A new class of low discrepancy sequences of partitions and points

Ingrid Carbone

Department of Mathematics University of Calabria i.carbone@unical.it Italy

Fields Institute - Toronto May 2, 2012

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- 4 LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Given any real number x, let us denote by [x] its integer part, as usual.

Theorem (Kroneker)

Given an irrational number θ , the sequence $\{\theta n - [\theta n]\}_n$ of the fractional parts of $\{\theta n\}$ is dense in [0,1].

Definition (Weyl, 1914)

A sequence of points $\{x_n\}$ of the interval [0, 1[is said to be uniformly distributed if for all $0 \le a < b \le 1$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N\chi_{[a,b[}(x_i)=b-a.$$

Theorem (Bohl, 1909 - Sierpiński, 1910 - Weyl, 1914)

Given an irrational number θ , the sequence $\{\theta n - [\theta n]\}_n$ is uniformly distributed in [0, 1].

Theorem (Weyl, 1914)

A sequence of points $\{x_n\}$ of [0,1[is uniformly distributed if for any $f \in \mathcal{C}([0,1])$ we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \int_{0}^{1} f(t) dt.$$

- Some extension: on curves, on surfaces, in higher dimension, in compact spaces, on fractals, in topological spaces
- Application: numerical integration Quasi-Monte Carlo methods

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- 2 LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- 4 LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Definition (van der Corput and Pisot, 1939)

Given $X = \{x_n\}_n$ in [0, 1], the discrepancy of X is defined as

$$D_N(X) = D(x_1, ..., x_N) = \sup_{0 \le a < b \le 1} \left| \frac{1}{N} \sum_{i=1}^N \chi_{[a, b[}(x_i) - (b-a)] \right|,$$

and the star-discrepancy as

$$D_N^*(X) = D^*(x_1, \ldots, x_N) = \sup_{0 < b \le 1} \left| \frac{1}{N} \sum_{i=1}^N \chi_{[0, b[}(x_i) - b] \right|.$$

•
$$D_N^*(X) \leq D_N(X) \leq 2D_N^*(X)$$

•
$$X = \{x_n\}$$
 is u. d. $\Longleftrightarrow D_N^*(X) \to 0$ as $N \to \infty$

Theorem (van der Corput-Pisot, 1939)

For any finite sequence $X = \{x_1, \dots, x_N\}$ we have

$$\frac{1}{N} \leq D(x_1, \ldots, x_N) \leq 1.$$

Theorem (Schmidt, 1972)

Given $X = \{x_n\}_n$ in [0, 1[, there exists a positive constant c such that

$$N D_N^*(X) \ge c \log N$$

for infinitely many $N \in \mathbb{N}$.

Low discrepancy sequences of points:

$$D_N^*(X) \le C \frac{\log N}{N}$$
 for all $N \in \mathbb{N}$

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- 4 LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Definition (Kakutani, 1976)

Fix a real number $\alpha \in]0,1[$. If π is any partition of [0,1[, its α -refinement, denoted by $\alpha\pi$, is obtained subdividing the longest interval(s) of length ℓ into two intervals of lengths $\alpha \ell$ and $(1-\alpha)\ell$. By $\alpha^n\pi$ we denote the α -refinement of $\alpha^{n-1}\pi$. The sequence $\{\kappa_n\}$ of successive α -refinements of the trivial partition $\omega = \{[0,1[]\} \text{ of } [0,1[] \text{ is the Kakutani } \alpha\text{-sequence.}$

$$\alpha=rac{1}{2}$$
 : binary sequence of partitions $\left\{\left[rac{i-1}{2^n},rac{i}{2^n}\right[,\ 1\leq i\leq 2^n
ight\}$

α - Kakutani-sequence $\{\kappa_n\}$

Definition

We say that a sequence of partitions $\{\pi_n\}$ of [0, 1[, where $\pi_n = \{[y_{i-1}^n, y_i^n[$, $1 \le i \le t_n\}$, is uniformly distributed if for all 0 < a < b < 1 we have

$$\lim_{n\to\infty}\frac{1}{t_n}\sum_{i=1}^{t_n}\chi_{[a,b[}(y_i^n)=b-a.$$

Theorem (Kakutani, 1976)

For any $\alpha \in]0,1[$ the Kakutani α -sequence $\{\kappa_n\}$ is uniformly distributed.

Theorem

The sequence of partitions $\{\pi_n\}$ of [0,1[, with $\pi_n=\{[y_{i-1}^n,y_i^n[$, $1 \le i \le t_n\}$, is uniformly distributed if for all $f \in \mathcal{C}([0,1])$ we have

$$\lim_{n \to \infty} \frac{1}{t_n} \sum_{i=1}^{t_n} f(y_i^n) = \int_0^1 f(t) \, dt.$$

Definition

The discrepancy of the sequence of partitions $\{\pi_n\}$ of the interval [0, 1[, with $\pi_n = \{[y_{i-1}^n, y_i^n[$, $1 \le i \le t_n\}$ is

$$D(\pi_n) = \sup_{0 \le a < b \le 1} \left| \frac{1}{t_n} \sum_{i=1}^{t_n} \chi_{[a, b[}(y_i^n) - (b - a) \right|$$

and the star-discrepancy is

$$D^*(\pi_n) = \sup_{b \le 1} \left| \frac{1}{t_n} \sum_{i=1}^{t_n} \chi_{[0, b[}(y_i^n) - b] \right|.$$

- $D^*(\pi_n) \leq D(\pi_n) \leq 2D^*(\pi_n)$
- $\{\pi_n\}$ is u. d. $<=> D^*(\pi_n) \to 0$ when $n \to \infty$
- $\frac{1}{t_n} \leq D(\pi_n) \leq 1$
- Example: Knapowski sequence $\{\left[\frac{i-1}{n}, \frac{i}{n}\right], 1 \leq i \leq n\}$
- Low discrepancy sequences of partitions:

$$D(\pi_n) \leq C \frac{1}{t_n}$$
 for all $n \in \mathbb{N}$

Definition (A. Volčič)

For any non trivial finite partition ρ of [0,1[, the ρ -refinement of a partition π of [0,1[(denoted by $\rho\pi$) is obtained by subdividing all the intervals of π having maximal length positively (or directly) homothetically to ρ . For any $n \in \mathbb{N}$, the ρ -refinement of $\rho^{n-1}\pi$ is indicated by $\rho^n\pi$.

The sequence of ρ -refinements is the sequence $\{\rho^n\omega\}$ (briefly, $\{\rho^n\}$) of the successive ρ -refinements of ω .

If
$$\rho = \{[0, \alpha[, [\alpha, 1[\}, \text{then } \{\rho^n\} = \{\kappa_n\}.$$

Theorem (A. Volčič)

For any non trivial finite partition ρ of [0, 1[, the sequence $\{\rho^n\omega\}$ is uniformly distributed.

Drmota and Infusino (2012) gave upper and lower bounds for the discrepancy of the sequences of ρ -refinements $\{\rho^n\omega\}$.

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- 4 LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Definition (I. Carbone)

Let us fix two positive integers L and S and let $0 < \beta < 1$ be the real number such that $L\beta + S\beta^2 = 1$. Denote by $\rho_{L,S}$ the partition defined by L "long" intervals having length β followed by S "short" intervals having length β^2 . The sequence of successive $\rho_{L,S}$ -refinements of the trivial partition ω is denoted by $\{\rho_{L,S}^n\omega\}$ (or $\{\rho_{L,S}^n\}$ for short) and is called LS-sequences of partitions.

$$\rho_{1,1}=\left\{\left[0,\frac{\sqrt{5}-1}{2}\right[,\left[\frac{\sqrt{5}-1}{2},1\right[\right],\text{ then }\{\rho_{1,1}^n\}\text{ is the Kakutani}\right.\\$$

$$\frac{\sqrt{5}-1}{2}\text{ - sequence}.$$

- Each partition $\rho_{L,S}^n$ contains only two kinds of intervals: long and short intervals of length β^n and β^{n+1} , resp.
- $t_n = L t_{n-1} + S t_{n-2}$ with $t_0 = 1$ and $t_1 = L + S$

Example

•
$$L = S = 1$$

$$\beta + \beta^2 = 1 \quad \left(\beta = \frac{\sqrt{5} - 1}{2}\right)$$

$$t_0 = t_{n-1} + t_{n-2} \quad \text{with} \quad t_0 = 1, \ t_1 = 2$$

Kakutani-Fibonacci sequence of partitions $\{\rho_{1,1}^n\}$

Kakutani - Fibonacci sequence of partitions $\{\rho_{1,1}^n\}$

Theorem (I. Carbone)

 \bullet $S \leq L$:

$$C_1\frac{1}{t_n}\leq D(\rho_{L,S}^n)\leq C_2\frac{1}{t_n}.$$

2 S = L + 1:

$$C_3 \frac{\log t_n}{t_n} \leq D(\rho_{L,S}^n) \leq C_4 \frac{\log t_n}{t_n}.$$

③ S ≥ L + 2:

$$C_5 \frac{1}{t_n^{\gamma}} \leq D(\rho_{L,S}^n) \leq C_6 \frac{1}{t_n^{\gamma}}$$

with
$$\gamma = 1 + \frac{\log(S\beta)}{\log \beta} < 1$$
.

• $S \le L$: low discrepancy sequences of partitions

$$D(
ho_{L,S}^n) \leq C \, rac{1}{t_n} \,\,\, ext{ for all } \,\, n \in \mathbb{N} \,.$$

• The Kakutani - Fibonacci sequences of partitions $\{\rho_{1,1}^n\}$ has low discrepancy.

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- 4 LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Definition (van der Corput, 1935)

Given any positive integer n, its dyadic expansion is $n = \sum_{i=0}^{M} n_i 2^i$, where $M = [\log_2 n]$, and its 2-radix notation is

$$[n]_2=n_Mn_{M-1}\dots n_0.$$

By reversing the order of the digits we get the number

$$0.n_0n_1...n_M$$

which is the 2-*radix notation* of the radical-inverse function Φ_2 in n:

$$\Phi_2(n) = \sum_{i=0}^M n_i 2^{-i-1}$$
.

The sequence $\{\Phi_2(n)\}$ is the van der Corput sequence.

van der Corput sequence $\{\Phi_2(n)\}$

Theorem (van der Corput, 1935)

The van der Corput sequence $X = {\{\Phi_2(n)\}_n \text{ has low discrepancy, and satisfies}}$

$$D_N(X) \leq \frac{\log(N+1)}{N\log 2}$$
 for any $N \in \mathbb{N}$.

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Definition (I. Carbone)

There exists an explicit algorithm "á la van der Corput" which reorders the left endpoints of the intervals of each partition $\rho_{L,S}^n$. The sequence of points $\{\xi_{L,S}^n\}$ obtained this way is called LS-sequence of points.

Kakutani - Fibonacci sequence of points $\{\xi_{1,1}^n\}$

Definition

Given a positive integer b, any $n \in \mathbb{N}$ has a b-adic expansion of the type $n = \sum_{i=0}^{M} n_i b^i$ (where $M = [\log_b n]$). The b-radix notation of n is

$$[n]_b = n_M n_{M-1} \dots n_0.$$

By reversing the order of the digits we get the number

$$0.n_0n_1...n_M$$

which is the *b-radix notation* of the radical-inverse function Φ_b in n:

$$\Phi_b(n) = \sum_{i=0}^M n_i b^{-i-1}.$$

For each $0 \le i \le L - 1$ we define the functions

$$\psi_i(x) = \beta x + i\beta$$
 restricted to $0 \le x < 1$,

and for every $L \le i \le L + S - 1$ the functions

$$\psi_i(x) = \beta x + L\beta + (i - L)\beta^2$$
 restricted to $0 \le x < \beta$.

We have

$$\Lambda_{L,S}^{1} = \left\{ \xi_{L,S}^{1}, \xi_{L,S}^{2}, \dots, \xi_{L,S}^{L+S} \right\} = \{ \psi_{0}(0), \psi_{1}(0), \dots, \psi_{L+S-1}(0) \}.$$

The compositions $\psi_{i,j} = \psi_i \circ \psi_j$ are not defined whenever

$$(i,j) \in E_{L,S} = \{L, L+1, \ldots, L+S-1\} \times \{1, \ldots, L+S-1\}.$$

Proposition

For any $n \in \mathbb{N}$ we have

$$\psi_{i_1,i_2,\ldots,i_n}(x) = \beta^n x + \sum_{k=1}^n \tilde{i}_k \, \beta^k,$$

where (i_n, \ldots, i_1) is the ordered *n*-tuple of elements of the set $\{0, 1, \ldots, L + S - 1\}$ such that $(i_{k+1}, i_k) \notin E_{L,S}$ for any $1 \le k \le n - 1$ and

$$\tilde{i}_k = i_k \text{ if } i_k \in \{0, 1, \dots, L\},$$

$$\tilde{i}_k = L + k\beta$$
 if $i_k \in \{L+1, \ldots, L+S-1\}$ with $i_k = L+k$.

For any $n \in \mathbb{N}$ whose (L + S)-radix notation is $[n]_{L+S} = n_M n_{M-1} \dots n_0$, we define its LS-radical inverse function

$$\Phi_{L,S}(n) = \sum_{j=0}^{M} \tilde{n}_j \, \beta^{j+1} \,,$$

where $\tilde{n}_j = n_j$ if $0 \le n_j \le L$ and $\tilde{n}_j = L + j\beta$ if $L + 1 \le n_j \le L + S - 1$ with $n_j = L + j$.

For all n such that $(n_i, n_{i+1}) \notin E_{L,S}$, from

$$\psi_{n_0,n_1,...,n_M}(x) = \beta^n x + \sum_{j=0}^M \tilde{n}_j \, \beta^{j+1}$$

it follows that $\Phi_{L,S}(n) = \psi_{n_0,n_1,...,n_M}(0)$.

For any positive integer n, written in its (L+S)-radix notation $[n]_{L+S} = n_M n_{M-1} \dots n_0$, we denote by $\{n_{L,S}(n)\}$ the sequence of all positive integers such that $(n_j, n_{j+1}) \notin E_{L,S}$.

Theorem (I. Carbone)

For any L, $S \in \mathbb{N}$ and $0 < \beta < 1$ such that $L\beta + S\beta^2 = 1$, the LS-sequence of points $\{\xi_{L,S}^n\}$ is obtained as follows:

$$\{\xi_{L,S}^n\} = \{\Phi_{L,S}(n_{L,S}(n))\}.$$

Theorem (I.Carbone)

1) If $S \leq L$ we have

$$D\left(\xi_{L,S}^1, \xi_{L,S}^2, \dots, \xi_{L,S}^N\right) \le k_1 \frac{\log N}{N}$$
 for all $n \in \mathbb{N}$.

2) If S = L + 1 we have

$$D\left(\xi_{L,S}^1, \xi_{L,S}^2, \dots, \xi_{L,S}^N\right) \le k_2 \frac{\log^2 N}{N}$$
 for all $n \in \mathbb{N}$.

3) If $S \ge L + 2$ we have

$$D\left(\xi_{L,S}^1, \xi_{L,S}^2, \dots, \xi_{L,S}^N\right) \le k_3 \frac{\log N}{N^{\gamma}}$$
 for all $n \in \mathbb{N}$

with
$$\gamma = 1 + \frac{\log(S\beta)}{\log \beta} < 1$$
.

• S < L: low discrepancy sequences of points

$$D\left(\xi_{L,S}^1, \xi_{L,S}^2, \dots, \xi_{L,S}^N\right) \le \frac{\log N}{N}$$
 for all $N \in \mathbb{N}$.

• To each low discrepancy LS-sequence of partitions $\{\rho_{L,S}^n\}$ corresponds a low discrepancy LS- sequence of points $\{\xi_{L,S}^n\}$.

Outline

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- 2 LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- 4 LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Definition (Weyl, 1914-1916)

Given $s \ge 2$, a sequence of points $\{x_n\}$ in $I^s = [0, 1[^s$ is said to be uniformly distributed if for all [a, b[of I^s we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N\chi_{[\mathbf{a},\mathbf{b}[}(\mathbf{x}_n)=\lambda([\mathbf{a},\mathbf{b}[).$$

Theorem (Weyl)

A sequence of points $\{\mathbf{x_n}\}$ in I^s is uniformly distributed if for any $f \in \mathcal{C}(\overline{I}^s)$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N f(\mathbf{x}_i)=\int_{\bar{I}^s} f(\mathbf{t})\,d\mathbf{t}.$$

Given $X = \{\mathbf{x_n}\}\$ in $[0, 1]^s$, the discrepancy of X is defined as

$$D_N(X) = D(\{\mathbf{x}_1, \dots, \mathbf{x}_N\}) = \sup_{[\mathbf{a}, \mathbf{b}[]} \left| \frac{1}{N} \sum_{i=1}^N \chi_{[\mathbf{a}, \mathbf{b}[]}(x_i) - \lambda([\mathbf{a}, \mathbf{b}[])) \right|$$

and the star-discrepancy as

$$D_N^*(X) = D^*(\{\mathbf{x}_1, \dots, \mathbf{x}_N\}) = \sup_{[\mathbf{0}, \mathbf{b}[} \left| \frac{1}{N} \sum_{i=1}^N \chi_{[\mathbf{0}, \mathbf{b}[}(X_i) - \lambda([\mathbf{0}, \mathbf{b}[)]) \right|.$$

Theorem (Roth, 1955)

For any finite sequence $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ in I^s , $s \ge 2$, we have

$$ND_N^*(X) \geq C (\log N)^{\frac{s-1}{2}}.$$

For any sequence $X = \{x_n\}$ in I^s , $s \ge 1$, we have

$$ND_N^*(X) \geq C (\log N)^{\frac{s}{2}}.$$

Theorem (Schmidt, 1972)

For any finite sequence $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ in I^2 we have

$$N D_N^*(X) \geq C \log N$$
.

• Low discrepancy sequences of N points in I^2 :

$$D_N^*(X) \leq C \frac{\log N}{N}$$

• Low discrepancy sequences of N points in I^s , s > 2:

$$D_N^*(X) \leq C \frac{(\log N)^{s-1}}{N}$$

• Low discrepancy sequences of **points** in I^s , $s \ge 2$:

$$D_N^*(X) \le C \frac{(\log N)^s}{N}$$
 for all $N \in \mathbb{N}$

The van der Corput sequence of order N in I^2 is

$$\left(\frac{n}{N},\Phi_2(n)\right), \quad n=0,1,\ldots,N-1.$$

The Hammersley sequence of order N in I^s is

$$\Big(\frac{n}{N},\Phi_{p_1}(n),\ldots,\Phi_{p_{s-1}}(n)\Big),\quad n=0,1,\ldots,N-1,$$

where p_1, \ldots, p_{s-1} are the first s-1 prime numbers.

The Halton sequence in Is is

$$\Big\{\Big(\Phi_{b_1}(n),\ldots,\Phi_{b_s}(n)\Big)\Big\},$$

where b_1, \ldots, b_s are pairwise relatively prime.

Theorem (van der Corput, 1935)

The van der Corput sequence has low discrepancy:

$$D_N\left(\frac{n}{N},\Phi_2(n)\right)\leq C\,\frac{\log N}{N}$$
.

Theorem (Halton, 1960)

The Hammersley sequence in I^s and the Halton sequence in I^s , for any $s \ge 2$, have low discrepancy:

$$D_N^*\Big(\frac{n}{N},\Phi_{p_1}(n),\dots,\Phi_{p_{s-1}}(n)\Big) \leq C\,\frac{(\log N)^{s-1}}{N}\,,$$

$$D_N^*\Big(\Big\{\Big(\Phi_{b_1}(n),\ldots,\Phi_{b_s}(n)\Big)\Big\}\Big) \leq C\,\frac{(\log N)^s}{N}\,.$$

Outline

- Uniformly distributed sequences of points
 - Uniform distribution
 - Discrepancy
- 2 LS-sequences of partitions
 - Kakutani sequences and Volčič ρ-refinements
 - LS sequences of partitions
- 3 LS-sequences of points in the unit interval
 - van der Corput sequence
 - LS-sequences of points
- 4 LS-sequences of points in the unit square
 - van der Corput, Hammersley, Halton sequences
 - LS-sequences of points

Definition (I. Carbone)

1. For each *LS*-sequence of points $\{\xi_{LS}^n\}$, the sequence

$$\left\{\left(\xi_{L,S}^{n},\frac{n}{N}\right)\right\}, n=1,\ldots,N-1,$$

is called *LS*-sequence of points à la van der Corput - Hammersley of order *N* in the unit square.

2. For each pair of *LS*-sequences of points $\{\xi_{L_1,S_1}^n\}$ and $\{\xi_{L_2,S_2}^n\}$, the sequence

$$\{(\xi^n_{L_1,S_1},\xi^n_{L_2,S_2})\}$$

is called *LS*-sequences of points à la Halton in the unit square.

Theorem

The discrepancy of any LS-sequence of points à la van der Corput-Hammersley $\{(\xi_{L,S}^n, \frac{n}{N})\}$ of order N in the unit square coincides with the discrepancy of $\{\xi_{L,S}^n\}$.

A consequence of the previous theorem is the following

Theorem (I.Carbone)

The LS-sequence of points à la van der Corput-Hammersley $\{(\xi_{L,S}^n, \frac{n}{N})\}$ of order N has **low discrepancy** whenever $L \geq S$.

Halton sequence $\{(\Phi_n(2), \Phi_n(3))\}$ for $n \leq 5000$

LS-sequence à la van der Corput-Hammersley $\{(\xi_{1,1}^n, \frac{n}{5000})\}$

LS-sequence à la Halton $\{(\xi_{1,3}^n, \xi_{3,1}^n)\}$ for $n \leq 5000$

LS-sequence à la Halton $\{(\xi_{1,1}^n, \xi_{4,1}^n)\}$ for $n \leq 5000$

