Rigidity Workshop, Toronto 2011

Pin Merging in Planar Body Frameworks

Rudi Penne

rudi.penne@kdg.be

Karel de Grote-Hogeschool
University of Antwerp

Definition:

G = (V, E) is a $\frac{3}{2}T$ -graph if

$$E = F_R \cup F_Y \cup F_G$$

Definition:

G = (V, E) is a $\frac{3}{2}T$ -graph if

$$E = F_R \cup F_Y \cup F_G$$

Definition:

G = (V, E) is a $\frac{3}{2}T$ -graph if

$$E = F_R \cup F_Y \cup F_G$$

Definition:

G = (V, E) is a $\frac{3}{2}T$ -graph if

$$E = F_R \cup F_Y \cup F_G$$

Definition: 2G: the *double* of a graph:

Definition: 2G: the *double* of a graph: = multigraph obtained from G=(V,E) by doubling each edge in E

Definition: 2G: the *double* of a graph:

= multigraph obtained from $G=(V\!,E)$ by doubling each edge in E

Property: G is a $\frac{3}{2}T$ -graph

 \iff 2G is the union of 3 spanning trees

Definition: 2G: the *double* of a graph:

= multigraph obtained from G=(V,E) by doubling each edge in E

Property: G is a $\frac{3}{2}T$ -graph

 \iff 2G is the union of 3 spanning trees

(Indeed: $2G = T_{RY} \cup T_{RG} \cup T_{YG}$

with $T_{RY} = F_R \cup F_Y$, $T_{RG} = F_R \cup F_G$ and $T_{YG} = F_Y \cup F_G$.)

Definition: 2G: the *double* of a graph:

= multigraph obtained from G=(V,E) by doubling each edge in E

Property: G is a $\frac{3}{2}T$ -graph

 \iff 2G is the union of 3 spanning trees

(Indeed: $2G = T_{RY} \cup T_{RG} \cup T_{YG}$

with $T_{RY} = F_R \cup F_Y$, $T_{RG} = F_R \cup F_G$ and $T_{YG} = F_Y \cup F_G$.)

Conclusion: (Nash-Williams, Tutte)

$$G = (V, E)$$
 is a $\frac{3}{2}T$ -graph \iff

1.
$$2|E| = 3|V| - 3$$

2.
$$\forall \emptyset \neq E' \subset E : 2|E'| \leq 3|V'| - 3$$

G=(V,E): given graph (e.g. $\frac{3}{2}T$ -graph)

G=(V,E): given graph (e.g. $\frac{3}{2}T$ -graph)

 $V \leftrightarrow \text{rigid bodies in the plane}$

 $E \leftrightarrow \text{revolute pins connecting body pairs}$

G=(V,E): given graph (e.g. $\frac{3}{2}T$ -graph)

 $V \leftrightarrow \text{rigid bodies in the plane}$

 $E \leftrightarrow \text{revolute pins connecting body pairs}$

G=(V,E): given graph (e.g. $\frac{3}{2}T$ -graph)

 $V \leftrightarrow \text{rigid bodies in the plane}$

 $E \leftrightarrow \text{revolute pins connecting body pairs}$

Remark: pins have degree 2 in generic realizations

d: dimension workspace

d: dimension workspace

G = (V, E): design for body-and-hinge framework

 $V \leftrightarrow \text{rigid bodies in } d\text{-space}$

 $E \leftrightarrow \text{hinges attaching body pairs}$

d: dimension workspace

G = (V, E): design for body-and-hinge framework

 $V \leftrightarrow \text{rigid bodies in } d\text{-space}$

 $E \leftrightarrow \text{hinges attaching body pairs}$

 $D = \binom{d+1}{d-1}$: dimension space of hinges

Theorem: G can be realized as inf. rigid body-and-hinge framework in $I\!\!R^d$ iff. (D-1)G contains D edge-disjoint spanning trees. (Tay-Whiteley)

d: dimension workspace

G = (V, E): design for body-and-hinge framework

 $V \leftrightarrow \text{rigid bodies in } d\text{-space}$

 $E \leftrightarrow \text{hinges attaching body pairs}$

 $D = \binom{d+1}{d-1}$: dimension space of hinges

Theorem: G can be realized as inf. rigid body-and-hinge framework in $I\!\!R^d$ iff. (D-1)G contains D edge-disjoint spanning trees. (Tay-Whiteley)

Special case (d=2): $\frac{3}{2}T$ -graph is a minimal design for inf. rigid body-and-pin framework in the plane.

G = (V, E): design for body-and-hinge framework in \mathbb{R}^d

G=(V,E): design for body-and-hinge framework in $I\!\!R^d$ Assume: (D-1)G contains D edge-disjoint spanning trees

G = (V, E): design for body-and-hinge framework in $I\!\!R^d$ Assume: (D-1)G contains D edge-disjoint spanning trees

Katoh-Tanigawa: ∃ rigid realizations with plates

G = (V, E): design for body-and-hinge framework in $I\!\!R^d$ Assume: (D-1)G contains D edge-disjoint spanning trees

Katoh-Tanigawa: ∃ rigid realizations with plates

Special case: $\frac{3}{2}T$ -graph can be realized as inf. rigid frameworks in the plane with collinear pins for each body. (Jackson-Jordán)

G = (V, E): design for body-and-hinge framework in $I\!\!R^d$ Assume: (D-1)G contains D edge-disjoint spanning trees

Katoh-Tanigawa: ∃ rigid realizations with plates

General incidences: (allowing coinciding hinges = "multi-hinges") count criterium on incidence graph $K_{b,h}$ but no tree decomposition (Tay(?), 1987) (Tanigawa, 2011):

G = (V, E): design for body-and-hinge framework in $I\!\!R^d$ Assume: (D-1)G contains D edge-disjoint spanning trees

Katoh-Tanigawa: ∃ rigid realizations with plates

General incidences: (allowing coinciding hinges = "multi-hinges") count criterium on incidence graph $K_{b,h}$ but no tree decomposition (Tay(?), 1987) (Tanigawa, 2011):

 \exists rigid realization $\iff \exists I \subset (D-1)E(K_{b,h})$ s.t.

1)
$$|I| = D \cdot b + (D-1) \cdot h - D$$

2)
$$\forall F \subset I$$
: $F \leq D \cdot B(F) + (D-1) \cdot H(F) - D$

= non-generic planar realization of G = (V, E) as body framework such that certain attachments (in E) are realized as coinciding pins:

= non-generic planar realization of G = (V, E) as body framework such that certain attachments (in E) are realized as coinciding pins:

= non-generic planar realization of G = (V, E) as body framework such that certain attachments (in E) are realized as coinciding pins:

Question:

What pin mergings in $\frac{3}{2}T$ -graphs preserve inf. rigidity?

Example:

constraint: bodies 1,2,4,7 attached by one pin

constraint: bodies 1,2,4,7 attached by one pin

⇒ edges 12, 42, 72 clustered as hyperedge

constraint: bodies 1,2,4,7 attached by one pin

- ⇒ edges 12, 42, 72 clustered as hyperedge
- ⇒ framework design = hypergraph

constraint: bodies 1,2,4,7 attached by one pin

- ⇒ edges 12, 42, 72 clustered as hyperedge
- ⇒ framework design = hypergraph

constraint: bodies 1,2,4,7 attached by one pin

- ⇒ edges 12, 42, 72 clustered as hyperedge
- ⇒ framework design = hypergraph

Notice: this pin merge causes non-trivial motions.

$$G = (\{1, 2, 3, 4, 5, 6, 7\}, \{e_1, e_2, e_3, e_4\})$$

$$G = (\{1, 2, 3, 4, 5, 6, 7\}, \{e_1, e_2, e_3, e_4\})$$

hyperedges:

$$e_1 = \{2,7\}$$
 $e_2 = \{2,4\}$
 $e_3 = \{3,4,5\}$
 $e_4 = \{1,3,6\}$

$$G = (\{1, 2, 3, 4, 5, 6, 7\}, \{e_1, e_2, e_3, e_4\})$$

hyperedges:

$$e_1 = \{2,7\}$$
 $e_2 = \{2,4\}$
 $e_3 = \{3,4,5\}$
 $e_4 = \{1,3,6\}$

Definition: weight hyperedge: w(e) = |e| - 1

 $G = (\{1, 2, 3, 4, 5, 6, 7\}, \{e_1, e_2, e_3, e_4\})$

Definition: weight hyperedge: w(e) = |e| - 1

$$w(e_1) = w(e_2) = 1, w(e_3) = w(e_4) = 2$$

$$G = (\{1, 2, 3, 4, 5, 6, 7\}, \{e_1, e_2, e_3, e_4\})$$

hyperedges:

$$e_1 = \{2,7\}$$
 $e_2 = \{2,4\}$
 $e_3 = \{3,4,5\}$
 $e_4 = \{1,3,6\}$

Definition: weight hyperedge: w(e) = |e| - 1

$$w(e_1) = w(e_2) = 1, w(e_3) = w(e_4) = 2$$

Application: Hypertree:

$$G = (\{1, 2, 3, 4, 5, 6, 7\}, \{e_1, e_2, e_3, e_4\})$$

hyperedges:

$$e_1 = \{2,7\}$$
 $e_2 = \{2,4\}$
 $e_3 = \{3,4,5\}$
 $e_4 = \{1,3,6\}$

Definition: weight hyperedge: w(e) = |e| - 1

$$w(e_1) = w(e_2) = 1, w(e_3) = w(e_4) = 2$$

Application: Hypertree:

G connected and no hypercycles

$$\iff G \text{ connected and } w(E) = |V| - 1$$

$$\iff w(E) = |V| - 1 \text{ and for each } \emptyset \neq E' \subset E : w(E') \leq |\cup E'| - 1$$

 $\frac{3}{2}HT$ -decomposition:

3 colours for hyperedges

$\frac{3}{2}HT$ -decomposition:

3 colours for hyperedges

union 2 colours → spanning hypertree

spanning hypertree:

$\frac{3}{2}HT$ -decomposition:

3 colours for hyperedges

union 2 colours \rightarrow spanning hypertree

spanning hypertree:

$\frac{3}{2}HT$ -decomposition:

3 colours for hyperedges union 2 colours → spanning hypertree

spanning hypertree:

$\frac{3}{2}HT$ -decomposition:

3 colours for hyperedges

union 2 colours → spanning hypertree

Consequence: $\frac{3}{2}HT$ -hypergraph $G = (V, E) \Rightarrow$

$$2 \cdot w(E) = 3|V| - 3$$

• for each
$$\emptyset \neq E' \subset E : 2 \cdot w(E') \leq 3|\cup E'| - 3$$

spanning hypertree:

$\frac{3}{2}HT$ -decomposition:

3 colours for hyperedges

union 2 colours → spanning hypertree

Consequence: $\frac{3}{2}HT$ -hypergraph $G = (V, E) \Rightarrow$

$$2 \cdot w(E) = 3|V| - 3$$

• for each
$$\emptyset \neq E' \subset E : 2 \cdot w(E') \leq 3|\cup E'| - 3$$

$\frac{3}{2}HT$ versus $\frac{3}{2}T$

hypergraph
$$G = (V, E)$$

graph
$$G_2 = (V, E_2)$$

$\frac{3}{2}HT$ versus $\frac{3}{2}T$

hypergraph G = (V, E)

graph $G_2 = (V, E_2)$

total weight w(E)

number of edges $|E_2|$

$\frac{3}{9}HT$ versus $\frac{3}{9}T$

hypergraph G = (V, E)

graph $G_2 = (V, E_2)$

coloured

hosting

monochromatic

clustering

total weight w(E)

number of edges $|E_2|$

 $\frac{3}{2}HT$ -decomposition

always

sometimes

 $\frac{3}{2}T$ -decomposition

(3/2, 3/2)-hypertight

(3/2, 3/2)-hypertight yet not $\frac{3}{2}HT$ -decomposable

(3/2, 3/2)-hypertight yet not $\frac{3}{2}HT$ -decomposable

Property: $\frac{3}{2}HT \Rightarrow \text{no (hyper)leaves}$

(3/2, 3/2)-hypertight yet not $\frac{3}{2}HT$ -decomposable

Property: $\frac{3}{2}HT \Rightarrow$ no (hyper)leaves

Conjecture: leaf-free + (3/2,3/2)-hypertight $\iff \frac{3}{2}HT$

(3/2, 3/2)-hypertight yet not $\frac{3}{2}HT$ -decomposable

Property: $\frac{3}{2}HT \Rightarrow$ no (hyper)leaves

Conjecture: leaf-free + (3/2,3/2)-hypertight $\iff \frac{3}{2}HT$

Lucky guess: leaf-free + (D/(D-1),D/(D-1))-hypertight $\iff \frac{D}{D-1}HT$

Definition. Planar framework realization of hypergraph G = body-and-pin realization where hyperedges represent merged pins.

Definition. Planar framework realization of hypergraph G = body-and-pin realization where hyperedges represent merged pins.

Theorem:

Definition. Planar framework realization of hypergraph G = body-and-pin realization where hyperedges represent merged pins.

Theorem:

G contains $\frac{3}{2}HT \Rightarrow$ realizable as inf. rigid planar body-and-pin framework.

Definition. Planar framework realization of hypergraph G = body-and-pin realization where hyperedges represent merged pins.

Theorem:

G contains $\frac{3}{2}HT \Rightarrow$ realizable as inf. rigid planar body-and-pin framework.

Proof. Specialisation of rigidity matrix. Valid for general dimensions.

Definition. Planar framework realization of hypergraph G = body-and-pin realization where hyperedges represent merged pins.

Theorem:

G contains $\frac{3}{2}HT \Rightarrow$ realizable as inf. rigid planar body-and-pin framework.

Proof. Specialisation of rigidity matrix. Valid for general dimensions.

Conjecture: The converse holds.

Realization of hypergraph G=(V,E) as body and pin framework in the plane: F=(G,P)

$$P: E \to \mathbb{R}^2: e \mapsto P(e) = (x_e, y_e)$$

Realization of hypergraph G = (V, E) as body and pin framework in the plane: F = (G, P)

$$P: E \to \mathbb{R}^2: e \mapsto P(e) = (x_e, y_e)$$

Choose host graph $G_2 = (V, E_2)$.

Realization of hypergraph G=(V,E) as body and pin framework in the plane: F=(G,P)

$$P: E \to \mathbb{R}^2: e \mapsto P(e) = (x_e, y_e)$$

Choose host graph $G_2 = (V, E_2)$. For each edge $ij \in E_2$ with $\{i, j\} \subset e \in E$:

$$JX_{ij} = (0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots, 0 | 0, \dots, 0 | 0, \dots, 0, -x_e, 0, \dots, 0, x_e, 0, \dots, 0)$$

$$JY_{ij} = (0, \dots, 0 | 0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots, 0 | 0, \dots, 0, -y_e, 0, \dots, 0, y_e, 0, \dots, 0)$$

(non-zero entries in positions i and j in subsequences of length |V|)

Realization of hypergraph G=(V,E) as body and pin framework in the plane: F=(G,P)

$$P: E \to \mathbb{R}^2: e \mapsto P(e) = (x_e, y_e)$$

Choose host graph $G_2 = (V, E_2)$. For each edge $ij \in E_2$ with $\{i, j\} \subset e \in E$:

$$JX_{ij} = (0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots, 0 | 0, \dots, 0 | 0, \dots, 0, -x_e, 0, \dots, 0, x_e, 0, \dots, 0)$$

$$JX_{ij} = (0, \dots, 0, 1, 0, \dots, 0, 0, \dots, 0)$$

$$JY_{ij} = (0, \dots, 0 | 0, \dots, 0, 1, 0 \dots, 0, -1, 0, \dots, 0 | 0, \dots, 0, -y_e, 0, \dots, 0, y_e, 0, \dots, 0)$$

(non-zero entries in positions i and j in subsequences of length |V|)

$$\Rightarrow 2w(E) \times |V| \text{ matrix } M(G_2, P).$$

Given hypergraph G = (V, E) with realization F = (G, P)

Given hypergraph G = (V, E) with realization F = (G, P)

Let
$$C_i = (a_i, b_i, c_i)$$
 with $i = 1, ..., v = |V|$
and put $\gamma = (a_1, ..., a_v, b_1, ..., b_v, c_1, ..., c_v) \in \mathbb{R}^{3v}$

Given hypergraph G = (V, E) with realization F = (G, P)

Let
$$C_i = (a_i, b_i, c_i)$$
 with $i = 1, ..., v = |V|$
and put $\gamma = (a_1, ..., a_v, b_1, ..., b_v, c_1, ..., c_v) \in \mathbb{R}^{3v}$

Property: The C_i are centers of motion for bodies of $F \iff M(G_2, P) \cdot \gamma^T = \mathbf{0}$ for any host $G_2 \iff M(G_2, P) \cdot \gamma^T = \mathbf{0}$ for every host G_2

Given hypergraph G = (V, E) with realization F = (G, P)

Let
$$C_i = (a_i, b_i, c_i)$$
 with $i = 1, ..., v = |V|$
and put $\gamma = (a_1, ..., a_v, b_1, ..., b_v, c_1, ..., c_v) \in \mathbb{R}^{3v}$

Property: The C_i are centers of motion for bodies of $F \iff M(G_2, P) \cdot \gamma^T = \mathbf{0}$ for any host $G_2 \iff M(G_2, P) \cdot \gamma^T = \mathbf{0}$ for every host G_2

Remarks:

- ullet rank $M(G_2,P)$ independent from host
- F inf. rigid \iff rank $M(G_2, P) = 3|V| 3$
- F isostatic $\iff M(G_2,P)$ has independent rows and $2 \cdot w(E) = 3|V| 3$

Independent hypergraphs

Definition: Hypergraph G = (V, E) is **2-independent** iff. there is a realization P such that for some (hence for every) host G_2 the rows of $M(G_2, P)$ are linearly independent.

Definition: Hypergraph G = (V, E) is **2-independent** iff. there is a realization P such that for some (hence for every) host G_2 the rows of $M(G_2, P)$ are linearly independent.

Count criterion: Hypergraph G = (V, E) without leaves is 2-independent iff.

$$\forall \emptyset \neq E' \subset E: \ 2 \cdot w(E') \leq 3|\cup E'| - 3$$

Definition: Hypergraph G = (V, E) is **2-independent** iff. there is a realization P such that for some (hence for every) host G_2 the rows of $M(G_2, P)$ are linearly independent.

Count criterion: Hypergraph G = (V, E) without leaves is 2-independent iff.

$$\forall \emptyset \neq E' \subset E : \ 2 \cdot w(E') \leq 3|\cup E'| - 3$$

Proof:

necessary: corank of each row subset ≥ 3

sufficient: Laman's Theorem

Definition: Hypergraph G = (V, E) is **2-independent** iff. there is a realization P such that for some (hence for every) host G_2 the rows of $M(G_2, P)$ are linearly independent.

Count criterion: Hypergraph G = (V, E) without leaves is 2-independent iff.

$$\forall \emptyset \neq E' \subset E : \ 2 \cdot w(E') \le 3|\cup E'| - 3$$

Proof:

necessary: corank of each row subset ≥ 3

sufficient: Laman's Theorem

Remark. Our count is equivalent to the Tay-Tanigawa criterion for d=2 (extra condition: no leaves).

G = (V, E): hypergraph with no isolated vertices

G = (V, E): hypergraph with no isolated vertices

G realizable as inf. rigid planar body-pin framework

G = (V, E): hypergraph with no isolated vertices

 ${\cal G}$ realizable as inf. rigid planar body-pin framework

no hyperleaves and G contains $(\frac{3}{2}, \frac{3}{2})$ -hypertight subgraph

G = (V, E): hypergraph with no isolated vertices

G realizable as inf. rigid planar body-pin framework

no hyperleaves and G contains $(\frac{3}{2},\frac{3}{2})$ -hypertight subgraph

G contains $\frac{3}{2}$ HT-decomposition

G = (V, E): hypergraph with no isolated vertices

G realizable as inf. rigid planar body-pin framework

no hyperleaves and G contains $(\frac{3}{2},\frac{3}{2})$ -hypertight subgraph

G contains $\frac{3}{2}$ HT-decomposition

(conjectured)

Proposition: G is $\frac{3}{2}$ HT $\Rightarrow G$ is independent.

Proposition: G is $\frac{3}{2}$ HT $\Rightarrow G$ is independent.

Proof:

hypergraph $G \to \text{host graph } G_2 \to M(G_2, \mathbf{X}, \mathbf{Y})$

variables $(\mathbf{X}, \mathbf{Y}) = (X_e, Y_e, \ldots)$ for each hyperedge e

Proposition: G is $\frac{3}{2}$ HT $\Rightarrow G$ is independent.

Proof:

hypergraph $G \to \text{host graph } G_2 \to M(G_2, \mathbf{X}, \mathbf{Y})$

$$\frac{3}{2} \text{HT} \Rightarrow 2G_2 = T_1 \cup T_2 \cup T_3$$
 (doubled) edges hosting the same hyperedge belong to the same trees

Proposition: G is $\frac{3}{2}$ HT $\Rightarrow G$ is independent.

Proof:

hypergraph $G \to \text{host graph } G_2 \to M(G_2, \mathbf{X}, \mathbf{Y})$

$$\frac{3}{2}$$
HT $\Rightarrow 2G_2 = T_1 \cup T_2 \cup T_3$

Rearrange rows of $M(G_2, \mathbf{X}, \mathbf{Y})$: $(T_2 = T_{2x} \cup T_{2y})$

$$\begin{pmatrix}
I(T_1) & 0(T_1) & X(T_1) \\
I(T_{2x}) & 0(T_{2x}) & X(T_{2x}) \\
0(T_{2y}) & I(T_{2y}) & Y(T_{2y}) \\
0(T_3) & I(T_3) & Y(T_3)
\end{pmatrix}$$

Specialization (X, Y):

```
e covered by T_1 \Rightarrow X_e = 0
```

$$e$$
 not covered by $T_1 \Rightarrow X_e = 1$

$$e ext{ covered by } T_3 \Rightarrow Y_e = 0$$

$$e$$
 not covered by $T_1 \Rightarrow Y_e = 1$

Specialization (X, Y):

- $e ext{ covered by } T_1 ext{ } \Rightarrow ext{ } X_e = 0$
- e not covered by $T_1 \Rightarrow X_e = 1$
 - $e ext{ covered by } T_3 \qquad \Rightarrow \quad Y_e = 0$
- e not covered by $T_1 \Rightarrow Y_e = 1$
- $\Rightarrow M(G_2, \mathbf{X}, \mathbf{Y})$ becomes:

$$M = \begin{pmatrix} I(T_1) & 0(F_1) & 0(F_1) \\ I(T_{2x}) & 0(T_{2x}) & -I(T_{2x}) \\ 0(T_{2y}) & I(T_{2y}) & -I(T_{2y}) \\ 0(T_3) & I(T_3) & 0(T_3) \end{pmatrix}$$

Specialization (X, Y):

$$e ext{ covered by } T_1 agenup X_e = 0$$

$$e$$
 not covered by $T_1 \Rightarrow X_e = 1$

$$e ext{ covered by } T_3 \qquad \Rightarrow \quad Y_e = 0$$

$$e$$
 not covered by $T_1 \Rightarrow Y_e = 1$

 $\Rightarrow M(G_2, \mathbf{X}, \mathbf{Y})$ becomes:

$$M = \begin{pmatrix} I(T_1) & 0(F_1) & 0(F_1) \\ I(T_{2x}) & 0(T_{2x}) & -I(T_{2x}) \\ 0(T_{2y}) & I(T_{2y}) & -I(T_{2y}) \\ 0(T_3) & I(T_3) & 0(T_3) \end{pmatrix}$$

Observe: rows M lin. independent.

Specialization (X, Y):

$$e ext{ covered by } T_1 agenup X_e = 0$$

$$e$$
 not covered by $T_1 \Rightarrow X_e = 1$

$$e ext{ covered by } T_3 \qquad \Rightarrow \quad Y_e = 0$$

$$e$$
 not covered by $T_1 \Rightarrow Y_e = 1$

 $\Rightarrow M(G_2, \mathbf{X}, \mathbf{Y})$ becomes:

$$M = \begin{pmatrix} I(T_1) & 0(F_1) & 0(F_1) \\ I(T_{2x}) & 0(T_{2x}) & -I(T_{2x}) \\ 0(T_{2y}) & I(T_{2y}) & -I(T_{2y}) \\ 0(T_3) & I(T_3) & 0(T_3) \end{pmatrix}$$

Observe: rows M lin. independent. Q.E.D.

d: dimension workspace

d: dimension workspace

hypergraph G=(V,E): design for body-and-hinge framework

 $V \leftrightarrow \text{rigid bodies in } d\text{-space}$

hyperedges: collecting bodies attached by 1 common hinge

d: dimension workspace

hypergraph G=(V,E): design for body-and-hinge framework

 $V \leftrightarrow {\rm rigid}\ {\rm bodies}\ {\rm in}\ d{\rm -space}$ hyperedges: collecting bodies attached by 1 common hinge

 $D = \binom{d+1}{d-1}$: dimension space of hinges

Theorem: G contains a $\frac{D}{D-1}$ HT-decomposition

 \Rightarrow realizable as inf. rigid body-hinge framework in d-space.

d: dimension workspace

hypergraph G=(V,E): design for body-and-hinge framework

 $V \leftrightarrow {\rm rigid}\ {\rm bodies}\ {\rm in}\ d{\rm -space}$ hyperedges: collecting bodies attached by 1 common hinge

 $D = \binom{d+1}{d-1}$: dimension space of hinges

Theorem: G contains a $\frac{D}{D-1}$ HT-decomposition

 \Rightarrow realizable as inf. rigid body-hinge framework in d-space.

Proof: cf. d=2.

d: dimension workspace

hypergraph G=(V,E): design for body-and-hinge framework

 $V \leftrightarrow {\rm rigid}\ {\rm bodies}\ {\rm in}\ d{\rm -space}$ hyperedges: collecting bodies attached by 1 common hinge

 $D = \binom{d+1}{d-1}$: dimension space of hinges

Theorem: G contains a $\frac{D}{D-1}$ HT-decomposition

 \Rightarrow realizable as inf. rigid body-hinge framework in d-space.

Proof: Cf. d=2.

Theorem: Assume no leaves. G is d-independent iff.

$$\forall \emptyset \neq E' \subset E: (D-1) \cdot w(E') \leq D|\cup E'| - D.$$

Proof. Tay-Tanigawa count for rigidity.

Given a $\frac{3}{2}$ T-graph G = (V, E):

Given a $\frac{3}{2}$ T-graph G = (V, E):

 $E=F_R\cup F_Y\cup F_G$ with covering trees $T_{RY}=F_R\cup F_Y$, $T_{RG}=F_R\cup F_G$ and $T_{YG}=F_Y\cup F_G$.

Given a $\frac{3}{2}$ T-graph G=(V,E): $E=F_R\cup F_Y\cup F_G$ with covering trees $T_{RY}=F_R\cup F_Y$, $T_{RG}=F_R\cup F_G$ and $T_{YG}=F_Y\cup F_G$.

Question: How do we find other decompositions?

Given a $\frac{3}{2}$ T-graph G = (V, E):

$$E = F_R \cup F_Y \cup F_G$$
 with covering trees $T_{RY} = F_R \cup F_Y$, $T_{RG} = F_R \cup F_G$ and $T_{YG} = F_Y \cup F_G$.

Question: How do we find other decompositions?

colour swap: an edge for an edge!

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

Algorithm:

Select a red edge e

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

- Select a red edge e
- Consider unique circuit γ in $T_{YG} + e$

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

- Select a red edge e
- Consider unique circuit γ in $T_{YG} + e$
- Select green edge d in γ such that unique circuit in $T_{RY}+d$ contains e

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

- Select a red edge e
- Consider unique circuit γ in $T_{YG} + e$
- Select green edge d in γ such that unique circuit in $T_{RY}+d$ contains e

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

- Select a red edge e
- Consider unique circuit γ in $T_{YG} + e$
- Select green edge d in γ such that unique circuit in $T_{RY}+d$ contains e
- ullet Swap colours of e and d.

colour swap: an edge for an edge!

(e.g. red edge turns green ←⇒ green edge turns red)

Algorithm:

- Select a red edge e
- Consider unique circuit γ in $T_{YG} + e$
- Select green edge d in γ such that unique circuit in $T_{RY}+d$ contains e

ullet Swap colours of e and d.

Observe: $T_{YG} + e_1 - e_2$ and $T_{RY} + e_2 - e_1$ still trees!

Colour swap condition

Given a
$$\frac{3}{2}$$
T-graph $G = (V, E)$: $E = F_R \cup F_Y \cup F_G$

Given a $\frac{3}{2}$ T-graph G = (V, E):

 $E = F_R \cup F_Y \cup F_G$

 $e \in E \to \gamma(e)$: unique path in G without colour(e) connecting

 $\quad \text{endpoints } e$

Given a $\frac{3}{2}$ T-graph G = (V, E):

 $E = F_R \cup F_Y \cup F_G$

 $e \in E \to \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2}$ T-graph G. Choose any colour K different from colour(e).

Given a $\frac{3}{2}$ T-graph G = (V, E):

$$E = F_R \cup F_Y \cup F_G$$

 $e \in E \to \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2}$ T-graph G.

Choose any colour K different from colour(e).

There always exists an edge d in $\gamma(e)$ s.t.

- 1) colour(d) = K
- 2) e belongs to $\gamma(d)$

Given a $\frac{3}{2}$ T-graph G = (V, E):

$$E = F_R \cup F_Y \cup F_G$$

 $e \in E \to \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2}$ T-graph G.

Choose any colour K different from colour(e).

There always exists an edge d in $\gamma(e)$ s.t.

- 1) $\operatorname{colour}(d) = K$
- 2) e belongs to $\gamma(d)$

Proof. (assume colour(e) = R, K = G)

Suppose for every green edge d of $\gamma(e)$: $e \notin \gamma(d)$

Given a $\frac{3}{2}$ T-graph G = (V, E):

$$E = F_R \cup F_Y \cup F_G$$

 $e \in E \to \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2}$ T-graph G.

Choose any colour K different from colour(e).

There always exists an edge d in $\gamma(e)$ s.t.

- 1) colour(d) = K
- 2) e belongs to $\gamma(d)$

Proof. (assume colour(e) = R, K = G)

Suppose for every green edge d of $\gamma(e)$: $e \notin \gamma(d)$

 $\Rightarrow e \cup \gamma(e) \cup \gamma(d_1) \cup \gamma(d_2) \cup \dots$ contains a red-yellow cycle.

Given a $\frac{3}{2}$ T-graph G = (V, E):

$$E = F_R \cup F_Y \cup F_G$$

 $e \in E \to \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2}$ T-graph G.

Choose any colour K different from colour(e).

There always exists an edge d in $\gamma(e)$ s.t.

- 1) colour(d) = K
- 2) e belongs to $\gamma(d)$

Proof. (assume colour(e) = \mathbb{R} , $K = \mathbb{G}$)

Suppose for every green edge d of $\gamma(e)$: $e \notin \gamma(d)$

 $\Rightarrow e \cup \gamma(e) \cup \gamma(d_1) \cup \gamma(d_2) \cup \ldots$ contains a red-yellow cycle.

QED

■ Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a ³/₂HT-decomposition?

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a ³/₂HT-decomposition?
- **■** Equivalently: is $(\frac{3}{2}, \frac{3}{2})$ -hypertightness sufficient for a $\frac{3}{2}$ HT?

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a ³/₂HT-decomposition?
- **●** Equivalently: is $(\frac{3}{2}, \frac{3}{2})$ -hypertightness sufficient for a $\frac{3}{2}$ HT?
- Is every minimally rigid design for spatial body-hinge frameworks (allowing multi-hinges) obtained from a 6/5HT-decomposition?

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a ³/₂HT-decomposition?
- Equivalently: is $(\frac{3}{2}, \frac{3}{2})$ -hypertightness sufficient for a $\frac{3}{2}$ HT?
- Is every minimally rigid design for spatial body-hinge frameworks (allowing multi-hinges) obtained from a 6/5HT-decomposition?
- Is $(\frac{6}{5}, \frac{6}{5})$ -hypertightness sufficient for a $\frac{6}{5}$ HT?

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a ³/₂HT-decomposition?
- Equivalently: is $(\frac{3}{2}, \frac{3}{2})$ -hypertightness sufficient for a $\frac{3}{2}$ HT?
- Is every minimally rigid design for spatial body-hinge frameworks (allowing multi-hinges) obtained from a 6/5HT-decomposition?
- Is $(\frac{6}{5}, \frac{6}{5})$ -hypertightness sufficient for a $\frac{6}{5}$ HT?
- Generalization to spatial body-pin frameworks? (allowing multi-pins, and body pairs sharing 2 pins)

Any answers?

