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�  Definition:	
  	
  A	
  Reuleaux	
  polygon	
  of	
  width	
  w	
  is	
  a	
  convex	
  domain	
  
of	
  constant	
  width	
  w,	
  whose	
  boundary	
  is	
  a	
  union	
  of	
  finitely	
  
many	
  circular	
  arcs	
  of	
  radii	
  w.	
  The	
  best	
  known	
  version	
  of	
  
Reuleaux	
  polygons	
  is	
  the	
  Reuleaux	
  triangle.	
  To	
  construct	
  a	
  
Reuleaux	
  triangle	
  of	
  width	
  w,	
  start	
  with	
  an	
  equilateral	
  triangle	
  
of	
  side	
  length	
  w;	
  then	
  take	
  the	
  intersection	
  of	
  the	
  three	
  
circular	
  disks	
  of	
  radii	
  w,	
  centered	
  at	
  the	
  vertices	
  of	
  the	
  
equilateral	
  triangle.	
  

Reuleaux	
  Triangle	
  

Reuleaux	
  Pentagon	
   British	
  50-­‐pence	
  coin	
  
(Reuleaux	
  Heptagon)	
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�  Definition:	
  The	
  intersection	
  of	
  finitely	
  many	
  (closed)	
  
spherical	
  balls	
  of	
  unit	
  radii	
  with	
  non-­‐empty	
  interior	
  in	
  
the	
  Euclidean	
  3-­‐space	
  is	
  called	
  a	
  ball-­‐polyhedron.	
  We	
  
will	
  assume	
  that	
  whenever	
  we	
  take	
  a	
  ball-­‐polyhedron,	
  
then	
  the	
  balls	
  generating	
  it	
  (simply	
  called	
  generating	
  
balls)	
  are	
  all	
  needed;	
  that	
  is,	
  each	
  of	
  them	
  contributes	
  to	
  
the	
  boundary	
  of	
  the	
  ball-­‐polyhedron	
  through	
  a	
  spherical	
  
region	
  bounded	
  by	
  finitely	
  many	
  circular	
  arcs.	
  	
  

Ball	
  trihedron	
  	
   Ball	
  tetrahedron	
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[3] and [4] a ball-polyhedron is the intersection with non-empty interior of
finitely many closed congruent balls in E3. In fact, one may assume that the
closed congruent 3-dimensional balls in question are of unit radius; that is,
they are unit balls of E3. Also, it is natural to assume that removing any
of the unit balls defining the intersection in question yields the intersection
of the remaining unit balls becoming a larger set. (Equivalently, using the
terminology introduced in [4], whenever we take a ball-polyhedron we always
assume that it is generated by a reduced family of unit balls.) Furthermore,
following [3] and [4] one can represent the boundary of a ball-polyhedron
in E3 as the union of vertices, edges, and faces defined in a rather natural
way as follows. A boundary point is called a vertex if it belongs to at least
three of the closed unit balls defining the ball-polyhedron. A face of the
ball-polyhedron is the intersection of one of the generating closed unit balls
with the boundary of the ball-polyhedron. Finally, if the intersection of two
faces is non-empty, then it is the union of (possibly degenerate) circular arcs.
The non-degenerate arcs are called edges of the ball-polyhedron. Obviously,
if a ball-polyhedron in E3 is generated by at least three unit balls, then it
possesses vertices, edges, and faces. Clearly, the vertices, edges and faces of a
ball-polyhedron (including the empty set and the ball-polyhedron itself) are
partially ordered by inclusion forming the vertex-edge-face structure of the
given ball-polyhedron. It was an important observation of [3] as well as of
[4] that the vertex-edge-face structure of a ball-polyhedron is not necessarily
a lattice (i.e., a partially ordered set (also called a poset) in which any two
elements have a unique supremum (the elements’ least upper bound; called
their join) and an infimum (greatest lower bound; called their meet)). Thus,
it is natural to define the following fundamental family of ball-polyhedra,
introduced in [4] under the name standard ball-polyhedra and investigated in
[3] as well without having a particular name for it. Here a ball-polyhedron
in E3 is called a standard ball-polyhedron if its vertex-edge-face structure is
a lattice (with respect to containment). In this case, we simply call the
vertex-edge-face structure in question the face lattice of the standard ball-
polyhedron. This definition implies among others that any standard ball-
polyhedron of E3 is generated by at least four unit balls.

Second, let us give the main motivation for writing this paper. One of
the best known results in the geometry of convex polyhedra is Cauchy’s
rigidity theorem: If two convex polyhedra P and Q in E3 are combinatorially
equivalent with the corresponding faces being congruent, then the angles
between the corresponding pairs of adjacent faces are also equal and thus,

2

inner dihedral angles of P . It follows that P is rigid with respect to its inner

dihedral angles.
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Fig. 4.1. The three steps of making a simple flexible ball-polyhedron.

so that it also cuts off one of the vertices. In this way we get a new ball-polyhedron with
the following faces. There are the two old “big” faces (formed by the remaining parts of
the two faces of the lens), and instead of the third face we have two faces (small triangles)
meeting along a new small edge (step 2 on Fig. 4.1). This ball-polyhedron has four vertices;
each is in the intersection of exactly three faces, so this is a simple ball-polyhedron.
Now, we look at the remaining part of the edge of the original lens. Since we positioned

the third and fourth balls in such a way as to cut off only small pieces from the edge of
the original lens, this edge is still long. Finally, we take a fifth and a sixth ball with centers
in the plane of the edge of the lens to cut off another two small pieces from the old edge
to get another two small triangles. We position the fifth and sixth balls in such a way that
these small triangles are “far” from the previous two small triangles, i.e. we do not cut off
any of the four vertices that had been constructed before (step 3 on Fig. 4.1).
So, now we have a ball-polyhedron with two big faces meeting at two edges (the

remainder of the original lens) and two pairs of triangles. In each pair the two triangles
meet along an edge and the third vertex of each triangle is on one of the two edges of the
two big faces. This is the flexible ball-polyhedron. Looking at its face-lattice we see that it
is indeed a simple ball-polyhedron.
How do we “flex” it? Fix the first four centers and take the line connecting the first two.

Now, if we rotate continuously and simultaneously the last two centers about this line, then
the second pair of triangles will move “along the old edge” of the old lens. We do not let
it hit the first pair of triangles. One can see that during this motion the ball-polyhedra are
isomorphic and the inner dihedral angles along edges (resp. face angles) remain constant.
The ball-polyhedra at any two stages of the motion are obviously incongruent.

4.2. Generalization of the construction

Now we turn to the proof of Proposition 0.1. Let the edges separating the two faces
(F1 and F2) meeting along more than one edge be e1, e2, . . . , ek . If we take the edge
graph of the ball-polyhedron and delete e1, e2, . . . , ek we get a graph G with k connected
components. Now, we can fix the centers of the two faces F1, F2 and also fix the centers
of the faces corresponding to the first k − 1 connected components of G. As in the
construction, we take the line connecting the centers of F1 and F2 and rotate the centers
corresponding to the last connected component of G about this line. We make sure not to
hit any of the vertices in the other components. This is obviously a continuous deformation

11-10-09 5 



250

faces. This immediately implies the polytopes are equal, i.e. can be moved by a rigid
motion. !
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Figure 26.2. Maximum number of sign changes in different faces, and
graph H obtained after removal of zero labeled edges in G.

The proof above is important enough to be stated as a separate result, so that we
can refer to it later on. Since the proof is essentially a graph-theoretic statement, let
us phrase it as such:

Lemma 26.5 (Sign counting lemma). Suppose the edges of a plane simple graph are
labeled with 0, (+) and (−) such that around each vertex either all labels are 0 or have
at least four sign changes. Then all signs are 0.

Here by plane graph we mean a graph which is already drawn on a plane, since
otherwise, for graphs with low connectivity, the faces are not well defined. Note that
the faces include the outside face as well.

26.4. Better language for the Cauchy theorem. As the reader can see, we use
a rather clumsy way of saying that two polytopes are “assembled in the same way
from the same faces”. Let us straighten the language and restate the result:

Theorem 26.6 (Cauchy, restated). Let P and Q ⊂ R3 be two combinatorially equiv-
alent convex polytopes whose corresponding faces are isometric. Then P and Q are
isometric.

Here by isometry between polytopes we mean that one can be mapped into another
such that the pairwise distances between the corresponding points are always equal.
This map is called the isometry map. Same for the isometry between faces, but here
we are assuming that the isometry respects combinatorial equivalence.

Note that in R3 two polytopes are isometric if and only if they are equal, i.e., can
be mapped into each other by a rigid motion. Beside sounding more scientific, the
isometry is a useful concept in several generalizations of the Cauchy theorem.

Note also that the underlying theme in this version is the ‘local ⇒ global’ property
of isometry, since we are saying that isometry of the faces (all lying on a surface of
polytopes) implies global isometry. As we will see in Section 30, this principle does
not hold for non-convex polytopes. However it does apply in many other convex
situations.
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Now let us redefine rigidity of convex polytopes and restate Corollary 26.2. We
say that {Pt : t ∈ [0, 1]} is a continuous deformation of polytope P if the faces of Pt

remain isometric, for all t ∈ [0, 1]. We say that P is (continuously) rigid if in every
continuous deformation {Pt} of polytope P the polytopes Pt are isometric.

Corollary 26.7 (Rigidity of convex polytopes, revisited). Every convex polytope P ⊂
R3 is continuously rigid.

This definition of rigidity is also robust enough to allow advanced generalizations.
For simplicity, we drop ‘continuous’ and use ‘rigidity’ for the rest of the lectures56.

26.5. Parallel polytopes. We start a short series of extensions of the Cauchy the-
orem (Theorem 26.1) with the following side result. While easily equivalent to the
Cauchy theorem, it brings to light some properties of the proof given in Section 26.3.

Theorem 26.8 (Alexandrov). Let P, Q ⊂ R3 be two combinatorially equivalent con-
vex polytopes with equal corresponding face angles. Then they have equal corresponding
dihedral angles.

This result easily implies the Cauchy theorem: faces and dihedral angles determine
the whole polytope. In fact, we used this observation in the proof of the Cauchy
theorem. On the other hand, the result is applicable to distinct polytopes, such as
bricks [a × b × c].

The proof of Theorem 26.8 is essentially an observation. Note that in the proof of
the Cauchy theorem we never used the geometry of faces except for the face angles. In
addition, we use only only (intrinsic) convexity in the vertices one global parameter:
Euler’s theorem, i.e., the fact that the surface of convex polytopes is homeomorphic
to a sphere. Thus, basically, in the proof of the Cauchy theorem we first establish
Theorem 26.8, and only then prove the result.

We say that two polytopes P, Q ∈ Rd are parallel if they are combinatorially equiv-
alent and the corresponding facets are parallel. Clearly, every two combinatorially
equivalent polytopes with equal corresponding dihedral angles can be made parallel
by a rigid motion. Basically, one can view Theorem 26.8 as an local condition for
being parallel, up to a global rotation.

Let us mention that the inverse to Theorem 26.8 is also true. Given two polytopes
which are combinatorially equivalent and have equal corresponding dihedral angles
we conclude that they are parallel, i.e., the corresponding faces lie on parallel planes.
Therefore, the corresponding edges lie on parallel lines. Finally, the corresponding
face angles are equal as angles between pairwise parallel lines.

26.6. Face angles are not as good as you think they are. Before we move to
further generalizations of the Cauchy theorem, let us mention that from the point of
view of convex polytopes, face angles are not a good way to define a polytope. In
fact, they overdetermine the polytope, even up to translation of faces. Indeed, let us

56There are other kinds of rigidity, such as static rigidity, infinitesimal rigidity, k-th order rigidity,
global rigidity, etc. (see [Con5]). We will define the first two in Section 31.

253

26.7. The converse of the Cauchy theorem. From the discussion above, one can
think of the Cauchy theorem as a statement that in all convex polytopes in R3 the
edge length and face angles determine the dihedral angles, and with them the whole
polytope. Thus, it is reasonable to ask if the converse is true as well: is it true that
the edge lengths and dihedral angles determine the face angles as well? The following
result confirms the suspicion:

Theorem 26.9 (Stoker). Let P, Q ⊂ R3 be two combinatorially equivalent convex
polytopes with equal corresponding edge lengths and dihedral angles. Then P and Q
are isometric.

Note that the theorem is obvious for simplicial polytopes: in that case the edge
lengths alone determine face angles (consider separately each triangular face), and
with them the whole polytope. Of course, for simple polytopes knowing edge lengths
is insufficient. On the other hand, dihedral angles alone can determine the face angle
(consider separately each vertex cone), and with them the whole polytope once again.
Therefore, this result is actually easy for extreme cases and the main difficulty is with
‘intermediate’ polytopes. The main idea of the proof below is to combine these two
different approaches into one argument.

Proof. Using the approach in the proof of the Cauchy theorem, compare face angles
in P and Q and label them with (+), (−) and 0 accordingly. Note that around
every face either all labels are zero or there are at least four sign changes. This is
the analogue of the arm lemma (Lemma 22.3) for planar polygons and the proof is
verbatim. Similarly, around every vertex all labels are zero or there are at least four
sign changes. Indeed, consider a vertex v of P and the dual cone C∗

v (see Section 25).
The dihedral angles βi equal to π − αi, where αi are face angles in v. Now, as in
the proof of the sign changes lemma (Lemma 26.4), by the arm lemma for spherical
polygons we have the claim.

Consider the medial graph H with vertices corresponding to edges of P and edges
connecting two adjacent edges in P lying in the same face. Label the edges of H
with the same label as the corresponding face angle in P . Note that the faces of H

Figure 26.4. Medial graph H of the graph of a square prism is the
graph of a square biprism.

correspond to vertices and faces of P , and have all zero labels, or at least four sign
changes. Applying the sign counting lemma (Lemma 26.5) to the dual graph H∗, we
conclude that all labels in H are zero. In other words, the corresponding face angles
in P and Q are equal. Now the isometry of faces and the equality of dihedral angles
implies the result. !
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called triangulated if all its faces are bounded by three edges. It is easy to see
that any triangulated ball-polyhedron is, in fact, a standard one.

The claims (i) and (ii) of Theorem 6.5.1 have been proved in [66]. Claim
(iii) of Theorem 6.5.1 is based on a special class of standard polyhedra defined
as follows. We say that P is a normal ball-polyhedron if P is a standard ball-
polyhedron in E3 with the property that the vertices of the underlying farthest
point Voronoi tiling of the center points of the generating unit balls of P
all belong to the interior of P. (Actually, this condition is equivalent to the
following one: the distance between any center point of the generating unit
balls of P and any of the vertices of the farthest point Voronoi cell assigned to
the center in question is strictly less than one.) Now, recall that the farthest
point Voronoi tiling just mentioned gives rise to the relevant Delaunay tiling of
the convex hull P� of the centers of the generating unit balls of P. This induces
a duality between the face lattices of the ball-polyhedron P and of the convex
polyhedron P�. Thus, it is not hard to see that claim (i) of Theorem 6.5.1 and
Cauchy’s rigidity theorem applied toP� imply statement (iii) of Theorem 6.5.1
on P. Thus, we have the following analogues of Cauchy’s rigidity theorem for
ball-polyhedra.

Theorem 6.5.1
(i) The face lattice and the face angles determine the inner dihedral angles of
any standard ball-polyhedron in E3.
(ii) Let P be a triangulated ball-polyhedron in E3. Then P is globally rigid
with respect to its face angles.
(iii) Let P be a normal ball-polyhedron in E3. Then P is globally rigid with
respect to its face angles.

Deciding whether all standard ball-polyhedra of E3 are globally rigid with
respect to their face angles remains a challenging open problem. Finally, The-
orem 6.5.1 raises the following dual question.

Problem 6.5.2 Prove or disprove that the face lattice and the inner dihedral
angles determine the face angles of any standard ball-polyhedron in E3.

We mention that one can regard the above problem as an extension of
the (still unresolved) conjecture of Stoker [233] according to which for convex
polyhedra the face lattice and the inner dihedral angles determine the face
angles.

6.6 Separation and Support for Spindle Convex Sets

The following theorem of Kirchberger is well known (see, e.g., [22]). If A and
B are finite (resp., compact) sets in Ed with the property that for any set
T ⊂ A ∪ B of cardinality at most d + 2 (i.e., with card T ≤ d + 2) the two
sets A ∩ T and B ∩ T can be strictly separated by a hyperplane, then A
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P is congruent to Q. Putting it somewhat differently the combinatorics of

an arbitrary convex polyhedron and its face angles completely determine its

inner dihedral angles. For more details on Cauchy’s rigidity theorem and

on its extensions we refer the interested reader to [5]. In our joint paper

[3] we have been looking for analogues of Cauchy’s rigidity theorem for ball-

polyhedra. In order to quote properly the relevant results from [3] we need

to recall the following terminology. To each edge of a ball-polyhedron in

E3 we can assign an inner dihedral angle. Namely, take any point p in the

relative interior of the edge and take the two unit balls that contain the

two faces of the ball-polyhedron meeting along that edge. Now, the inner

dihedral angle along this edge is the angular measure of the intersection of

the two half-spaces supporting the two unit balls at p. The angle in question

is obviously independent of the choice of p. Moreover, at each vertex of

a face of a ball-polyhedron there is a face angle formed by the two edges

meeting at the given vertex (which is, in fact, the angle between the two

tangent halflines of the two edges meeting at the given vertex). Finally, we

say that the standard ball-polyhedron P in E3 is globally rigid with respect
to its face angles (resp., its inner dihedral angles) if the following holds. If

Q is another standard ball-polyhedron in E3 whose face lattice is isomorphic

to that of P and whose face angles (resp., inner dihedral angles) are equal to

the corresponding face angles (resp. inner dihedral angles) of P , then Q is

congruent to P . Furthermore, a ball-polyhedron of E3 is called triangulated
if all its faces are bounded by three edges. It is not hard to see that any

triangulated ball-polyhedron is, in fact, a standard one. Now, we are ready

to state the main (rigidity) result of [3]: The face lattice and the face angles

determine the inner dihedral angles of any standard ball-polyhedron in E3.

In particular, if P is a triangulated ball-polyhedron in E3, then P is globally

rigid with respect to its face angles. The following fundamental analogue

question is still an open problem (see [2], p. 63).

Problem 1.1 Prove or disprove that the face lattice and the inner dihedral
angles determine the face angles of any standard ball-polyhedron in E3.

One can regard this problem as an extension of the (still unresolved)

conjecture of Stoker [8] according to which for convex polyhedra the face

lattice and the inner dihedral angles determine the face angles. The following

special case of Problem 1.1 has already been put forward as a conjecture in

[3]. For this we need to recall that a ball-polyhedron is called a simple ball-
polyhedron, if at every vertex exactly three edges meet. Now, based on our

3
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inner dihedral angles of P . It follows that P is rigid with respect to its inner

dihedral angles.
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called triangulated if all its faces are bounded by three edges. It is easy to see
that any triangulated ball-polyhedron is, in fact, a standard one.

The claims (i) and (ii) of Theorem 6.5.1 have been proved in [66]. Claim
(iii) of Theorem 6.5.1 is based on a special class of standard polyhedra defined
as follows. We say that P is a normal ball-polyhedron if P is a standard ball-
polyhedron in E3 with the property that the vertices of the underlying farthest
point Voronoi tiling of the center points of the generating unit balls of P
all belong to the interior of P. (Actually, this condition is equivalent to the
following one: the distance between any center point of the generating unit
balls of P and any of the vertices of the farthest point Voronoi cell assigned to
the center in question is strictly less than one.) Now, recall that the farthest
point Voronoi tiling just mentioned gives rise to the relevant Delaunay tiling of
the convex hull P� of the centers of the generating unit balls of P. This induces
a duality between the face lattices of the ball-polyhedron P and of the convex
polyhedron P�. Thus, it is not hard to see that claim (i) of Theorem 6.5.1 and
Cauchy’s rigidity theorem applied toP� imply statement (iii) of Theorem 6.5.1
on P. Thus, we have the following analogues of Cauchy’s rigidity theorem for
ball-polyhedra.

Theorem 6.5.1
(i) The face lattice and the face angles determine the inner dihedral angles of
any standard ball-polyhedron in E3.
(ii) Let P be a triangulated ball-polyhedron in E3. Then P is globally rigid
with respect to its face angles.
(iii) Let P be a normal ball-polyhedron in E3. Then P is globally rigid with
respect to its face angles.

Deciding whether all standard ball-polyhedra of E3 are globally rigid with
respect to their face angles remains a challenging open problem. Finally, The-
orem 6.5.1 raises the following dual question.

Problem 6.5.2 Prove or disprove that the face lattice and the inner dihedral
angles determine the face angles of any standard ball-polyhedron in E3.

We mention that one can regard the above problem as an extension of
the (still unresolved) conjecture of Stoker [233] according to which for convex
polyhedra the face lattice and the inner dihedral angles determine the face
angles.

6.6 Separation and Support for Spindle Convex Sets

The following theorem of Kirchberger is well known (see, e.g., [22]). If A and
B are finite (resp., compact) sets in Ed with the property that for any set
T ⊂ A ∪ B of cardinality at most d + 2 (i.e., with card T ≤ d + 2) the two
sets A ∩ T and B ∩ T can be strictly separated by a hyperplane, then A
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P is congruent to Q. Putting it somewhat differently the combinatorics of

an arbitrary convex polyhedron and its face angles completely determine its

inner dihedral angles. For more details on Cauchy’s rigidity theorem and

on its extensions we refer the interested reader to [5]. In our joint paper

[3] we have been looking for analogues of Cauchy’s rigidity theorem for ball-

polyhedra. In order to quote properly the relevant results from [3] we need

to recall the following terminology. To each edge of a ball-polyhedron in

E3 we can assign an inner dihedral angle. Namely, take any point p in the

relative interior of the edge and take the two unit balls that contain the

two faces of the ball-polyhedron meeting along that edge. Now, the inner

dihedral angle along this edge is the angular measure of the intersection of

the two half-spaces supporting the two unit balls at p. The angle in question

is obviously independent of the choice of p. Moreover, at each vertex of

a face of a ball-polyhedron there is a face angle formed by the two edges

meeting at the given vertex (which is, in fact, the angle between the two

tangent halflines of the two edges meeting at the given vertex). Finally, we

say that the standard ball-polyhedron P in E3 is globally rigid with respect
to its face angles (resp., its inner dihedral angles) if the following holds. If

Q is another standard ball-polyhedron in E3 whose face lattice is isomorphic

to that of P and whose face angles (resp., inner dihedral angles) are equal to

the corresponding face angles (resp. inner dihedral angles) of P , then Q is

congruent to P . Furthermore, a ball-polyhedron of E3 is called triangulated
if all its faces are bounded by three edges. It is not hard to see that any

triangulated ball-polyhedron is, in fact, a standard one. Now, we are ready

to state the main (rigidity) result of [3]: The face lattice and the face angles

determine the inner dihedral angles of any standard ball-polyhedron in E3.

In particular, if P is a triangulated ball-polyhedron in E3, then P is globally

rigid with respect to its face angles. The following fundamental analogue

question is still an open problem (see [2], p. 63).

Problem 1.1 Prove or disprove that the face lattice and the inner dihedral
angles determine the face angles of any standard ball-polyhedron in E3.

One can regard this problem as an extension of the (still unresolved)

conjecture of Stoker [8] according to which for convex polyhedra the face

lattice and the inner dihedral angles determine the face angles. The following

special case of Problem 1.1 has already been put forward as a conjecture in

[3]. For this we need to recall that a ball-polyhedron is called a simple ball-
polyhedron, if at every vertex exactly three edges meet. Now, based on our

3

terminology introduced above the conjecture in question ([3], p. 257) can be

phrased as follows.

Conjecture 1.2 Let P be a simple and standard ball-polyhedron of E3. Then
P is globally rigid with respect to its inner dihedral angles.

For the sake of completeness we note the following. Suppose that Q is a

simple ball-polyhedron generated by at least four unit balls of E3
and assume

that Q is globally rigid with respect to its inner dihedral angles. Then we

claim that Q must be a standard ball-polyhedron. Indeed, if Q were a non-

standard one, then one can actually prove that Q must have a pair of faces

whose intersection consists of at least two connected components. However,

such a simple ball-polyhedron is always flexible (i.e., not globally rigid) as

shown in Section 4 of [3], a contradiction.

In this paper we give a proof of the local version of Conjecture 1.2.

2 Main Result

We say that the standard ball-polyhedron P of E3
is rigid with respect to its

inner dihedral angles, if there is an ε > 0 with the following property. If Q
is another standard ball-polyhedron of E3

whose face lattice is isomorphic

to that of P and whose inner dihedral angles are equal to the corresponding

inner dihedral angles of P such that the corresponding faces of P and Q lie

at distance at most ε from each other, then P and Q are congruent.

Now, we are ready to state the main result of this paper.

Theorem 2.1 Let P be a simple and standard ball-polyhedron of E3. Then
P is rigid with respect to its inner dihedral angles.

Also, it is natural to say that the standard ball-polyhedron P of E3
is

rigid with respect to its face angles, if there is an ε > 0 with the following

property. If Q is another standard ball-polyhedron of E3
whose face lattice is

isomorphic to that of P and whose face angles are equal to the corresponding

face angles of P such that the corresponding faces of P and Q lie at distance

at most ε from each other, then P and Q are congruent. As according to [3]

the face lattice and the face angles determine the inner dihedral angles of any

standard ball-polyhedron in E3
therefore Theorem 2.1 implies the following

claim in a straightforward way.

4

K.Bezdek,M.Naszódi/EuropeanJournalofCombinatorics27(2006)255–268263

Fig.4.1.Thethreestepsofmakingasimpleflexibleball-polyhedron.

sothatitalsocutsoffoneofthevertices.Inthiswaywegetanewball-polyhedronwith
thefollowingfaces.Therearethetwoold“big”faces(formedbytheremainingpartsof
thetwofacesofthelens),andinsteadofthethirdfacewehavetwofaces(smalltriangles)
meetingalonganewsmalledge(step2onFig.4.1).Thisball-polyhedronhasfourvertices;
eachisintheintersectionofexactlythreefaces,sothisisasimpleball-polyhedron.

Now,welookattheremainingpartoftheedgeoftheoriginallens.Sincewepositioned
thethirdandfourthballsinsuchawayastocutoffonlysmallpiecesfromtheedgeof
theoriginallens,thisedgeisstilllong.Finally,wetakeafifthandasixthballwithcenters
intheplaneoftheedgeofthelenstocutoffanothertwosmallpiecesfromtheoldedge
togetanothertwosmalltriangles.Wepositionthefifthandsixthballsinsuchawaythat
thesesmalltrianglesare“far”fromtheprevioustwosmalltriangles,i.e.wedonotcutoff
anyofthefourverticesthathadbeenconstructedbefore(step3onFig.4.1).

So,nowwehaveaball-polyhedronwithtwobigfacesmeetingattwoedges(the
remainderoftheoriginallens)andtwopairsoftriangles.Ineachpairthetwotriangles
meetalonganedgeandthethirdvertexofeachtriangleisononeofthetwoedgesofthe
twobigfaces.Thisistheflexibleball-polyhedron.Lookingatitsface-latticeweseethatit
isindeedasimpleball-polyhedron.

Howdowe“flex”it?Fixthefirstfourcentersandtakethelineconnectingthefirsttwo.
Now,ifwerotatecontinuouslyandsimultaneouslythelasttwocentersaboutthisline,then
thesecondpairoftriangleswillmove“alongtheoldedge”oftheoldlens.Wedonotlet
ithitthefirstpairoftriangles.Onecanseethatduringthismotiontheball-polyhedraare
isomorphicandtheinnerdihedralanglesalongedges(resp.faceangles)remainconstant.
Theball-polyhedraatanytwostagesofthemotionareobviouslyincongruent.

4.2.Generalizationoftheconstruction

NowweturntotheproofofProposition0.1.Lettheedgesseparatingthetwofaces
(F1andF2)meetingalongmorethanoneedgebee1,e2,...,ek.Ifwetaketheedge
graphoftheball-polyhedronanddeletee1,e2,...,ekwegetagraphGwithkconnected
components.Now,wecanfixthecentersofthetwofacesF1,F2andalsofixthecenters
ofthefacescorrespondingtothefirstk−1connectedcomponentsofG.Asinthe
construction,wetakethelineconnectingthecentersofF1andF2androtatethecenters
correspondingtothelastconnectedcomponentofGaboutthisline.Wemakesurenotto
hitanyoftheverticesintheothercomponents.Thisisobviouslyacontinuousdeformation
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whose intersection consists of at least two connected components. However,
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shown in Section 4 of [3], a contradiction.
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is another standard ball-polyhedron of E3

whose face lattice is isomorphic

to that of P and whose inner dihedral angles are equal to the corresponding

inner dihedral angles of P such that the corresponding faces of P and Q lie

at distance at most ε from each other, then P and Q are congruent.

Now, we are ready to state the main result of this paper.

Theorem 2.1 Let P be a simple and standard ball-polyhedron of E3. Then
P is rigid with respect to its inner dihedral angles.

Also, it is natural to say that the standard ball-polyhedron P of E3
is

rigid with respect to its face angles, if there is an ε > 0 with the following

property. If Q is another standard ball-polyhedron of E3
whose face lattice is

isomorphic to that of P and whose face angles are equal to the corresponding

face angles of P such that the corresponding faces of P and Q lie at distance

at most ε from each other, then P and Q are congruent. As according to [3]

the face lattice and the face angles determine the inner dihedral angles of any

standard ball-polyhedron in E3
therefore Theorem 2.1 implies the following

claim in a straightforward way.

4
Corollary 2.2 Let P be a simple and standard ball-polyhedron of E3. Then
P is rigid with respect to its face angles.

In the rest of this paper we give a proof of Theorem 2.1.

3 Infinitesimally Rigid Polyhedra, Dual Ball-
Polyhedron, Truncated Delaunay Complex

In this section we introduce the notations and the main tools that are needed
for our proof of Theorem 2.1.

Recall that a convex polyhedron of E3 is a bounded intersection of finitely
many closed halfspaces in E3. A polyhedral complex in E3 is a finite family
of convex polyhedra such that any vertex, edge, and face of a member of
the family is again a member of the family, and the intersection of any two
members is empty or a vertex or an edge or a face of both members. In this
paper a polyhedron of E3 means simply the union of all members of a poly-
hedral complex in E3 possessing the additional property that its boundary is
a surface in E3 (i.e., a 2-dimensional topological manifold embedded in E3).

We denote the convex hull of a set C by [C]. A polyhedron Q of E3 is

• weakly convex if its vertices are in convex position (i.e., if its vertices
are the vertices of a convex polyhedron);

• decomposable if it can be triangulated without adding new vertices;

• co-decomposable if its complement in [Q] can be triangulated without
adding new vertices;

• weakly co-decomposable if it is contained in a convex polyhedron Q̃,
such that all vertices of Q are vertices of Q̃, and the complement of Q
in Q̃ can be triangulated without adding new vertices.

Clearly, the boundary of every polyhedron in E3 can be triangulated
without adding new vertices. Now, let P be a polyhedron in E3 and let T
be a triangulation of its boundary without adding new vertices. We call the
1-skeloton G(T ) of T the edge graph of T . By an infinitesimal flex of the
edge graph G(T ) in E3 we mean an assignment of vectors to the vertices of
G(T ) (i.e., to the vertices of P ) such that the displacements of the vertices in
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G(T ) (i.e., to the vertices of P ) such that the displacements of the vertices in
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the assigned directions induce a zero first-order change of the edge lengths:
(pi − pj) · (qi − qj) = 0 for every edge pipj of G(T ), where qi is the vector
assigned to the vertex pi. An infinitesimal flex is called trivial if it is the
restriction of an infinitesimal rigid motion of E3. Finally, we say that the
polyhedron P is infinitesimally rigid if every infinitesimal flex of the edge
graph G(T ) of T is trivial. (It is not hard to see that the infinitesimal rigidity
of a polyhedron is a well-defined notion i.e., independent of the triangulation
T . For more details on this as well as for an overview on the theory of rigidity
we refer the interested reader to [5].) We need the following remarkable
rigidity theorem of Izmestiev and Schlenker [6] for the proof of Theorem 2.1.

Theorem 3.1 Every weakly convex, decomposable and weakly co-decompos-
able polyhedron of E3 is infinitesimally rigid.

The closed ball of radius ρ centered at p in E3 is denoted by B(p, ρ).
Also, it is convenient to use the notation B(p) := B(p, 1). For a set C ⊆ E3

we denote the intersection of closed unit balls with centers in C by B(C) :=
∩{B(c) : c ∈ C}. Recall that every ball-polyhedron P = B(C) can be gener-
ated such that B(C \ {c}) �= B(C) holds for any c ∈ C. Therefore whenever
we take a ball-polyhedron P = B(C) we always assume the above mentioned
reduced property of C. The following duality theorem has been proved in [3]
and it is also needed for our proof of Theorem 2.1.

Theorem 3.2 Let P be a standard ball-polyhedron of E3. Then the inter-
section P ∗ of the closed unit balls centered at the vertices of P is another
standard ball-polyhedron whose face lattice is dual to that of P (i.e., there
exists an order reversing bijection between the face lattices of P and P ∗).

In fact, the proof presented in [3] leads to the following quite general
duality theorem (which in this general form however, is not needed for our
proof of Theorem 2.1): Let V denote the set of vertices of a ball-polyhedron
P in E3 which has no face bounded by two edges. Then there is a duality (a
containment-reversing bijection) between the vertex-edge-face structures of
P and the “dual” ball-polyhedron P ∗ = B(V ) of P .

Finally, let us give a detailed construction of the so-called truncated De-
launay complex of an arbitrary ball-polyhedron, which is going to be the
underlying polyhedral complex of the given ball-polyhedron playing a cen-
tral role in our proof of Theorem 2.1. We leave the proofs of the claims

6

inner dihedral angles of P . It follows that P is rigid with respect to its inner

dihedral angles.
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[4] K. Bezdek, Zs. Lángi, M. Naszódi and P. Papez, Ball-polyhedra, Dis-

crete Comput. Geom. 38/2 (2007), 201–230.

[5] R. Connelly, Rigidity, in Handbook of Convex Geometry, North Hol-

land, Amsterdam, 1993, 223–271.

[6] I. Izmestiev and J.-M. Schlenker, Infinitesimal rigidity of polyhedra

with vertices in convex position, Pacific J. Math. 248/1 (2010), 171-

190.

[7] R. Seidel, Exact upper bounds for the number of faces in d-

dimensional Voronoi diagrams, DIMACS Ser. Discrete Math. Theo-

ret. Comput. Sci., Amer. Math. Soc., Applied geometry and discrete

mathematics, 4 (1991), 517–529.

[8] J. J. Stoker, Geometric problems concerning polyhedra in the large,

Com. Pure and Applied Math. 21 (1968), 119–168.
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mentioned in the rest of this section to the reader partly because they are

straightforward and partly because they are also well known (see for example,

[1] or [7]).

The farthest-point Voronoi tiling corresponding to a finite set C := {c1,
. . . , cn} in E3

is the family V := {V1, . . . , Vn} of closed convex polyhedral sets
Vi := {x ∈ E3

: |x− ci| ≥ |x− cj| for all j �= i, 1 ≤ j ≤ n}, 1 ≤ i ≤ n. (Here
a closed convex polyhedral set means a not necessarily bounded intersection

of finitely many closed halfspaces in E3
.) We call the elements of V farthest-

point Voronoi cells. In the sequel we omit the words “farthest-point” as we

do not use the other (more popular) Voronoi tiling: the one capturing closest

points.

It is known that V is a tiling of E3
. We call the vertices, (possibly un-

bounded) edges and (possibly unbounded) faces of the Voronoi cells of V
simply the vertices, edges and faces of V .

The truncated Voronoi tiling corresponding to C is the family V t
of closed

convex sets {V1∩B(c1), . . . , Vn∩B(cn)}. Clearly, from the definition it follows

that V t
= {V1 ∩ P, . . . , Vn ∩ P} where P = B(C). We call elements of V t

truncated Voronoi cells.
Next, we define the (farthest-point) Delaunay complex D assigned to the

finite set C = {c1, . . . , cn} ⊂ E3
. It is a polyhedral complex on the vertex

set C. For an index set I ⊆ {1, . . . , n}, the convex polyhedron [ci : i ∈ I] is
a member of D if, and only if, there is a point p in ∩{Vi : i ∈ I} which is not

contained in any other Voronoi cell. In other words, [ci : i ∈ I] ∈ D if, and

only if, there is a point p ∈ E3
and a radius ρ ≥ 0 such that {ci : i ∈ I} ⊂

bdB(p, ρ) and {ci : i /∈ I} ⊂ intB(p, ρ). It is known that D is a polyhedral
complex, in fact, it is a tiling of [C] by convex polyhedra.

Lemma 3.3 Let C = {c1, . . . , cn} ⊂ E3 be a finite set, and V = {V1, . . . , Vn}
be the corresponding Voronoi tiling of E3. Then

(V) For any vertex p of V, there is an index set I ⊆ {1, . . . , n} with
dim{ci : i ∈ I} = 3 such that [ci : i ∈ I] ∈ D and p = ∩{Vi : i ∈ I}.
And vice versa: if I ⊆ {1, . . . , n} with dim{ci : i ∈ I} = 3 is such that
[ci : i ∈ I] ∈ D then ∩{Vi : i ∈ I} is a singleton namely, a vertex of V.

(E) For any edge � of V, there is an index set I ⊆ {1, . . . , n} with dim{ci :
i ∈ I} = 2 such that [ci : i ∈ I] ∈ D and � = ∩{Vi : i ∈ I}.
And vica versa: if I ⊆ {1, . . . , n} with dim{ci : i ∈ I} = 2 is such that
[ci : i ∈ I] ∈ D then ∩{Vi : i ∈ I} is an edge of V.

7
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(F) For any face f of V, there is an index set I ⊆ {1, . . . , n} with |I| = 2

such that [ci : i ∈ I] ∈ D and f = ∩{Vi : i ∈ I}.
And vica versa: if I ⊆ {1, . . . , n} with |I| = 2 is such that [ci : i ∈ I] ∈
D then ∩{Vi : i ∈ I} is a face of V.

We define the truncated Delaunay complex Dt
corresponding to C simi-

larly to D: For an index set I ⊆ {1, . . . , n}, the convex polyhedron [ci : i ∈ I]
is a member of Dt

if, and only if, there is a point p in ∩{Vi ∩ B(ci) : i ∈ I}
which is not contained in any other truncated Voronoi cell. Note that the

truncated Voronoi cells are contained in the ball-polyhedron B(C). Thus,

[ci : i ∈ I] ∈ Dt
if, and only if, there is a point p ∈ B(C) and a radius ρ ≥ 0

such that {ci : i ∈ I} ⊂ bdB(p, ρ) and {ci : i /∈ I} ⊂ intB(p, ρ).

4 Proof of Theorem 2.1

Lemma 4.1 Let P = B(C) be a simple ball-polyhedron in E3. Then no
vertex of the Voronoi tiling V corresponding to C is on bdP , and no edge of
V is tangent to P .

Proof: At least four Voronoi cells meet in any vertex of V . Moreover,

the intersection of each Voronoi cell with bdP is a face of P . Hence, if a

vertex of V were on bdP then at least four faces of P would meet at a point,

contradicting the assumption that P is simple.

Let � be en edge of V , and assume that it contains a point p ∈ bdP . By

the previous paragraph, p ∈ relint �. From Lemma 3.3 (E) it follows that p is

in the intersection of some Voronoi cells {Vi : i ∈ I} with dim{ci : i ∈ I} = 2.

Clearly, � is orthogonal to the plane aff{ci : i ∈ I}. Finally, in a neighborhood

of p, P is the same as B({ci : i ∈ I}) and hence, � must intersect intP . ✷

Lemma 4.2 Let P = B(C) be a simple ball-polyhedron in E3. Then Dt is a
sub-polyhedral complex of D, that is Dt ⊆ D, and faces, edges, and vertices
of members of Dt are again members of Dt.

Proof: Clearly, Dt ⊆ D, and their vertex sets are identical (both are C). Let

[ci : i ∈ I] ∈ Dt
be a 3-dimensional member of Dt

. Then, the corresponding

vertex (Lemma 3.3 (V)) v of V is in intP by Lemma 4.1. For a given face of

[ci : i ∈ I], there is a corresponding edge (Lemma 3.3 (E)) � of V . Clearly, v

8
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is an endpoint of �. Now, relint � ∩ P �= ∅, and thus the face [ci : i ∈ I] of V
corresponding to � is in Dt.

Next, let [ci : i ∈ I] ∈ Dt be a 2-dimensional member of Dt. Then, for
the corresponding edge � of V we have relint � ∩ P �= ∅. By Lemma 4.1, �
is not tangent to P , thus relint � ∩ intP �= ∅. An edge [ci, cj] of [ci : i ∈ I]
corresponds to a face (Lemma 3.3 (F)) f of V . Clearly, � is an edge of f .
Now, relint f ∩ P �= ∅, and thus [ci, cj] is in Dt. ✷

The following lemma helps to understand the 2-dimensional members of
Dt.

Lemma 4.3 Let P = B(C) be a simple and standard ball-polyhedron in E3.
Moreover, let Q be the union of the 3-dimensional polyhedra in Dt. Then the
2-dimensional members of bdQ are triangles, and a triangle [c1, c2, c3] is in
bdQ if, and only if, the corresponding faces F1, F2, F3 of P meet (at a vertex
of P ).

Proof: By Lemma 4.2, the 2-dimensional members of bdQ are 2-dimensional
members of Dt. Let [ci : i ∈ I] ∈ Dt with dim{ci : i ∈ I} = 2. Then, clearly,
[ci : i ∈ I] ∈ D and, by Lemma 3.3 (E), it corresponds to an edge � of V
which intersects P . Now, � is a closed line segment, or a closed ray, or a
line. By Lemma 4.1, � is not tangent to P , and (by Lemma 4.1) � has no
endpoint on bdP . Thus, � intersects the interior of P . We claim that � has
at least one endpoint in intP . Suppose, it does not. Then � ∩ bdP is a pair
of points and so, the faces of P corresponding to indices in I meet at more
than one point. Since |I| ≥ 3, it contradicts the assumption that P is simple
and standard. So, � has either one or two endpoints in intP . If it has two,
then the two distinct 3-dimensional Delaunay cells corresponding to those
endpoints (as in Lemma 3.3 (V)) are both members of Dt and contain the
planar convex polygon [cI : i ∈ I]. If � has one endpoint in intP , then there
is a unique 3-dimensional polyhedron in Dt (the one corresponding to that
endpoint of �) that contains the planar convex polygon [ci : i ∈ I]. Moreover,
in this case � intersects bdP at a vertex of P . Since P is simple, that vertex
is contained in exactly three faces of P , and hence, [ci : i ∈ I] is a triangle.

Next, working in the reverse direction, assume that F1, F2, F3 ∈ F are
faces of P that meet at a vertex v of P . Then v is in exactly three Voronoi
cells, V1, V2 and V3. Thus, [c1, c2, c3] ∈ D, and � := V1 ∩ V2 ∩ V3 is an edge of
V . By the above argument, � has one endpoint in P and so, [c1, c2, c3] is a
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member of Dt, and has the property that exactly one 3-dimensional member

of Dt contains it.

Clearly, P has at least one vertex and so, (by the previous paragraph) Dt

contains at least one 3-dimensional polyhedron. ✷

We recall that the nerve of a set family G is the abstract simplicial com-

plex

N (G) := {{Gi : i ∈ I} : Gi ∈ G for all i ∈ I and ∩
i∈I

Gi �= ∅}.

Now, let P = B(C) be a simple and standard ball-polyhedron in E3

and let F denote the set of its faces. We define the following abstract 2-

dimensional simplicial complex S on the vertex set C: Let S be the abstract

simplicial complex generated by those triples of C which are vertices of a

triangle on bdQ. Both S and the nerveN (F) of F are 2-dimensional abstract

simplicial complexes with the property that any edge is contained in a 2-

dimensional simplex. Indeed, S has this property by definition, while N (F)

has it because P is simple and standard. It follows by Lemma 4.3 that S is

isomorphic to N (F). By Theorem 3.2, N (F) is isomorphic to the face-lattice

of another standard ball-polyhedron: P ∗. Since P ∗ is a convex body in E3

(i.e., a compact convex set with non-empty interior in E3), the union of its

faces is homeomorphic to the 2-sphere. Thus, S as an abstract simplicial

complex is homeomorphic to the 2-sphere. On the other hand, bdQ is a

geometric realization of S. Thus, we have obtained that bdQ is a geometric

simplicial complex which is homeomorphic to the 2-sphere. It follows that Q
is homeomorphic to the 3-ball.

Clearly, Q is a weakly convex polyhedron as C is in convex position. Also,

Q is the union of convex polyhedra and so, it is decomposable. On the other

hand, Q is also co-decomposable, as Dt is a sub-polyhedral complex of D
(by Lemma 4.2), which is a family of convex polyhedra the union of which is

[Q] = [C].

So far, we proved that Q is a weakly convex, decomposable, and co-

decomposable polyhedron with triangular faces in E3. By Theorem 3.1, Q
is infinitesimally rigid. Since bdQ itself is a geometric simplicial complex

therefore its edge graph is rigid (since infinitesimal rigidity implies rigidity

(for more details on that see [5]). Finally, we recall that the edges of the poly-

hedron Q correspond to the edges of the ball-polyhedron P , and the lengths

of the edges of Q determine (via a one-to-one mapping) the corresponding
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inner dihedral angles of P . It follows that P is rigid with respect to its inner

dihedral angles.
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