets of inputs for bY yr;t;

one being the historical daily average temperatures and the other being last season's adjusted daily

average temperatures.

To reduce simulation errors, we employ the antithetic variable technique. Each value estimate

is based on 10,000 runs.

Finally, we employ a procedure which is equivalent to the control variate technique. Notice that

the fundamental variable in our framework is the daily temperature, and the underlying variable

for most weather derivatives is HDD or CDD, which is a nonlinear function of daily temperatures.

While our model will produce almost \unbiased" temperature forecasts in that the average temper-

ature for a future point will be almost equal to the input forecast, it can not guarantee an unbiased
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forecast for the HDD / CDD. To further illustrate this point, we compare some forward prices in

Exhibit 7. The ¯rst column reports the average seasonal CDD and HDD for each city averaged

across the twenty years. (It is actually nineteen years for the HDD.) The third column contains

the CDD and HDD calculated from the average daily temperatures. (The di®erence between the

two columns is due to the di®erent sequence of averaging.) The ¯fth column is the counterpart

of Column three except that the inputs are the adjusted daily average temperatures of the last

season. Columns two and four report the simulated forward CDD's and HDD's using the corre-

sponding forecast inputs when the correlation between the dividend process and the temperature

is set to zero. Let us compare Column two with Column three, and Column four with Column ¯ve.

Notice that the di®erence in some cases is very small, almost entirely attributable to simulation

errors; but in some other cases, the di®erence is too big to be explained by simulation errors. The

reason for the sizable di®erences lies in the aforementioned fact that the simulated quantities are

nonlinear functions of the underlying variable. To ensure correct pricing, we perform a two-stage

simulation for each value estimate. In the ¯rst stage, we simulate forward prices by setting the

correlation parameter to zero (' = 0); and record the di®erence between the model price and the

implied forward price from the forecasts (e.g., in Exhibit 7, when average temperatures are used

as forecasts, this is the di®erence between Column two and Column three). Then, in the second

stage, we simulate the derivative security's price by setting the correlation parameter back to its

actual value. Here, before calculating the derivative's payo® for each path, we ¯rst adjustment the

realized CDD or HDD by the di®erence found in the ¯rst stage. In a nutshell, the above proce-

dure amounts to ensuring unbiased paths of the CDD and HDD which are underlying variables for

weather derivatives. It should be pointed out that when the temperature dynamic, especially the

20



volatility structure, is modelled and estimated perfectly, this procedure will not be necessary.

5.2. HDD / CDD Derivative Prices and Market Price of Risk

For all subsequent simulations, we will examine two risk-aversion cases (° = ¡0:5 corresponding to

a power utility and ° = ¡1:0 corresponding to a log utility) and two correlation cases (' = ¡0:2

and ' = 0:2). For each parameter combination, we perform two sets of simulations, each based

on a di®erent set of forecasts. We will examine both CDD and HDD contracts. Throughout the

discussions we will attempt to assess the importance of market price of risk. (Recall that, when

the interest rate is maintained at a constant level, ' = 0:0 amounts to a zero market price of risk

for the temperature variable, irrespective of the risk-aversion level.)

5.2.1. CDD Forward Prices and Option Prices

Exhibit 8 reports CDD forward prices. Several observations are in order. First, the level of forward

price depends heavily on the forecast inputs, as re°ected by the di®erences between the two panels.

Second, since the forecast forward prices correspond to ' = 0, comparing the forecast forward

prices with those under ' = ¡0:2 and ' = 0:2 reveal that the predictions in Table 2 also hold

for the general case where the auto-correlations are not zero. Third, depending on the sign of the

correlation, a higher risk-aversion may lead to a higher or lower forward price. Speci¯cally, with

a negative correlation '; a higher risk-aversion (' = ¡1:0) leads to a higher forward price, and

vice versa. The intuitive reason lies in the valuation equations in Section 3.2. Notice that the

future payo® is \discounted" back at a rate which is a function of certain ¯xed parameters and

the stochastic dividend ratio raised to the power of °: Since ° < 0 and since the average dividend

growth rate is positive (i.e. ® > 0), a higher dividend ratio leads to a smaller discount factor (i.e. a
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lower present value), and vice versa. Now, with a negative correlation, a higher CDD ending value

is most likely accompanied by a lower dividend ratio, and a lower dividend ratio (meaning close to

one) will lead to a higher present value. The closer ° is to -1, the more manifest the above e®ect,

and hence the pattern. (To see the last point, realize that in general, let f = 1=Aa and g = 1=Ab

and 1 > a > b > 0; then j @f
@A j > j @g

@A j :) Of course, this also explains why, under a particular

risk-aversion parameter, the relationship between the forward price and the correlation is negative.

Lastly, irrespective of the above patterns, the overall impact of the market price of temperature risk

does not seem to be signi¯cant. Going from a zero to a non-zero market price of risk, the forward

price only changes by less than one percent, which is true across di®erent parameter combinations.

Exhibit 9 contains CDD option prices. We ¯rst explain the so-called historical simulation prices.

Some authors (e.g. Hunter, 1999) have discussed the use of historical simulation in pricing weather

derivatives. The idea is similar to the historical simulation used in some of the VaR calculations.

Speci¯cally, a derivative contract's payo® is calculated using realized, historical underlying variable

values, and the average payo® over a sample period (say 10 years) is taken as the estimate of the

derivative's value. In our case, it boils down to evaluating the payo® for each of the twenty years

and then averaging the payo®s to arrive at a value. (The discounting is done using the 6% constant

rate.) The strike price is set equal to the historical average CDD for each city. It is seen that the

call and put option values are equal for each city. This is expected since the exercise price is set at

the (realized) forward price level.

In Exhibit 9, we also report simulated option values under di®erent parameter combinations.

For Panel A, the strike price is set equal to the forecast forward price level (from the ¯rst column

of Exhibit 8). For Panel B, two sets of strike prices are used. Option prices in Column 4 are based
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on the strike prices in Column 3. Other option prices are based on the strike prices in Column 1.

We use di®erent strike prices to examine the behavior of away-from-the-money options.

The ¯rst observation is the signi¯cant di®erence between the historical simulation prices and

the regular simulated prices, especially in Panel A where the historical simulation prices are much

higher. To understand why, realize that in the regular simulations, the overall level of the tem-

perature one year into the future is more or less contained by the forecasts, and variations are

around this overall level. But with historical simulations, we are implicitly assuming that next

year's temperatures can have extremely large variations, even in terms of the general level; the very

cool and the very hot summers in the past 20 years command the same probability in realization.

In reality however, meteorologists are at least able to forecast the general level of temperatures

(i.e. cool, normal or hot) for the next summer with reasonable accuracy. Historical simulations

tend to exaggerate the impact of extreme realizations when the sample size is not large, and in our

case, we have only 20 observations for each season. This points out a serious drawback of historical

simulations used in pricing weather derivatives.

Another observation has to do with the impacts of parameter values. First of all, we observe

exactly the same patterns in CDD call option prices as in CDD forward prices: the higher the

risk-aversion, the lower the option's price, when the correlation is positive, and so on. Similarly,

a positive correlation is associated with lower option prices for a given level of risk-aversion. The

explanations for the CDD forward prices also apply to CDD call options. It is seen that the patterns

for put options are reversed. This is easy to understand, since the value of a put option is inversely

related to the level of CDD. Second, the option prices do not seem to change signi¯cantly across

di®erent parameter combinations, although percentage-wise, the change is bigger than that for the
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forward prices. The higher the risk-aversion, the bigger the impact of the market price of risk.

However all percentages are less than 3.5% in absolute values. If an investor is willing to tolerate

an error in that magnitude, the market price of risk can be safely ignored.

Finally, it is observed in Panel B that di®erent strike prices can lead to quite di®erent option

values, as expected. What is interesting is the non-linear relationship between the option price and

the strike price. For example, for Dallas, when the strike price changes from 3153.45 to 2424.55,

representing a decrease of 728.9, the call value increases from 35.01 to 697.57, representing an

increase of 662.56. (We ignore the minor impact of the correlation.) The option value's increase is

smaller than the decrease in the strike price. It is tempting to calculate one option value based on

a set of forecasts and simply adjust linearly for another set of forecasts to get a new option value.

Exhibit 9 shows that this is not valid.

5.2.2. HDD Forward Prices and Option Prices

Exhibits 10 and 11 are HDD counterparts of Exhibits 8 and 9. All the conclusions in the previ-

ous section apply here. Of course, it is seen that all the patterns are the reverse of their CDD

counterparts. This is because HDD as an underlying contract variable is negatively related to the

temperature level, whereas CDD is positively related to the temperature.

5.2.3. Monthly HDD / CDD Options

Finally, in Exhibit 12, we report option values for individual months of a CDD or HDD season. The

setup is exactly the same as those in Exhibits 9 and 11, except that every quantity is for a particular

month. For brevity, we only report results for two cities under two parameter combinations. It is

seen that all the qualitative conclusions drawn before also apply here. However, we would like to
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draw the reader's attention to an important result implied in the exhibit. Take the CDD contracts

as an example, and let's restrict our attention to New York under ° = ¡0:5 and ' = ¡0:2. It can

be veri¯ed that the sum of the strike prices across the ¯ve months is equal to the CDD seasonal

strike reported in Exhibit 9: 1101.80 (allowing for a small rounding error). The sum of the call

option prices is 75.22 and that of the puts is 74.26. But the corresponding seasonal contract values

are 34.84 and 33.98 respectively (from Exhibit 9), much smaller than the sums. This is the well

known result that the option on a portfolio is worth less than the sum of options written on the

individual components of the portfolio.

6. Summary and Conclusion

In this paper, we propose and implement an equilibrium valuation framework for weather deriv-

atives. We specialize the framework to HDD/CDD contracts. The framework is the generalized

Lucas's model of 1978. The underlying economic variable is the aggregate dividend and the un-

derlying variable for weather derivatives is the daily temperature, and the two are correlated. We

study the temperature behavior in the past twenty years for ¯ve major cities in the U.S., and derive

key properties of the temperature dynamics. We develop a model system that not only allows easy

estimation, but also incorporates key features of the daily temperature dynamics such as seasonal

cycles and uneven variations throughout the year. The system is estimated using the maximum

likelihood method, and HDD and CDD contracts are priced accordingly.

Our valuation framework has many advantages. It allows the use of weather forecasts in mod-

elling the future temperature behavior. In addition, since our starting point is the daily tempera-
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ture, the framework is capable of handling temperature contracts of any maturity, for any season,

and it requires only a one-time estimation. In contrast, if one starts by modelling CDD or HDD

directly, then by nature of the temperature behavior, the CDD or HDD will necessarily be season

and maturity speci¯c, which implies that each contract will require a separate estimation proce-

dure. This will not only create potential inconsistency in pricing, but also render the whole idea

impractical if many di®erent contracts are dealt with or if the valuation is to be done on an on-

going basis. Last but not least, our equilibrium framework allows us to answer a very important

question: Can one use the riskfree rate in deriving weather derivative values without incurring too

big an error?

Several conclusions can be drawn from the study. First and foremost, the market price of

risk associated with the temperature variable does not seem to a®ect the derivatives' value in a

signi¯cant way. This is true for the range of plausible correlations between the aggregate dividend

and the temperature variable, and under di®erent utility functions within the CRRA family. This

conclusion is signi¯cant in that the common practice in the industry is to use the riskfree rate as

the discount rate. Our study represents the ¯rst attempt to inquire into the validity of such a

practice. Notwithstanding, we are obliged to admit that the conclusion is not universal, because

we use a special class of utility function and we only allow contemporaneous correlation between

the aggregate dividend and the temperature.

The second conclusion has to do with another common practice in the industry, which is to use

the historical simulation approach to estimate weather derivative values. We show that in most

cases, this is not valid. Weather contracts typically cover a period to come and do not extend

very far into the future. However, historical simulations implicitly assume that the next season's
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temperature can resemble any of the past seasons in the sample, including extreme seasons (very

cold or very warm). As a result, in most cases, the historical simulation method tends to over

estimate option prices.

As for future research directions, one obvious avenue is to generalize the framework to incorpo-

rate intertemporal correlations between the aggregate dividend and the temperature variable and

investigate the impact of market price of risk from within. This will be useful in that, intuitively,

an abnormal weather season may a®ect the future output more than the current. Our e®orts in

this paper represent the ¯rst step in such a general pursuit.
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Appendices

A. Proof of Proposition 3.1

A.1. Equilibrium Discount Bond Price

Since the marginal distribution of ln ±T conditional on ln ±t is

f (ln ±T j ln ±t) = 1p
2¼§±(t;T )

exp
³
¡ (ln ±T¡¹±(t;T ))2

§±(t;T )

´

with

¹±(t; T ) = Et(ln ±T ) = Et
³
¹T¡t ln ±t +

PT
i=t+1 ¹T¡i(® + ¾±²i)

´

= ¹T¡t ln ±t + ®
PT
i=t+1 ¹T¡i;

§±(t; T) = vart(ln ±T ) = ¾2±
PT
i=t+1 ¹2(T¡i);

the price of a pure discount bond at time t with maturity T is

B(t; T ) = Et

³
Uc(cT ;T )
Uc(ct;t)

¢ 1
´

= e¡½(T¡t)Et
³
±°T
±°t

´

= e¡½(T¡t)Et

µ
±°¹

T¡t
t e

°
PT
i=t+1 ¹

T¡i(®+¾±²1i)

±
°
t

¶

= ±
°(¹T¡t¡1)
t exp

³
¡½(T ¡ t) +

PT
i=t+1[®°¹T¡i + 1

2°
2¾2±¹

2(T¡i)]
´

= ±
°(¹T¡t¡1)
t exp

³
¡½(T ¡ t) +

PT
i=t+1[®°¹T¡i + 1

2°
2¾2±¹

2(T¡i)]
´

:

Then, the yield-to-maturity, R(t; T), is

R(t; T) = ¡ lnB(t; T)

T ¡ t
= ½ ¡

PT
i=t+1[®°¹T¡i + 1

2°
2¾2±¹

2(T¡i)]

T ¡ t
¡ °(¹T¡t ¡ 1) ln ±t

T ¡ t
:

B. Proof of Proposition 3.2: Equilibrium forward Prices

When there is no autocorrelation in daily temperatures, i.e., ½i = 0 (for i = 1; 2; :::; k), the joint dis-

tribution of (ln ±T , YT ) conditional on (ln ±t, Yt) is a bi-variate normal distribution with correlation

coe±cient ' :

f(ln ±T ; Yyr;T j ln ±t; Yyr;t) = N [ln ±T ; Yyr;T ;¹±(t; T ); §±(t; T); ¹Y (t; T );§Y (t; T); '];

where

¹Y (T ) = Et(Yyr;T ) = bY yr;T and §Y (T ) = vart(Yyr;T ) = ¾2yr;T :
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B.1. Forward Prices before the Accumulation Period

For an HDD forward contract with the accumulation period from T1 to maturity T2, its forward

price at time t < T1 (before the accumulation period) is

FHDD(t; T1; T2) = 1
B(t;T2)

Et

³
Uc(cT2 ;T2)

Uc(ct;t)
¢ HDD(T1; T2)

´

=
e¡½(T2¡t)±¡°t
B(t;T2)

Et
³
±°T2

PT2
¿=T1

max(65 ¡ Yyr;¿ ; 0)
´

=
e¡½(T2¡t)±¡°t
B(t;T2)

±°¹
T2¡t

t Et
³
e
PT2
i=t+1 °¹

(T2¡i)[®+¾±"i]
PT2
¿=T1

max(65 ¡ Yyr;¿ ; 0)
´

:

We can rewrite the above as

=
e¡½(T2¡t)±°(¹

T2¡t¡1)
t

B(t;T2)
Et

Ã
PT2
¿=T1

e

PT2
i=t+1
i6=¿

°¹(T2¡i)[®+¾±"i]
e°¹
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Tedious exercise shows that
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Similarly, the corresponding forward prices on CDD is
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B.2. Forward Prices during the Accumulation Period

For HDD forward price at time t 2 (T1; T2) during the accumulation period, we have
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Also, the CDD forward price at time t 2 (T1; T2) is
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Exhibit 1: Summary Statistics

Atlanta Chicago Dallas New York Philadelphia

Mean 63 50 66 56 56

Median 64 50 67 56 56

Mode 79 70 86 72 75

Standard Deviation 15 20 16 17 18

Minimum 5 -17 9 3 1

Maximum 92 93 97 93 92

Sample Size 7,300 7,300 7,300 7,300 7,300

Correlation

Atlanta 1.0000

Chicago 0.8847 1.0000

Dallas 0.8777 0.9038 1.0000

New York 0.8966 0.8964 0.8443 1.0000

Philadelphia 0.9125 0.8970 0.8455 0.9853 1.0000

Auto Correlation

k-lags

 1 0.9402 0.9421 0.9354 0.9448 0.9462

 2 0.8690 0.8809 0.8680 0.8896 0.8926

 3 0.8281 0.8494 0.8318 0.8654 0.8678

 4 0.8069 0.8304 0.8132 0.8533 0.8550

 5 0.7952 0.8181 0.8005 0.8470 0.8486

 6 0.7867 0.8091 0.7918 0.8431 0.8437

 7 0.7804 0.8022 0.7855 0.8394 0.8380

 8 0.7764 0.7973 0.7813 0.8346 0.8330

 9 0.7728 0.7925 0.7773 0.8297 0.8283

10 0.7687 0.7894 0.7731 0.8246 0.8228

11 0.7665 0.7870 0.7718 0.8197 0.8175

12 0.7652 0.7857 0.7720 0.8164 0.8142

13 0.7614 0.7835 0.7683 0.8124 0.8098

14 0.7562 0.7793 0.7608 0.8099 0.8054

15 0.7534 0.7759 0.7558 0.8070 0.8017
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Exhibit 2: Summary Statistics of Monthly HDD and CDD (1979 - 1998)

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Atlanta

HDD Average 679 493 328 143 21 1 0 1 11 117 336 586
Std. Dev. 125 90 85 63 18 4 0 2 10 43 97 126
Maximum 882 657 465 261 63 18 0 11 32 188 514 797
Minimum 462 297 156 36 2 0 0 0 0 22 131 346

CDD Average 0 2 14 59 198 385 502 452 275 67 8 2
Std. Dev. 1 3 10 39 66 68 72 63 59 38 13 3
Maximum 3 8 36 141 322 494 639 589 440 178 49 13
Minimum 0 0 2 4 62 221 372 349 192 12 0 0

Chicago

HDD Average 1308 1065 857 516 230 51 6 10 112 407 766 1132
Std. Dev. 189 165 101 80 81 31 6 12 46 79 106 184
Maximum 1627 1359 1095 643 364 118 19 37 189 583 958 1562
Minimum 956 733 733 393 87 6 0 0 34 288 598 891

CDD Average 0 0 2 9 48 161 283 240 93 9 0 0
Std. Dev. 0 0 3 15 40 62 73 92 36 10 0 0
Maximum 0 0 13 53 167 254 398 445 158 44 1 0
Minimum 0 0 0 0 4 38 152 106 19 0 0 0

Dallas

HDD Average 627 442 269 91 10 0 0 0 8 69 305 557
Std. Dev. 124 101 63 40 9 0 0 0 10 32 66 128
Maximum 911 635 384 186 29 2 0 0 38 145 414 933
Minimum 401 299 164 26 0 0 0 0 0 14 190 389

CDD Average 1 4 28 87 270 491 642 622 399 145 22 4
Std. Dev. 2 9 20 35 78 74 77 73 64 35 16 5
Maximum 6 37 77 158 464 668 844 737 563 220 52 13
Minimum 0 0 4 24 171 382 551 480 302 78 3 0

New York

HDD Average 988 838 702 374 120 13 0 1 35 234 513 824
Std. Dev. 145 125 80 46 40 12 1 3 16 73 69 139
Maximum 1241 1173 913 446 187 49 3 9 74 376 651 1198
Minimum 735 671 613 286 51 1 0 0 11 101 389 644

CDD Average 0 0 1 4 63 224 392 350 153 22 1 0
Std. Dev. 0 0 4 8 42 55 56 56 37 23 2 0
Maximum 0 0 18 34 184 325 490 444 222 95 7 2
Minimum 0 0 0 0 4 112 271 239 100 0 0 0

Philadelphia

HDD Average 1002 835 676 349 106 10 0 2 39 261 538 852
Std. Dev. 154 124 95 60 46 11 1 5 19 75 86 136
Maximum 1243 1170 911 440 191 42 4 21 92 408 704 1219
Minimum 738 644 542 193 38 0 0 0 14 138 392 701

CDD Average 0 0 2 9 79 245 409 352 155 22 1 0
Std. Dev. 0 0 5 11 47 66 71 65 42 21 2 0
Maximum 0 0 20 34 230 401 540 470 244 83 6 0
Minimum 0 0 0 0 9 133 283 268 90 0 0 0
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Exhibit 3: Global Warming Trend

Global Warming Trend in Atlanta
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Exhibit 4: Standard Deviation of Date t's Temperature (Ãt)
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Exhibit 5: Realized Temperatures in New York
For a Colder-Than-Normal Winter (November 1980 - March 1981)

Panel A: Date t's Mean Temperature (Y t) vs Realized Temperatures
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Panel B: Date t's Adjusted Mean Temperature (bY t) vs Realized Temperatures
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Exhibit 6: Maximum Likelihood Estimation Results

LR =

ρ 1 ρ 2 ρ 3 ρ 4 σ σ 1 φ   Log - Likelihood 2ln(L 1 /L 2 )

Atlanta

0.8833 -0.3035 0.0322 7.5980 5.0912 -0.1881   ln(L 1 ) = -20,626 250 
*

(0.01170) (0.01520) (0.01169) (0.12086) (0.14603) (0.01067)

0.9482 -0.3158 0.0760 0.0083 7.6565 5.0781 -0.1940   ln(L 2 ) = -20,751
(0.01166) (0.01567) (0.01166) (0.01288) (0.12208) (0.14776) (0.01088)

Chicago

0.7989 -0.2570 0.0428 7.8289 3.1294 -0.2014   ln(L 1 ) = -23,130 268 
*

(0.01170) (0.01467) (0.01170) (0.13922) (0.18181) (0.02316)

0.8619 -0.2697 0.1029 -0.0188 7.9315 3.1211 -0.1998   ln(L 2 ) = -23,264
(0.01166) (0.01509) (0.01165) (0.01905) (0.14057) (0.18135) (0.02369)

Dallas

0.8158 -0.2436 0.0201 8.9378 6.3349 -0.1418   ln(L 1 ) = -21,381 258 
*

(0.01170) (0.01483) (0.01170) (0.14060) (0.16800) (0.00953)

0.8711 -0.2482 0.0567 0.0162 9.0257 6.3488 -0.1497   ln(L 2 ) = -21,510
(0.01168) (0.01522) (0.01167) (0.01267) (0.14175) (0.16936) (0.00970)

New York

0.7558 -0.2631 0.0463 6.5372 2.7035 -0.2432   ln(L 1 ) = -21,719 298
 *

(0.01169) (0.01433) (0.01169) (0.11241) (0.14520) (0.02238)

0.8117 -0.2612 0.1007 -0.0071 6.7129 2.8152 -0.2420   ln(L 2 ) = -21,868
(0.01166) (0.01472) (0.01166) (0.01374) (0.11510) (0.14831) (0.02201)

Philadelphia

0.7726 -0.2595 0.0473 6.9034 3.1654 -0.2015   ln(L 1 ) = -21,792 306 
*

(0.01169) (0.01446) (0.01169) (0.11957) (0.15360) (0.01932)

0.8290 -0.2559 0.0973 0.0015 7.0545 3.2360 -0.2024   ln(L 2 ) = -21,945
(0.01166) (0.01486) (0.01166) (0.01459) (0.12207) (0.15675) (0.01932)

Note: 1. The Estimated Systems:
Uyr;t = ½1Uyr;t¡1 + ½2Uyr;t¡2 + ½3Uyr;t¡3 + ¾yr;t ¤ »yr;t (1)
Uyr;t = ½1Uyr;t¡1 + ½2Uyr;t¡2 + ½3Uyr;t¡3 + ½4Uyr;t¡4 + ¾yr;t ¤ »yr;t (2)

with Uyr;t = Yyr;t ¡ bY yr;t; ¾yr;t = ¾ ¡ ¾1 j sin(¼t=365 + Á) j;
»yr;t » i:i:d: N(0; 1); 8 yr = 1; 2; :::; 20 & t = 1; 2; :::; 365:

2. The numbers in the parentheses are standard errors.
3. The null hypothesis (H0) is ½4 = 0. The likelihood ratio (LR) test is computed

as LR = 2 lnL 1 ¡ 2 lnL2 which is asymptotically distributed as Â2(1) under H0.
4. The 1 percent critical level for Â2 with 1 degree of freedom is 6.6 and
¤ indicates that the test statistic is signi¯cant.
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Exhibit 7: Comparison of Forward Prices

Price Based on

Theoretical Price Based Theoretical Adjusted Avg. 

Sample Model on Average Model Temperature

Average       Price      Temperature       Price            of 1998      

(1) (2) (3) (4) (5)

CDD Season (May - September)

Atlanta 1812.00 1797.22 1777.95 1902.17 1893.41

Chicago 823.60 799.26 674.80 1002.25 858.24

Dallas 2424.55 2414.13 2405.65 3154.69 3153.45

New York 1181.80 1169.98 1101.80 1296.11 1226.85

Philadelphia 1239.75 1220.75 1149.35 1351.34 1286.41

HDD Season (November - March)

Atlanta 2419.47 2423.70 2396.95 2729.68 2715.65

Chicago 5114.37 5127.72 5126.15 4508.18 4506.00

Dallas 2179.21 2202.51 2141.05 2246.26 2192.98

New York 3859.63 3864.00 3862.35 3419.25 3417.25

Philadelphia 3901.00 3901.62 3899.75 3406.81 3404.08

Note: 1. Theoretical model prices are calculated based on ° = ¡0:5, Á = 0:0.
2. When forecasts are the adjusted average temperatures, we use November,

and December of 1997 and the ¯rst three months of 1998 for HDD calculation.

37



Exhibit 8: Forward Prices for a CDD Season

Forecast γ = − 0.5 γ = − 1.0

Forward             φ = − 0.2               φ = 0.2             φ = − 0.2               φ = 0.2

(1) (2) (3) = (4) (5) = (6) (7) = (8) (9) =

(2)/(1)-1 (4)/(1)-1 (6)/(1)-1 (8)/(1)-1

Panel A: Forecast is Historical Average

Atlanta 1777.95 1779.02 0.06% 1776.86 -0.06% 1780.06 0.12% 1775.86 -0.12%

Chicago 674.80 675.93 0.17% 673.63 -0.17% 676.98 0.32% 672.41 -0.35%

Dallas 2405.65 2406.75 0.05% 2404.52 -0.05% 2407.86 0.09% 2403.57 -0.09%

New York 1101.80 1102.85 0.10% 1100.72 -0.10% 1103.82 0.18% 1099.65 -0.19%

Philadelphia 1149.35 1150.45 0.10% 1148.22 -0.10% 1151.48 0.19% 1147.09 -0.20%

Panel B: Forecast is Adjusted Historical Average of 1998

Atlanta 1893.41 1894.51 0.06% 1892.29 -0.06% 1895.58 0.11% 1891.28 -0.11%

Chicago 858.24 859.58 0.16% 856.85 -0.16% 860.81 0.30% 855.41 -0.33%

Dallas 3153.45 3154.56 0.04% 3152.31 -0.04% 3155.72 0.07% 3151.45 -0.06%

New York 1226.85 1227.95 0.09% 1225.72 -0.09% 1228.98 0.17% 1224.62 -0.18%

Philadelphia 1286.41 1287.59 0.09% 1285.20 -0.09% 1288.69 0.18% 1284.02 -0.19%

Note: 1. \Forecast Forward" prices are the CDD values implied in the forecasts.
2. Forward prices under di®erent parameter combinations are calculated by making an

adjustment to each path of the simulated CDD so that when the correlation is zero,
the model always gives the forecast forward price. See the text for details.
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Exhibit 9: Option Prices for a CDD Season

γ = - 0.5        γ = - 0.5           γ = - 1.0

Historical Simulation φ = 0.0         φ = - 0.2                 φ =  0.2                  φ = - 0.2                  φ =  0.2           

Strike Option Strike Option Option % Option % Option % Option %

Price Value Price Value Value (6) = Value (8) = Value (10) = Value (12) =

(1) (2) (3) (4) (5) (5)/(4) - 1 (7) (7)/(4) - 1 (9) (9)/(4) - 1 (11) (11)/(4) - 1

Panel A: Forecast is Historical Average

1812.00 87.62 1777.95 33.16 33.70 1.62% 32.64 -1.59% 34.17 3.04% 32.05 -3.36%

87.62 33.44 32.91 -1.59% 33.97 1.59% 32.46 -2.93% 34.59 3.45%

823.60 84.88 674.80 39.25 39.82 1.46% 38.68 -1.44% 40.32 2.73% 38.05 -3.05%

84.88 39.37 38.83 -1.38% 39.92 1.39% 38.36 -2.58% 40.54 2.96%

2424.55 86.02 2405.65 34.35 34.91 1.62% 33.81 -1.59% 35.40 3.04% 33.20 -3.36%

86.02 34.72 34.17 -1.59% 35.28 1.60% 33.70 -2.96% 35.92 3.44%

1181.80 57.72 1101.80 34.31 34.84 1.53% 33.79 -1.51% 35.29 2.87% 33.21 -3.20%

57.72 34.49 33.98 -1.48% 35.00 1.49% 33.55 -2.74% 35.60 3.22%

1239.75 80.29 1149.35 35.70 36.26 1.55% 35.16 -1.52% 36.74 2.90% 34.55 -3.22%

80.29 35.89 35.35 -1.50% 36.43 1.50% 34.90 -2.77% 37.06 3.25%

Panel B: Forecast is Adjusted Historical Average of 1998

1812.00 87.62 1893.41 33.95 86.88 85.10 87.66 84.10

87.62 34.24 8.24 8.64 8.06 8.87

823.60 84.88 858.24 43.61 62.81 61.15 63.53 60.22

84.88 43.76 28.52 29.50 28.09 30.07

2424.55 86.02 3153.45 35.01 697.57 695.34 698.59 694.17

86.02 35.50 0.00 0.00 0.00 0.00

1181.80 57.72 1226.85 35.23 61.47 59.97 62.12 59.14

57.72 35.43 17.51 18.18 17.22 18.57

1239.75 80.29 1286.41 37.17 64.31 62.72 65.00 61.83

80.29 37.38 18.74 19.47 18.43 19.89

Note: Under \Historical Simulation", we assume that the future will mimic history exactly
according to the sample data. The strike prices are the historical average CDD's.
For all other simulations, in Panel A, the strike prices are reported under the
heading \° = ¡0:5, Á = 0:0". They are the CDD's implied in the forecasts. In
Panel B, the option prices under \° = ¡0:5, Á = 0:0" are based on the strike prices
reported under the same heading; but for other option prices, the stirke prices are
those reported under \Historical Simulation".
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Exhibit 10: Forward Prices for an HDD Season

Forecast γ = - 0.5 γ = - 1.0

Forward             φ = − 0.2               φ = 0.2             φ = − 0.2               φ = 0.2

(1) (2) (3) = (4) (5) = (6) (7) = (8) (9) =

(2)/(1)-1 (4)/(1)-1 (6)/(1)-1 (8)/(1)-1

Panel A: Forecast is Historical Average

Atlanta 2396.95 2394.44 -0.10% 2399.43 0.10% 2391.60 -0.22% 2402.25 0.22%

Chicago 5126.15 5123.18 -0.06% 5129.09 0.06% 5118.98 -0.14% 5132.22 0.12%

Dallas 2141.05 2138.41 -0.12% 2143.64 0.12% 2135.59 -0.26% 2146.63 0.26%

New York 3862.35 3860.13 -0.06% 3864.55 0.06% 3856.99 -0.14% 3866.88 0.12%

Philadelphia 3899.75 3897.35 -0.06% 3902.13 0.06% 3894.05 -0.15% 3904.67 0.13%

Panel B: Forecast is Adjusted Historical Average of 1998

Atlanta 2715.65 2713.07 -0.10% 2718.20 0.09% 2710.07 -0.21% 2721.09 0.20%

Chicago 4506.00 4503.07 -0.06% 4508.90 0.06% 4499.15 -0.15% 4512.03 0.13%

Dallas 2192.98 2190.32 -0.12% 2195.60 0.12% 2187.45 -0.25% 2198.61 0.26%

New York 3417.25 3415.06 -0.06% 3419.41 0.06% 3412.11 -0.15% 3421.75 0.13%

Philadelphia 3404.08 3401.72 -0.07% 3406.42 0.07% 3398.63 -0.16% 3408.97 0.14%

Note: 1. \Forecast Forward" prices are the HDD values implied in the forecasts.
2. When forecasts are the adjusted average temperatures, we use November

and December of 1997 and the ¯rst three months of 1998.
3. Forward prices under di®erent parameter combinations are calculated by making an

adjustment to each path of the simulated HDD so that when the correlation is zero,
the model always gives the forecast forward price. See the text for details.
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Exhibit 11: Option Prices for an HDD Season

γ = - 0.5        γ = - 0.5           γ = - 1.0

Historical Simulation φ = 0.0         φ = - 0.2                 φ =  0.2                  φ = - 0.2                  φ =  0.2          

Strike Option Strike Option Option % Option % Option % Option %

Price Value Price Value Value (6) = Value (8) = Value (10) = Value (12) =

(1) (2) (3) (4) (5) (5)/(4) - 1 (7) (7)/(4) - 1 (9) (9)/(4) - 1 (11)  (11)/(4) - 1

Panel A: Forecast is Historical Average

Atlanta Call 2419.47 108.78 2396.95 68.44 67.35 -1.59% 69.53 1.59% 66.48 -2.87% 70.86 3.54%

Put 108.78 68.74 69.82 1.58% 67.67 -1.55% 70.63 2.75% 66.35 -3.47%

Chicago Call 5114.37 144.22 5126.15 74.96 73.76 -1.61% 76.17 1.61% 72.79 -2.89% 77.65 3.59%

Put 144.23 75.59 76.81 1.61% 74.40 -1.58% 77.71 2.80% 72.91 -3.55%

Dallas Call 2179.21 60.40 2141.05 73.17 72.01 -1.58% 74.33 1.59% 71.08 -2.85% 75.74 3.51%

Put 60.40 73.44 74.58 1.55% 72.32 -1.52% 75.42 2.70% 70.93 -3.42%

New York Call 3859.63 105.53 3862.35 55.97 55.07 -1.61% 56.87 1.61% 54.35 -2.89% 57.97 3.58%

Put 105.53 56.44 57.35 1.61% 55.55 -1.58% 58.02 2.79% 54.44 -3.54%

Philadelphia Call 3901.00 109.67 3899.75 61.14 60.16 -1.61% 62.12 1.61% 59.37 -2.89% 63.33 3.58%

Put 109.67 61.62 62.61 1.61% 60.65 -1.58% 63.34 2.80% 59.44 -3.54%

Panel B: Forecast is Adjusted Historical Average of 1997 / 1998

Atlanta Call 2419.47 108.78 2715.65 69.32 276.48 280.69 274.75 283.24

Put 108.78 69.65 4.24 3.99 4.33 3.84

Chicago Call 5114.37 144.22 4506.00 74.88 0.08 0.09 0.08 0.09

Put 144.23 75.43 567.50 562.76 569.12 559.80

Dallas Call 2179.21 60.40 2192.98 73.29 78.55 81.01 77.56 82.51

Put 60.40 73.57 68.37 66.22 69.17 64.89

New York Call 3859.63 105.53 3417.25 55.93 0.07 0.08 0.07 0.09

Put 105.53 56.35 412.74 409.21 413.95 407.00

Philadelphia Call 3901.00 109.67 3404.08 61.03 0.06 0.07 0.06 0.07

Put 109.67 61.45 463.50 459.64 464.81 457.23

Note: 1. Under \Historical Simulation", we assume that the future will mimic history exactly
according to the sample data. The strike prices are the historical average HDD's.
For all other simulations, in Panel A, the strike prices are reported under the
heading \° = ¡0:5, Á = 0:0". They are the HDD's implied in the forecasts. In
Panel B, the option prices under \° = ¡0:5, Á = 0:0" are based on the strike
prices reported under the same heading; but for other option prices, the stirke
prices are those reported under \Historical Simulation".

2. When forecasts are adjusted average temperature, we use November and
December of 1997 and the ¯rst three months of 1998.
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Exhibit 12: Option Prices for Monthly Contracts

ATLANTA NEW YORK

            γ = -0.5             γ = -0.5

Historical Simulation φ = - 0.2 φ =  0.2 Historical Simulation φ = - 0.2 φ =  0.2

Strike Option Strike Option Option Strike Option Strike Option Option

Price Value Price Value Value Price Value Price Value Value

Panel A:   Months of a CDD Season

May Call 197.60 25.48 176.30 16.16 15.92 62.70 14.63 24.50 9.78 9.65

Put 25.48 15.97 16.20 14.63 9.68 9.78

June Call 384.90 25.72 383.70 15.23 15.01 223.90 20.58 210.80 16.71 16.47

Put 25.67 15.12 15.34 20.53 16.54 16.77

July Call 502.10 26.33 502.20 13.54 13.34 391.90 21.39 391.60 17.27 17.02

Put 26.28 13.44 13.64 21.34 17.10 17.35

August Call 452.10 24.70 451.50 14.19 13.99 350.10 21.24 348.90 17.41 17.16

Put 24.75 14.03 14.23 21.19 17.20 17.45

September Call 275.20 20.44 264.30 15.17 14.96 153.10 14.01 126.10 14.05 13.85

Put 20.39 15.00 15.21 14.06 13.88 14.06

Panel B:   Months of a HDD Season

January Call 679.10 53.33 678.90 39.25 39.83 987.90 56.82 987.90 29.13 29.56

Put 53.33 39.76 39.19 56.82 29.46 29.04

February Call 493.00 33.07 491.50 33.84 34.33 837.60 46.20 837.60 27.37 27.76

Put 33.07 34.48 34.00 46.15 28.03 27.63

March Call 327.70 35.37 313.40 27.06 27.46 702.50 31.77 701.40 25.31 25.68

Put 35.37 27.53 27.14 31.82 25.85 25.47

November Call 336.40 36.35 328.30 23.45 23.79 512.50 26.95 511.40 21.31 21.62

Put 36.30 23.84 23.50 26.95 21.70 21.39

December Call 586.40 48.97 584.90 31.08 31.52 824.10 49.49 824.00 24.56 24.90

Put 48.97 31.56 31.13 49.49 24.96 24.62

Note: 1. Under \Historical Simulation", we assume that the future will mimic history exactly
according to the sample data. The strike prices are the historical average CDD's or
HDD's. The stirke prices for all other simulations are reported under the heading
\° = ¡0:5". They are the CDD's or HDD's implied in the forecasts.

2. In this table, the forecasts are historical average temperature.
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