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Definition:
G = (V,E) is a 3

2
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E = FR ∪ FY ∪ FG

with covering trees FR ∪ FY , FR ∪ FG and FY ∪ FG.
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Definition: 2G: the double of a graph:
= multigraph obtained from G = (V,E) by doubling each
edge in E

Property: G is a 3

2
T -graph

⇐⇒ 2G is the union of 3 spanning trees
(Indeed: 2G = TRY ∪ TRG ∪ TY G

with TRY = FR ∪ FY , TRG = FR ∪ FG and TY G = FY ∪ FG. )
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The double of a 3
2T -graph

Definition: 2G: the double of a graph:
= multigraph obtained from G = (V,E) by doubling each
edge in E

Property: G is a 3

2
T -graph

⇐⇒ 2G is the union of 3 spanning trees
(Indeed: 2G = TRY ∪ TRG ∪ TY G

with TRY = FR ∪ FY , TRG = FR ∪ FG and TY G = FY ∪ FG. )

Conclusion: (Nash-Williams, Tutte)

G = (V,E) is a 3

2
T -graph ⇐⇒

1. 2|E| = 3|V | − 3
2. ∀∅ 6= E′ ⊂ E : 2|E′| ≤ 3|V ′| − 3
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Graphs as framework design

G = (V,E): given graph (e.g. 3

2
T -graph)

V ↔ rigid bodies in the plane
E ↔ revolute pins connecting body pairs
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Remark: pins have degree 2 in generic realizations
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d: dimension workspace

G = (V,E): design for body-and-hinge framework
V ↔ rigid bodies in d-space
E ↔ hinges attaching body pairs

D =
(

d+1

d−1

)

: dimension space of hinges

Theorem: G can be realized as inf. rigid body-and-hinge
framework in IRd iff. (D − 1)G contains D edge-disjoint
spanning trees. (Tay-Whiteley)
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Results in general dimensions

d: dimension workspace

G = (V,E): design for body-and-hinge framework
V ↔ rigid bodies in d-space
E ↔ hinges attaching body pairs

D =
(

d+1

d−1

)

: dimension space of hinges

Theorem: G can be realized as inf. rigid body-and-hinge
framework in IRd iff. (D − 1)G contains D edge-disjoint
spanning trees. (Tay-Whiteley)

Special case ( d = 2): 3

2
T -graph is a minimal design for inf. rigid

body-and-pin framework in the plane.
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Non-generic realizations

G = (V,E): design for body-and-hinge framework in IRd

Assume: (D − 1)G contains D edge-disjoint spanning trees

Katoh-Tanigawa: ∃ rigid realizations with plates

Special case: 3
2
T -graph can be realized as inf. rigid frameworks

in the plane with collinear pins for each body.
(Jackson-Jordán)
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Non-generic realizations

G = (V,E): design for body-and-hinge framework in IRd

Assume: (D − 1)G contains D edge-disjoint spanning trees

Katoh-Tanigawa: ∃ rigid realizations with plates

General incidences: (allowing coinciding hinges = "multi-hinges")

count criterium on incidence graph Kb,h

but no tree decomposition
(Tay(?), 1987) (Tanigawa, 2011):
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Non-generic realizations

G = (V,E): design for body-and-hinge framework in IRd

Assume: (D − 1)G contains D edge-disjoint spanning trees

Katoh-Tanigawa: ∃ rigid realizations with plates

General incidences: (allowing coinciding hinges = "multi-hinges")

count criterium on incidence graph Kb,h

but no tree decomposition
(Tay(?), 1987) (Tanigawa, 2011):

∃ rigid realization ⇐⇒ ∃ I ⊂ (D − 1)E(Kb,h) s.t.
1) |I| = D · b + (D − 1) · h−D

2) ∀F ⊂ I: F ≤ D ·B(F ) + (D − 1) ·H(F )−D
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Pin merging

= non-generic planar realization of G = (V,E) as body
framework such that certain attachments (in E) are realized
as coinciding pins:
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Pin merging

= non-generic planar realization of G = (V,E) as body
framework such that certain attachments (in E) are realized
as coinciding pins:
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Question:
What pin mergings in 3

2
T -graphs preserve inf. rigidity?

pin merging in planar body frameworks – p. 7/25



Hypergraphs and merged pins

Example:

pin merging in planar body frameworks – p. 8/25



Hypergraphs and merged pins

Example:

7 6

5

34

12

constraint: bodies 1,2,4,7 attached by one pin

pin merging in planar body frameworks – p. 8/25



Hypergraphs and merged pins

Example:

7 6

5

34

12

constraint: bodies 1,2,4,7 attached by one pin

⇒ edges 12, 42, 72 clustered as hyperedge

pin merging in planar body frameworks – p. 8/25



Hypergraphs and merged pins

Example:

7 6

5

34

12

constraint: bodies 1,2,4,7 attached by one pin

⇒ edges 12, 42, 72 clustered as hyperedge

⇒ framework design = hypergraph

pin merging in planar body frameworks – p. 8/25



Hypergraphs and merged pins

Example:

7 6

5

34

12

constraint: bodies 1,2,4,7 attached by one pin

⇒ edges 12, 42, 72 clustered as hyperedge

⇒ framework design = hypergraph

7

3

6

5

4
1

2

1

34

2

7

5

6

pin merging in planar body frameworks – p. 8/25



Hypergraphs and merged pins

Example:
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constraint: bodies 1,2,4,7 attached by one pin

⇒ edges 12, 42, 72 clustered as hyperedge

⇒ framework design = hypergraph
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Notice: this pin merge causes non-trivial motions.
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G = ({1, 2, 3, 4, 5, 6, 7}, {e1, e2, e3, e4})
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G = ({1, 2, 3, 4, 5, 6, 7}, {e1, e2, e3, e4})

hyperedges:

e1 = {2, 7}

e2 = {2, 4}
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e4 = {1, 3, 6}
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G = ({1, 2, 3, 4, 5, 6, 7}, {e1, e2, e3, e4})

hyperedges:

e1 = {2, 7}

e2 = {2, 4}

e3 = {3, 4, 5}

e4 = {1, 3, 6}

Definition: weight hyperedge: w(e) = |e| − 1
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G = ({1, 2, 3, 4, 5, 6, 7}, {e1, e2, e3, e4})

hyperedges:

e1 = {2, 7}

e2 = {2, 4}

e3 = {3, 4, 5}

e4 = {1, 3, 6}

Definition: weight hyperedge: w(e) = |e| − 1
w(e1) = w(e2) = 1, w(e3) = w(e4) = 2
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G = ({1, 2, 3, 4, 5, 6, 7}, {e1, e2, e3, e4})

hyperedges:

e1 = {2, 7}

e2 = {2, 4}

e3 = {3, 4, 5}

e4 = {1, 3, 6}

Definition: weight hyperedge: w(e) = |e| − 1
w(e1) = w(e2) = 1, w(e3) = w(e4) = 2

Application: Hypertree:
G connected and no hypercycles
⇐⇒ G connected and w(E) = |V | − 1

⇐⇒ w(E) = |V | − 1 and for each ∅ 6= E′ ⊂ E : w(E′) ≤ | ∪ E′| − 1
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Consequence: 3

2
HT -hypergraph G = (V,E)⇒

2 · w(E) = 3|V | − 3

for each ∅ 6= E′ ⊂ E : 2 · w(E′) ≤ 3| ∪ E′| − 3

pin merging in planar body frameworks – p. 10/25



3
2HT -Hypergraphs

4

2 1

3

5

67

3
2
HT -decomposition:

3 colours for hyperedges

union 2 colours → spanning hypertree

spanning hypertree:

4

2 1
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67

Consequence: 3

2
HT -hypergraph G = (V,E)⇒

2 · w(E) = 3|V | − 3

for each ∅ 6= E′ ⊂ E : 2 · w(E′) ≤ 3| ∪ E′| − 3

(3/2,3/2)-hypertight (?)
pin merging in planar body frameworks – p. 10/25



3
2HT versus 3

2T

hypergraph G = (V,E)

4

2 1

3

5

67

→
hosting

←
clustering

graph G2 = (V,E2)

4

2 1

3

5

67

pin merging in planar body frameworks – p. 11/25



3
2HT versus 3

2T

hypergraph G = (V,E)

4

2 1

3

5

67

total weight w(E)

→
hosting

←
clustering

graph G2 = (V,E2)

4

2 1

3

5

67

number of edges |E2|

pin merging in planar body frameworks – p. 11/25



3
2HT versus 3

2T

hypergraph G = (V,E)

4
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total weight w(E)

→
coloured

hosting

←
monochromatic

clustering

graph G2 = (V,E2)
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number of edges |E2|

3

2
HT -decomposition

→
always

←
sometimes

3

2
T -decomposition
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(3/2, 3/2)-hypertight
yet not 3

2
HT -decomposable

Property: 3

2
HT ⇒ no (hyper)leaves

Conjecture: leaf-free + (3/2,3/2)-hypertight ⇐⇒ 3
2
HT

Lucky guess: leaf-free + (D/(D-1),D/(D-1))-hypertight ⇐⇒ D
D−1

HT
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body-and-pin realization where hyperedges represent merged
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3
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Definition. Planar framework realization of hypergraph G =
body-and-pin realization where hyperedges represent merged
pins.

Theorem:
G contains 3

2
HT ⇒ realizable as inf. rigid planar body-and-pin

framework.
Proof. Specialisation of rigidity matrix. Valid for general
dimensions.
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3
2HT -Hypergraphs as rigid frameworks

Definition. Planar framework realization of hypergraph G =
body-and-pin realization where hyperedges represent merged
pins.

Theorem:
G contains 3

2
HT ⇒ realizable as inf. rigid planar body-and-pin

framework.
Proof. Specialisation of rigidity matrix. Valid for general
dimensions.

Conjecture: The converse holds.
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The rigidity matrix I

Realization of hypergraph G = (V,E) as body and pin
framework in the plane: F = (G,P )

P : E → IR2 : e 7→ P (e) = (xe, ye)
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The rigidity matrix I

Realization of hypergraph G = (V,E) as body and pin
framework in the plane: F = (G,P )

P : E → IR2 : e 7→ P (e) = (xe, ye)

Choose host graph G2 = (V,E2).

pin merging in planar body frameworks – p. 14/25



The rigidity matrix I

Realization of hypergraph G = (V,E) as body and pin
framework in the plane: F = (G,P )

P : E → IR2 : e 7→ P (e) = (xe, ye)

Choose host graph G2 = (V,E2).
For each edge ij ∈ E2 with {i, j} ⊂ e ∈ E:

JXij = (0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0|0, . . . , 0|0, . . . , 0,−xe, 0, . . . , 0, xe, 0, . . . , 0)

JYij = (0, . . . , 0|0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0|0, . . . , 0,−ye, 0, . . . , 0, ye, 0, . . . , 0)

(non-zero entries in positions i and j in subsequences of length |V |)
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The rigidity matrix I

Realization of hypergraph G = (V,E) as body and pin
framework in the plane: F = (G,P )

P : E → IR2 : e 7→ P (e) = (xe, ye)

Choose host graph G2 = (V,E2).
For each edge ij ∈ E2 with {i, j} ⊂ e ∈ E:

JXij = (0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0|0, . . . , 0|0, . . . , 0,−xe, 0, . . . , 0, xe, 0, . . . , 0)

JYij = (0, . . . , 0|0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0|0, . . . , 0,−ye, 0, . . . , 0, ye, 0, . . . , 0)

(non-zero entries in positions i and j in subsequences of length |V |)

⇒ 2w(E)× |V | matrix M(G2, P ).
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The rigidity matrix II

Given hypergraph G = (V,E) with realization F = (G,P )
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The rigidity matrix II

Given hypergraph G = (V,E) with realization F = (G,P )

Let Ci = (ai, bi, ci) with i = 1, . . . , v = |V |
and put γ = (a1, . . . , av, b1, . . . , bv, c1, . . . , cv) ∈ IR3v
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The rigidity matrix II

Given hypergraph G = (V,E) with realization F = (G,P )

Let Ci = (ai, bi, ci) with i = 1, . . . , v = |V |
and put γ = (a1, . . . , av, b1, . . . , bv, c1, . . . , cv) ∈ IR3v

Property: The Ci are centers of motion for bodies of F ⇐⇒

M(G2, P ) · γT = 0 for any host G2

⇐⇒ M(G2, P ) · γT = 0 for every host G2
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The rigidity matrix II

Given hypergraph G = (V,E) with realization F = (G,P )

Let Ci = (ai, bi, ci) with i = 1, . . . , v = |V |
and put γ = (a1, . . . , av, b1, . . . , bv, c1, . . . , cv) ∈ IR3v

Property: The Ci are centers of motion for bodies of F ⇐⇒

M(G2, P ) · γT = 0 for any host G2

⇐⇒ M(G2, P ) · γT = 0 for every host G2

Remarks:

rank M(G2, P ) independent from host

F inf. rigid ⇐⇒ rank M(G2, P ) = 3|V | − 3

F isostatic ⇐⇒ M(G2, P ) has independent rows and
2 · w(E) = 3|V | − 3
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Independent hypergraphs
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Independent hypergraphs

Definition: Hypergraph G = (V,E) is 2-independent iff. there is
a realization P such that for some (hence for every) host G2 the
rows of M(G2, P ) are linearly independent.
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Independent hypergraphs

Definition: Hypergraph G = (V,E) is 2-independent iff. there is
a realization P such that for some (hence for every) host G2 the
rows of M(G2, P ) are linearly independent.

Count criterion: Hypergraph G = (V,E) without leaves is
2-independent iff.
∀∅ 6= E′ ⊂ E : 2 · w(E′) ≤ 3| ∪ E′| − 3
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Independent hypergraphs

Definition: Hypergraph G = (V,E) is 2-independent iff. there is
a realization P such that for some (hence for every) host G2 the
rows of M(G2, P ) are linearly independent.

Count criterion: Hypergraph G = (V,E) without leaves is
2-independent iff.
∀∅ 6= E′ ⊂ E : 2 · w(E′) ≤ 3| ∪ E′| − 3

Proof:

necessary: corank of each row subset ≥ 3
sufficient: Laman’s Theorem
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Independent hypergraphs

Definition: Hypergraph G = (V,E) is 2-independent iff. there is
a realization P such that for some (hence for every) host G2 the
rows of M(G2, P ) are linearly independent.

Count criterion: Hypergraph G = (V,E) without leaves is
2-independent iff.
∀∅ 6= E′ ⊂ E : 2 · w(E′) ≤ 3| ∪ E′| − 3

Proof:

necessary: corank of each row subset ≥ 3
sufficient: Laman’s Theorem

Remark. Our count is equivalent to the Tay-Tanigawa criterion
for d = 2 (extra condition: no leaves).
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Results and conjectures: overview

G = (V,E): hypergraph with no isolated vertices
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Results and conjectures: overview

G = (V,E): hypergraph with no isolated vertices

G realizable as inf. rigid planar body-pin framework
m

no hyperleaves
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G realizable as inf. rigid planar body-pin framework
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no hyperleaves
and G contains
(3

2
, 3
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)-hypertight

subgraph ⇐

⇑

G contains
3
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Results and conjectures: overview

G = (V,E): hypergraph with no isolated vertices

G realizable as inf. rigid planar body-pin framework
m

no hyperleaves
and G contains
(3

2
, 3

2
)-hypertight

subgraph ⇐
⇒

⇑ ⇓

G contains
3
2
HT-decomposition

(conjectured)
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Matrix proof

Proposition: G is 3

2
HT⇒ G is independent.
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Matrix proof

Proposition: G is 3

2
HT⇒ G is independent.

Proof:
hypergraph G→ host graph G2 →M(G2,X,Y)
variables (X,Y) = (Xe, Ye, . . .) for each hyperedge e
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Matrix proof

Proposition: G is 3

2
HT⇒ G is independent.

Proof:
hypergraph G→ host graph G2 →M(G2,X,Y)

3
2
HT⇒ 2G2 = T1 ∪ T2 ∪ T3

(doubled) edges hosting the same hyperedge belong to the same trees
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Matrix proof

Proposition: G is 3

2
HT⇒ G is independent.

Proof:
hypergraph G→ host graph G2 →M(G2,X,Y)

3
2
HT⇒ 2G2 = T1 ∪ T2 ∪ T3

Rearrange rows of M(G2,X,Y): (T2 = T2x ∪ T2y)















I(T1) 0(T1) X(T1)

I(T2x) 0(T2x) X(T2x)

0(T2y) I(T2y) Y (T2y)

0(T3) I(T3) Y (T3)














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Matrix proof (continued)

Specialization (X,Y):
e covered by T1 ⇒ Xe = 0

e not covered by T1 ⇒ Xe = 1

e covered by T3 ⇒ Ye = 0

e not covered by T1 ⇒ Ye = 1
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Matrix proof (continued)

Specialization (X,Y):
e covered by T1 ⇒ Xe = 0

e not covered by T1 ⇒ Xe = 1

e covered by T3 ⇒ Ye = 0

e not covered by T1 ⇒ Ye = 1

⇒M(G2,X,Y) becomes:

M =











I(T1) 0(F1) 0(F1)

I(T2x) 0(T2x) −I(T2x)

0(T2y) I(T2y) −I(T2y)

0(T3) I(T3) 0(T3)










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Matrix proof (continued)

Specialization (X,Y):
e covered by T1 ⇒ Xe = 0

e not covered by T1 ⇒ Xe = 1

e covered by T3 ⇒ Ye = 0

e not covered by T1 ⇒ Ye = 1

⇒M(G2,X,Y) becomes:

M =











I(T1) 0(F1) 0(F1)

I(T2x) 0(T2x) −I(T2x)

0(T2y) I(T2y) −I(T2y)

0(T3) I(T3) 0(T3)











Observe: rows M lin. independent.

pin merging in planar body frameworks – p. 19/25



Matrix proof (continued)

Specialization (X,Y):
e covered by T1 ⇒ Xe = 0

e not covered by T1 ⇒ Xe = 1

e covered by T3 ⇒ Ye = 0

e not covered by T1 ⇒ Ye = 1

⇒M(G2,X,Y) becomes:

M =











I(T1) 0(F1) 0(F1)

I(T2x) 0(T2x) −I(T2x)

0(T2y) I(T2y) −I(T2y)

0(T3) I(T3) 0(T3)











Observe: rows M lin. independent. Q.E.D.
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Generalization to higher dimensions

d: dimension workspace
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Generalization to higher dimensions

d: dimension workspace

hypergraph G = (V,E): design for body-and-hinge
framework
V ↔ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge

pin merging in planar body frameworks – p. 20/25



Generalization to higher dimensions

d: dimension workspace

hypergraph G = (V,E): design for body-and-hinge
framework
V ↔ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge

D =
(

d+1

d−1

)

: dimension space of hinges

Theorem: G contains a D
D−1

HT-decomposition
⇒ realizable as inf. rigid body-hinge framework in d-space.
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Generalization to higher dimensions

d: dimension workspace

hypergraph G = (V,E): design for body-and-hinge
framework
V ↔ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge

D =
(

d+1

d−1

)

: dimension space of hinges

Theorem: G contains a D
D−1

HT-decomposition
⇒ realizable as inf. rigid body-hinge framework in d-space.
Proof: cf. d = 2.
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Generalization to higher dimensions

d: dimension workspace

hypergraph G = (V,E): design for body-and-hinge
framework
V ↔ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge

D =
(

d+1

d−1

)

: dimension space of hinges

Theorem: G contains a D
D−1

HT-decomposition
⇒ realizable as inf. rigid body-hinge framework in d-space.
Proof: cf. d = 2.
Theorem: Assume no leaves. G is d-independent iff.
∀∅ 6= E ′ ⊂ E : (D − 1) · w(E ′) ≤ D| ∪ E ′| −D.
Proof. Tay-Tanigawa count for rigidity.
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Generating 3
2T-decompositions

Given a 3
2
T-graph G = (V,E):
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Generating 3
2T-decompositions

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG with covering trees TRY = FR ∪ FY ,
TRG = FR ∪ FG and TY G = FY ∪ FG.

7 6

5

34

12
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Generating 3
2T-decompositions

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG with covering trees TRY = FR ∪ FY ,
TRG = FR ∪ FG and TY G = FY ∪ FG.

7 6

5

34

12

Question: How do we find other decompositions?

pin merging in planar body frameworks – p. 21/25



Generating 3
2T-decompositions

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG with covering trees TRY = FR ∪ FY ,
TRG = FR ∪ FG and TY G = FY ∪ FG.

7 6

5

34

12

7 6

5

34

12

Question: How do we find other decompositions?
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)

Algorithm:
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)

Algorithm:

Select a red edge e
7 6

5

34

12

e
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)

Algorithm:

Select a red edge e

Consider unique circuit γ

in TY G + e

7 6

5

34

12

e
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)

Algorithm:

Select a red edge e

Consider unique circuit γ

in TY G + e

Select green edge d in γ

such that unique circuit in
TRY + d contains e

7 6

5

34

12

d e
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)

Algorithm:

Select a red edge e

Consider unique circuit γ

in TY G + e

Select green edge d in γ

such that unique circuit in
TRY + d contains e

7 6

5

34

12

d e
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)

Algorithm:

Select a red edge e

Consider unique circuit γ

in TY G + e

Select green edge d in γ

such that unique circuit in
TRY + d contains e

Swap colours of e and d.

7 6

5

34

12

d e
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Generating 3
2T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green ⇐⇒ green edge turns red)

Algorithm:

Select a red edge e

Consider unique circuit γ

in TY G + e

Select green edge d in γ

such that unique circuit in
TRY + d contains e

Swap colours of e and d.

7 6

5

34

12

d e

Observe: TY G + e1 − e2 and TRY + e2 − e1 still trees!
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Colour swap condition

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG
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Colour swap condition

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG

e ∈ E → γ(e): unique path in G without colour(e) connecting
endpoints e
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Colour swap condition

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG

e ∈ E → γ(e): unique path in G without colour(e) connecting
endpoints e

Theorem. Let e be edge of 3

2
T-graph G.

Choose any colour K different from colour(e).
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Colour swap condition

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG

e ∈ E → γ(e): unique path in G without colour(e) connecting
endpoints e

Theorem. Let e be edge of 3

2
T-graph G.

Choose any colour K different from colour(e).
There always exists an edge d in γ(e) s.t.
1) colour(d) = K

2) e belongs to γ(d)
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Colour swap condition

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG

e ∈ E → γ(e): unique path in G without colour(e) connecting
endpoints e

Theorem. Let e be edge of 3

2
T-graph G.

Choose any colour K different from colour(e).
There always exists an edge d in γ(e) s.t.
1) colour(d) = K

2) e belongs to γ(d)
Proof. (assume colour(e) = R, K = G)

Suppose for every green edge d of γ(e): e 6∈ γ(d)
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Colour swap condition

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG

e ∈ E → γ(e): unique path in G without colour(e) connecting
endpoints e

Theorem. Let e be edge of 3

2
T-graph G.

Choose any colour K different from colour(e).
There always exists an edge d in γ(e) s.t.
1) colour(d) = K

2) e belongs to γ(d)
Proof. (assume colour(e) = R, K = G)

Suppose for every green edge d of γ(e): e 6∈ γ(d)
⇒ e ∪ γ(e) ∪ γ(d1) ∪ γ(d2) ∪ . . . contains a red-yellow cycle.
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Colour swap condition

Given a 3
2
T-graph G = (V,E):

E = FR ∪ FY ∪ FG

e ∈ E → γ(e): unique path in G without colour(e) connecting
endpoints e

Theorem. Let e be edge of 3

2
T-graph G.

Choose any colour K different from colour(e).
There always exists an edge d in γ(e) s.t.
1) colour(d) = K

2) e belongs to γ(d)
Proof. (assume colour(e) = R, K = G)

Suppose for every green edge d of γ(e): e 6∈ γ(d)
⇒ e ∪ γ(e) ∪ γ(d1) ∪ γ(d2) ∪ . . . contains a red-yellow cycle.
QED
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Brain tapas

Is every 3
2
T-decomposition reachable by colour swaps?
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Brain tapas

Is every 3
2
T-decomposition reachable by colour swaps?

Is every minimally rigid design for planar body-pin
frameworks (allowing multi-pins) obtained from a
3
2
HT-decomposition?
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Brain tapas

Is every 3
2
T-decomposition reachable by colour swaps?

Is every minimally rigid design for planar body-pin
frameworks (allowing multi-pins) obtained from a
3
2
HT-decomposition?

Equivalently: is (3
2
, 3

2
)-hypertightness sufficient for a 3

2
HT?
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Brain tapas

Is every 3
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Is every minimally rigid design for planar body-pin
frameworks (allowing multi-pins) obtained from a
3
2
HT-decomposition?

Equivalently: is (3
2
, 3

2
)-hypertightness sufficient for a 3

2
HT?

Is every minimally rigid design for spatial body-hinge
frameworks (allowing multi-hinges) obtained from a
6
5
HT-decomposition?
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Brain tapas

Is every 3
2
T-decomposition reachable by colour swaps?

Is every minimally rigid design for planar body-pin
frameworks (allowing multi-pins) obtained from a
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HT-decomposition?

Equivalently: is (3
2
, 3

2
)-hypertightness sufficient for a 3

2
HT?

Is every minimally rigid design for spatial body-hinge
frameworks (allowing multi-hinges) obtained from a
6
5
HT-decomposition?
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HT?
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Brain tapas

Is every 3
2
T-decomposition reachable by colour swaps?

Is every minimally rigid design for planar body-pin
frameworks (allowing multi-pins) obtained from a
3
2
HT-decomposition?

Equivalently: is (3
2
, 3

2
)-hypertightness sufficient for a 3

2
HT?

Is every minimally rigid design for spatial body-hinge
frameworks (allowing multi-hinges) obtained from a
6
5
HT-decomposition?

Is (6
5
, 6

5
)-hypertightness sufficient for a 6

5
HT?

Generalization to spatial body-pin frameworks? (allowing

multi-pins, and body pairs sharing 2 pins)
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Any answers?
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