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Definition 1.1 The intersection of finitely many (closed) circular disks of
unit radii with non-empty interior in E* is called a disk-polygon. We will
assume that whenever we take a disk-polygon, then the disks generating it,
simply called generating disks, are all needed; that is, each of them con-
tributes to the boundary of the disk-polygon through a circular arc called a
side, with the consecutive pairs of sides meeting in the vertices of the given
disk-polygon, where a verter of a disk-polygon is a point that lies on the
boundaries of at least two generating disks of it.
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® Definition: A Reuleaux polygon of width w is a convex domain
of constant width w, whose boundary is a union of finitely
many circular arcs of radii w. The best known version of
Reuleaux polygons is the Reuleaux triangle. To construct a

Reuleaux triangle of width w, start with an equilateral triangle i 1%,
of side length w; then take the intersection of the three |
circular disks of radii w, centered at the vertices of the
equilateral triangle.

Reuleaux Pentagon
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® Definition: The intersection of finitely many (closed)
spherical balls of unit radii with non-empty interior in
the Euclidean 3-space is called a ball-polyhedron. We
will assume that whenever we take a ball-polyhedron,
then the balls generating it (simply called generating
balls) are all needed; that is, each of them contributes to
the boundary of the ball-polyhedron through a spherical
region bounded by finitely many circular arcs.
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[3] and [4] a ball-polyhedron is the intersection with non-empty interior of
finitely many closed congruent balls in E3. In fact, one may assume that the
closed congruent 3-dimensional balls in question are of unit radius; that is,
they are unit balls of E3. Also, it is natural to assume that removing any
of the unit balls defining the intersection in question yields the intersection
of the remaining unit balls becoming a larger set. (Equivalently, using the
terminology introduced in [4], whenever we take a ball-polyhedron we always
assume that it is generated by a reduced family of unit balls.) Furthermore,
following [3] and [4] one can represent the boundary of a ball-polyhedron
in E3 as the union of vertices, edges, and faces defined in a rather natural
way as follows. A boundary point is called a wvertezx if it belongs to at least
three of the closed unit balls defining the ball-polyhedron. A face of the
ball-polyhedron is the intersection of one of the generating closed unit balls
with the boundary of the ball-polyhedron. Finally, if the intersection of two
faces is non-empty, then it is the union of (possibly degenerate) circular arcs.
The non-degenerate arcs are called edges of the ball-polyhedron. Obviously,
if a ball-polyhedron in E? is generated by at least three unit balls, then it
possesses vertices, edges, and faces. Clearly, the vertices, edges and faces of a
ball-polyhedron (including the empty set and the ball-polyhedron itself) are
partially ordered by inclusion forming the wertex-edge-face structure of the
given ball-polyhedron. It was an important observation of [3] as well as of
[4] that the vertex-edge-face structure of a ball-polyhedron is not necessarily
a lattice (i.e., a partially ordered set (also called a poset) in which any two
elements have a unique supremum (the elements’ least upper bound; called
their join) and an infimum (greatest lower bound; called their meet)). Thus,
it is natural to define the following fundamental family of ball-polyhedra,
introduced in [4] under the name standard ball-polyhedra and investigated in
[3] as well without having a particular name for it. Here a ball-polyhedron
in E? is called a standard ball-polyhedron if its vertex-edge-face structure is
a lattice (with respect to containment). In this case, we simply call the
vertex-edge-face structure in question the face lattice of the standard ball-
polyhedron. This definition implies among others that any standard ball-
polyhedron of E? is generated by at least four unit balls.

4] K. Bezdek, Zs. Langi, M. Naszddi and P. Papez, Ball-polyhedra, Dis-
crete Comput. Geom. 38/2 (2007), 201-230.



Theorem 26.6 (Cauchy, restated). Let P and Q C R® be two combinatorially equiv-
alent convex polytopes whose corresponding faces are isometric. Then P and () are
1sometric.

Theorem 26.8 (Alexandrov). Let P,Q C R3 be two combinatorially equivalent con-
vex polytopes with equal corresponding face angles. Then they have equal corresponding
dihedral angles.

Theorem 26.9 (Stoker). Let P,Q C R?® be two combinatorially equivalent convex
polytopes with equal corresponding edge lengths and dihedral angles. Then P and Q)
are 1sometric.

the (still unresolved) conjecture of Stoker [233] ac—cording to which for convex
polyhedra the face lattice and the inner dihedral angles determine the face
angles.

oker, Geometric problems concerning polyhedra in the large, Com. Pure
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to recall the following terminology. To each edge of a ball-polyhedron in
E3 we can assign an inner dihedral angle. Namely, take any point p in the
relative interior of the edge and take the two unit balls that contain the
two faces of the ball-polyhedron meeting along that edge. Now, the inner
dihedral angle along this edge is the angular measure of the intersection of
the two half-spaces supporting the two unit balls at p. The angle in question
is obviously independent of the choice of p. Moreover, at each vertex of
a face of a ball-polyhedron there is a face angle formed by the two edges
meeting at the given vertex (which is, in fact, the angle between the two
tangent halflines of the two edges meeting at the given vertex). Finally, we
say that the standard ball-polyhedron P in E? is globally rigid with respect
to its face angles (resp., its inner dihedral angles) if the following holds. If
@ is another standard ball-polyhedron in E? whose face lattice is isomorphic
to that of P and whose face angles (resp., inner dihedral angles) are equal to
the corresponding face angles (resp. inner dihedral angles) of P, then @ is
congruent to P. Furthermore, a ball-polyhedron of E? is called triangulated
if all its faces are bounded by three edges. It is not hard to see that any
triangulated ball-polyhedron is, in fact, a standard one. Now, we are ready

[3] K. Bezdek and M. Naszddi, Rigidity of ball-polyhedra in FEuclidean
3-space, European J. Combin. 27/2 (2005), 255-268.

Theorem 6.5.1

(i) The face lattice and the face angles determine the inner dihedral angles of
any standard ball-polyhedron in E3.

(ii) Let P be a triangulated ball-polyhedron in E3. Then P is globally rigid
with respect to its face angles.



Problem 1.1 Prove or disprove that the face lattice and the inner dihedral
angles determine the face angles of any standard ball-polyhedron in E3.

One can regard this problem as an extension of the (still unresolved)
conjecture of Stoker [8] according to which for convex polyhedra the face
lattice and the inner dihedral angles determine the face angles. The following
special case of Problem 1.1 has already been put forward as a conjecture in
[3]. For this we need to recall that a ball-polyhedron is called a simple ball-
polyhedron, if at every vertex exactly three edges meet. Now, based on our
terminology introduced above the conjecture in question ([3], p. 257) can be
phrased as follows.

Conjecture 1.2 Let P be a simple and standard ball-polyhedron of E3. Then
P is globally rigid with respect to its inner dihedral angles.

For the sake of completeness we note the following. Suppose that () is a
simple ball-polyhedron generated by at least four unit balls of E? and assume
that () is globally rigid with respect to its inner dihedral angles. Then we
claim that ¢) must be a standard ball-polyhedron. Indeed, if () were a non-
standard one, then one can actually prove that () must have a pair of faces
whose intersection consists of at least two connected components. However,
such a simple ball-polyhedron is always flexible (i.e., not globally rigid) as
shown in Section 4 of [3], a contradiction.

In this paper we give a proof of the local version of Conjecture 1.2.
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2 Main Result

We say that the standard ball-polyhedron P of E? is rigid with respect to its
inner dihedral angles, if there is an € > 0 with the following property. If @)
is another standard ball-polyhedron of E? whose face lattice is isomorphic
to that of P and whose inner dihedral angles are equal to the corresponding
inner dihedral angles of P such that the corresponding faces of P and @) lie
at distance at most € from each other, then P and () are congruent.

Now, we are ready to state the main result of this paper.

Theorem 2.1 Let P be a simple and standard ball-polyhedron of E3. Then
P is rigid with respect to its inner dihedral angles.

Also, it is natural to say that the standard ball-polyhedron P of E? is
rigid with respect to its face angles, if there is an € > 0 with the following
property. If Q is another standard ball-polyhedron of E? whose face lattice is
isomorphic to that of P and whose face angles are equal to the corresponding
face angles of P such that the corresponding faces of P and () lie at distance
at most ¢ from each other, then P and @ are congruent. As according to [3]
the face lattice and the face angles determine the inner dihedral angles of any
standard ball-polyhedron in E? therefore Theorem 2.1 implies the following
claim in a straightforward way.

Corollary 2.2 Let P be a simple and standard ball-polyhedron of E3. Then
P is rigid with respect to its face angles.



3 Infinitesimally Rigid Polyhedra, Dual Ball-
Polyhedron, Truncated Delaunay Complex

In this section we introduce the notations and the main tools that are needed
for our proof of Theorem 2.1.

Recall that a convex polyhedron of E3 is a bounded intersection of finitely
many closed halfspaces in E3. A polyhedral complez in E3 is a finite family
of convex polyhedra such that any vertex, edge, and face of a member of
the family is again a member of the family, and the intersection of any two
members is empty or a vertex or an edge or a face of both members. In this
paper a polyhedron of E? means simply the union of all members of a poly-
hedral complex in E? possessing the additional property that its boundary is
a surface in E? (i.e., a 2-dimensional topological manifold embedded in E?).

We denote the convex hull of a set C' by [C]. A polyhedron Q of E? is

e weakly convex if its vertices are in convex position (i.e., if its vertices
are the vertices of a convex polyhedron);

e decomposable if it can be triangulated without adding new vertices;

e co-decomposable if its complement in [Q)] can be triangulated without
adding new vertices;

® weakly co-decomposable if it is contained in a convex polyhedron Q,
such that all vertices of @) are vertices of (), and the complement of Q)
in () can be triangulated without adding new vertices.



Clearly, the boundary of every polyhedron in E3 can be triangulated
without adding new vertices. Now, let P be a polyhedron in E? and let T
be a triangulation of its boundary without adding new vertices. We call the
1-skeloton G(T') of T the edge graph of T. By an infinitesimal flex of the
edge graph G(T') in E3 we mean an assignment of vectors to the vertices of
G(T) (i.e., to the vertices of P) such that the displacements of the vertices in

the assigned directions induce a zero first-order change of the edge lengths:
(pi —pj) - (¢ — qj) = 0 for every edge p;p; of G(T'), where ¢; is the vector
assigned to the vertex p;. An infinitesimal flex is called trivial if it is the
restriction of an infinitesimal rigid motion of E?. Finally, we say that the
polyhedron P is infinitesimally rigid if every infinitesimal flex of the edge
graph G(T') of T is trivial. (It is not hard to see that the infinitesimal rigidity
of a polyhedron is a well-defined notion i.e., independent of the triangulation
T'. For more details on this as well as for an overview on the theory of rigidity
we refer the interested reader to [5].) We need the following remarkable
rigidity theorem of Izmestiev and Schlenker [6] for the proof of Theorem 2.1.

Theorem 3.1 FEvery weakly convex, decomposable and weakly co-decompos-
able polyhedron of E? is infinitesimally rigid.

J! 6] I. Izmestiev and J.-M. Schlenker, Infinitesimal rigidity of polyhedra
with vertices in convex position, Pacific J. Math. 248/1 (2010), 171-
190.




The closed ball of radius p centered at p in E® is denoted by B(p, p).
Also, it is convenient to use the notation B(p) := B(p,1). For a set C' C E?
we denote the intersection of closed unit balls with centers in C' by B(C) :=
N{B(c): c € C}. Recall that every ball-polyhedron P = B(C) can be gener-
ated such that B(C'\ {c}) # B(C) holds for any ¢ € C'. Therefore whenever
we take a ball-polyhedron P = B(C') we always assume the above mentioned
reduced property of C. The following duality theorem has been proved in [3]
and it is also needed for our proof of Theorem 2.1.

Theorem 3.2 Let P be a standard ball-polyhedron of E3. Then the inter-
section P* of the closed unit balls centered at the vertices of P is another
standard ball-polyhedron whose face lattice is dual to that of P (i.e., there
exists an order reversing bijection between the face lattices of P and P*).

In fact, the proof presented in [3] leads to the following quite general
duality theorem (which in this general form however, is not needed for our
proof of Theorem 2.1): Let V' denote the set of vertices of a ball-polyhedron
P in E? which has no face bounded by two edges. Then there is a duality (a
containment-reversing bijection) between the vertex-edge-face structures of
P and the “dual” ball-polyhedron P* = B(V) of P.

Maéarton Naszddi
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[3] K. Bezdek and M. Naszédi, Rigidity of ball-polyhedra in FEuclidean
3-space, European J. Combin. 27/2 (2005), 255—268.



The farthest-point Voronoi tiling corresponding to a finite set C':= {cy,
..., b in B3 is the family V := {V4,..., V,,} of closed conver polyhedral sets
Vi={z el |z —q|>|z—¢l forall j£i,1<j<n}, 1<i<n. (Here
a closed convex polyhedral set means a not necessarily bounded intersection
of finitely many closed halfspaces in E°.) We call the elements of V' farthest-
point Voronoi cells. In the sequel we omit the words “farthest-point” as we
do not use the other (more popular) Voronoi tiling: the one capturing closest
points.

It is known that V is a tiling of E*. We call the vertices, (possibly un-
bounded) edges and (possibly unbounded) faces of the Voronoi cells of V
simply the vertices, edges and faces of V.

The truncated Voronoi tiling corresponding to C'is the family V' of closed
convex sets {V1NB(cy), ..., V,NB(c,)}. Clearly, from the definition it follows
that V' = {Vin P,...,V, N P} where P = B(C). We call elements of V"

truncated Voronoi cells.



Next, we define the (farthest-point) Delaunay complex D assigned to the
finite set C' = {ci,...,c,} C E?. It is a polyhedral complex on the vertex
set C. For an index set I C {1,...,n}, the convex polyhedron |[¢;: i € ] is
a member of D if, and only if, there is a point p in N{V;: i € I} which is not
contained in any other Voronoi cell. In other words, [¢;: i € I] € D if, and
only if, there is a point p € E* and a radius p > 0 such that {c;: 1 € I} C
bdB(p, p) and {c;: i ¢ I} C int B(p, p). It is known that D is a polyhedral
complez, in fact, it is a tiling of [C] by convex polyhedra.

We define the truncated Delaunay complex Dt corresponding to C' simi-
larly to D: For an index set I C {1,...,n}, the convex polyhedron [¢;: i € []
is a member of D if, and only if, there is a point p in N{V; N B(¢;): 1 € I}
which is not contained in any other truncated Voronoi cell. Note that the
truncated Voronoi cells are contained in the ball-polyhedron B(C'). Thus,
[c;: i € I] € D if, and only if, there is a point p € B(C') and a radius p > 0
such that {¢;: i € I} C bdB(p,p) and {¢;: i ¢ I} C int B(p, p).



4 Proof of Theorem 2.1

Lemma 4.2 Let P = B(C) be a simple ball-polyhedron in E>. Then D! is a
sub-polyhedral complex of D, that is D' C D, and faces, edges, and vertices
of members of Dt are again members of D¢,

Lemma 4.3 Let P = B(C) be a simple and standard ball-polyhedron in E?.
Moreover, let QQ be the union of the 3-dimensional polyhedra in Dt. Then the
2-dimensional members of bd Q) are triangles, and a triangle |c1, co,c3] is in

bd Q if, and only if, the corresponding faces Fy, Fs, F5 of P meet (at a vertex
of P).

We recall that the nerve of a set family G is the abstract simplicial com-
plex

N@G)={{G;:iel}: GieGforallie I and N G; # 0}.
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Now, let P = B(C) be a simple and standard ball-polyhedron in E?
and let F denote the set of its faces. We define the following abstract 2-
dimensional simplicial complex & on the vertex set C': Let S be the abstract
simplicial complex generated by those triples of C' which are vertices of a
triangle on bd (). Both § and the nerve N (F) of F are 2-dimensional abstract
simplicial complexes with the property that any edge is contained in a 2-
dimensional simplex. Indeed, S has this property by definition, while N/ (F)
has it because P is simple and standard. It follows by Lemma 4.3 that S is
isomorphic to N (F). By Theorem 3.2, NV/(F) is isomorphic to the face-lattice
of another standard ball-polyhedron: P*. Since P* is a convex body in E?
(i.e., a compact convex set with non-empty interior in E?), the union of its
faces is homeomorphic to the 2-sphere. Thus, S as an abstract simplicial
complex is homeomorphic to the 2-sphere. On the other hand, bd Q) is a
geometric realization of S. Thus, we have obtained that bd () is a geometric
simplicial complex which is homeomorphic to the 2-sphere. It follows that ()
is homeomorphic to the 3-ball.



Clearly, () is a weakly convex polyhedron as C'is in convex position. Also,
() is the union of convex polyhedra and so, it is decomposable. On the other
hand, @ is also co-decomposable, as D' is a sub-polyhedral complex of D
(by Lemma 4.2), which is a family of convex polyhedra the union of which is
Q] = [C].

So far, we proved that () is a weakly convex, decomposable, and co-
decomposable polyhedron with triangular faces in E?. By Theorem 3.1, Q
is infinitesimally rigid. Since bd () itself is a geometric simplicial complex
therefore its edge graph is rigid (since infinitesimal rigidity implies rigidity
(for more details on that see [5]). Finally, we recall that the edges of the poly-
hedron () correspond to the edges of the ball-polyhedron P, and the lengths
of the edges of ) determine (via a one-to-one mapping) the corresponding

inner dihedral angles of P. It follows that P is rigid with respect to its inner
dihedral angles.



