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generic frameworks G ′(p) and G ′ ∪ (u, v)(p) both have the
same rank.
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Implied non-edges and nucleation

Implied non-edges

A non-edge of G = (V ,E ) is a pair (u, v) 6∈ E .

A non-edge is said to be implied if there exists an independent
subgraph G ′ of G such that G ′ ∪ (u, v) is dependent. I.e.,
generic frameworks G ′(p) and G ′ ∪ (u, v)(p) both have the
same rank.

Independence = independence in the 3D rigidity matroid.

Rank = rank of the 3D rigidity matroid.

u

v



Nucleation-free 3D rigidity

Implied non-edges and nucleation

Nucleation property:

Nucleation property. A graph G has the nucleation property if it
contains a non-trivial rigid induced subgraph, i.e., a rigid nucleus.
Trivial means a complete graph on 4 or fewer vertices.
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Implied non-edges and nucleation

Nucleation property:

Nucleation property. A graph G has the nucleation property if it
contains a non-trivial rigid induced subgraph, i.e., a rigid nucleus.
Trivial means a complete graph on 4 or fewer vertices.
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Implied non-edges and nucleation

Two natural questions in 3D

Question 1 Nucleation-free Graphs with implied

non-edges: Do all graphs with implied non-edges have the
nucleation property?
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Implied non-edges and nucleation

Two natural questions in 3D

Question 1 Nucleation-free Graphs with implied

non-edges: Do all graphs with implied non-edges have the
nucleation property?

Question 2 : Nucleation-free, rigidity circuits Does every
rigidity circuit automatically have the nucleation property?
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Our main result

Answering the two questions in the negative

In order to answer Question 1, we construct an infinite family
of flexible 3D graphs which have no proper rigid nuclei besides
trivial ones (triangles), yet have implied edges.
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Our main result

Answering the two questions in the negative

In order to answer Question 1, we construct an infinite family
of flexible 3D graphs which have no proper rigid nuclei besides
trivial ones (triangles), yet have implied edges.

We also settle Question 2 in the negative by giving a family of
arbitrarily large examples that follow directly from the
examples constructed for Question 1.
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A ring of k roofs

The construction: a ring of k roofs

A roof is a graph obtained from K5, the complete graph of
five vertices, by deleting two non-adjacent edges.
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banana.
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A roof is a graph obtained from K5, the complete graph of
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banana.
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A ring of k roofs

Ring graph

A ring graph Rk of k ≥ 7 roofs is constructed as follows. Two
roofs are connected along a non-edge.We refer to these two
non-edges within each roof as hinges. Such a chain of seven or
more roofs is closed back into a ring.
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A ring of k roofs

Ring graph

A ring graph Rk of k ≥ 7 roofs is constructed as follows. Two
roofs are connected along a non-edge.We refer to these two
non-edges within each roof as hinges. Such a chain of seven or
more roofs is closed back into a ring.

This example graph appears often in the literature.
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A ring of k roofs

Main theorem

Theorem

In a ring of roofs, the hinge non-edges are implied.
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thus the generic frameworks must also be independent.
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A proof of the main theorem

Theorem

In a ring of roofs, the hinge non-edges are implied.

Lemma

The ring Rk of k roofs is independent.

We will construct a specific framework Rk(p) that is independent,
thus the generic frameworks must also be independent.

Lemma

If we add any (or all) hinge edge(s) into Rk , the rank does not
change.
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A ring of k roofs

A proof of the main theorem

Theorem

In a ring of roofs, the hinge non-edges are implied.

Lemma

The ring Rk of k roofs is independent.

We will construct a specific framework Rk(p) that is independent,
thus the generic frameworks must also be independent.

Lemma

If we add any (or all) hinge edge(s) into Rk , the rank does not
change.

This follows immediately from either one of two existing theorems.
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A ring of k roofs

Option 1

Theorem (Tay and White and Whiteley)

If ∀i ≤ k, the i th banana Bi(pi ) is rigid, then the bar framework
Bk(p) is equivalent to a body-hinge framework and is guaranteed
to have at least k − 6 independent infinitesimal motions.

Observation

If Rk(p) is generic, then for all i , the rigidity matrix given by the
banana framework Bi(pi ) is independent, which in this case implies
rigidity. Here pi is the restriction of p to the vertices in the i th roof
Ri .
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A ring of k roofs

Option 2

A cover of a graph G = (V ,E ) is a collection X of pairwise
incomparable subsets of V , each of size at least two, such that
∪X∈XE (X ) = E . A cover X = {X1,X2, . . . ,Xn} of G is 2-thin if
|Xi ∩ Xj | ≤ 2 for all 1 ≤ i < j ≤ n.
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A ring of k roofs

Option 2

A cover of a graph G = (V ,E ) is a collection X of pairwise
incomparable subsets of V , each of size at least two, such that
∪X∈XE (X ) = E . A cover X = {X1,X2, . . . ,Xn} of G is 2-thin if
|Xi ∩ Xj | ≤ 2 for all 1 ≤ i < j ≤ n.
Let H(X ) be the set of shared vertices. For each (u, v) ∈ H(X ),
let d(u, v) be the number of sets Xi in X such that {u, v} ⊆ Xi .

Observation

If X = {X1,X2, . . . ,Xm} is a 2-thin cover of graph G = (V ,E )
and subgraph (V ,H(X )) is independent, then in 3D, the rank of
the rigidity matrix of a generic framework G (p), denoted as
rank(G ), satisfies the following

rank(G) ≤
∑

Xi∈X

rank(G1[Xi ])−
∑

(u,v)∈H(X )

(d(u, v) − 1), (1)

where G1 = G ∪ H(X ).
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A ring of k roofs

Proof of independence of ring

We will show a specific framework Rk(p) is independent, thus
the generic frameworks must also be independent.
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A ring of k roofs

Proof of independence of ring

We will show a specific framework Rk(p) is independent, thus
the generic frameworks must also be independent.

a1 = a7 = a9 = . . .

a8 = a10 = a12 = . .a2
a3

a4

a5
a6

b1 = b7 = b9 = . . .

b8 = b10 = b12 = . . .

b2b3

b4

b5 b6

c1

c8 = c10 = c12 = . . .

c2

c3

c4

c5

c6

c7 = c9 = c11 = . . .

The repeated roofs have some symmetries that are utilized in
the proof.
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A ring of k roofs

Proof of independence of ring

Use induction: two base cases, according to the parity of
number of roofs.

Induction step is proved by contradiction and inspection of the
rigidity matrix of Rk+2(p) and of Rk(p): after adding 2 new
roofs to the current ring, if the new ring does not have full row
rank, then the original one does not have full row rank either.

The the k th roof is identical to the k + 2nd roof. This is true
for both even and odd k ’s and hence the induction step is the
same.
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Third proof of the main theorem

A special generic framework

Lemma

The hinge non-edges are implied, for all rings Rk(p) of k − 1,
pointed pseudo-triangular roofs and one convex roof.
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A special generic framework

Lemma

The hinge non-edges are implied, for all rings Rk(p) of k − 1,
pointed pseudo-triangular roofs and one convex roof.

This uses previous results by Connelly, Streinu and Whiteley about
expansion/contraction properties of convex polygons, the
infinitesimal properties of single-vertex origamis and pointed
pseudo-triangulations.
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Third proof of the main theorem

A special generic framework

Lemma

The hinge non-edges are implied, for all rings Rk(p) of k − 1,
pointed pseudo-triangular roofs and one convex roof.

This uses previous results by Connelly, Streinu and Whiteley about
expansion/contraction properties of convex polygons, the
infinitesimal properties of single-vertex origamis and pointed
pseudo-triangulations.

Lemma

There are generic frameworks Rk(p) as in the previous Lemma.
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Answer Question 1 and 2

Nucleation-free dependent graph

Question 1 Do all graphs with implied non-edges have the
nucleation property?
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Answer Question 1 and 2

Nucleation-free non-rigid dense graph

Question 2 If a graph G = (V ,E ) with at least 3|V | − 6 edges is
non-rigid, i.e, dependent, then does it automatically have the
nucleation property?
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(a). Good  formalization of “useful representation of 

7

Useful  representation of configuration 

progress

Obstacles to progress so far 

configuration space”

Novel feature of our results - relate combinatorial properties of underlying 
graph (forbidden minors and other graph properties) with:

geometric properties (convexity) of configuration space and topological 
properties (connectedness, number of connected components) of 
configuration space  
algebraic complexity of configuration space    

Applications to molecular biology and chemistry

spaces of flexible linkages 
(machines, molecules) – important problems, many applications, little 

(b). Which linkages have such a representation
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Representation of Configuration Space

A

C

B

D

A

C

B

D

A

C

B (D)
(1) (2) (3)

A

C

B (D)(3) A

C

B (D)(3) A

C

B (D)(3)

A

C
B

D(3) A

C

B

D
(3)

Configuration space is 
described by 
parameter, e.g. length 
of edge BD, AC



Arbitrary dimensions

Cayley configuration space 

8

Outline

Definition and notation

2D connected/convex configuration space
3D connected configuration space

Application: Helix packing configurations



Cayley configuration space 

8

Outline

Definition and notation

2D connected/convex configuration space
3D connected configuration space
Arbitrary dimensions
Application: Helix packing configurations



in 

  -dimensions realization of (G, d 
: (G, d

non-edge set
non-edge

linkage

constraints 

13

Notation

Graph: G=(V,E)
: f in E (the complement of E)

: F, subset of E
E)

E ) in : a 
realization or coordinate values of all vertices 

-dimension preserving distance 

δ

δ



The projection on the non-edges is 

non-edges: dashed line

Definition: given linkage (G, d  )

(G, 

is 
Cayley configuration space on  F non-edge set F, the 
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Definition: 

A A

A

A

AA

A

A

N 1

2

3

4N−3

N−2

N−1

described by triangle inequalites

E

(G, dE):={dF | (G U F, dE U dF) has a solution in δ-dimension }
Short: “configuration space of (G,dE) on F”

δ
FΦ

Cayley configuration space



Schoenberg’s Theorem (1935):
Given an n × n matrix ∆ = (dij)n×n, there exists a Euclidean
realization in Rδ, i.e., a set of points p1, p2, . . . , pn ∈ Rδ s.t. ∀i , j ,
||pi − pj ||2 = δij if and only if matrix ∆ is negative semidefinite of
rank δ.

I Negative semidefinite matrices form a convex cone.

I The rank-δ stratum of this cone may not be convex.

I A linkage (G , dE ) is a partially filled distance matrix: this is a
section consisting of all possible negative semidefinite
completions (of rank δ).

I (δ-dimensional )Cayley configuration space, ΦF (∆(G , dE ), of
the linkage (G , dE ) on non-edge set F is the projection of this
section (completions) onto F .

Question: For which graphs G ∪ F is this projection “nice” for all
dE?



non-edge set F, the 
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Easier to deal with  δ-Projection on d2

Definition: given distance constraint system (G, dE) and 
squared-distance configuration 

space of (G, dE)  on F is 
=(G, dE):={      | (G U F, dE U dF) has a solution in δ-dimension }δ 2

F(Φ ) 2
Fd



Cayley space
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Configuration Space Description

Definition: constraint system (G, dE) has connected 
configuration space description (CCS) in δ dimension if 
there exists
on F is connected. We say (G, dE) has a CCS on F. 

No CCS in 2D Has CCS on f in 3D

f

a non-edge set F such that the 



Arbitrary dimensions

Cayley configuration space 

8

Outline

Definition and notation

2D connected/convex configuration space
3D connected configuration space

Application: Helix packing configurations



connected, and polytope
Projection on the non-edges Projection on the non-edges is convex, 

30

2D Connected Configuration Space: 
Examples

A

D

C

B

is not connected



Theorem 

2D if and only if all the non-rigid 2-sum 

: There exists

35

Simple & Complete Configuration Space 
in 2D 

connected & convex configuration description in 

components are partial 2-trees.



L  emma Given a graph G=(V,E) and non-edge f, G can 

31

2D Connected configuration space: 
Theorem

: 
be reduced to base case 1 and base case 2 only by edge 
shrinking if and only if there exists one 2-Sum component of 
G U f which contains f and is not a partial 2-Tree. 

A

D

C

B

m

1E

E

C

D

BA

Base Case 1 Base Case 2



different from minor: keep the non-edge. 

32

Proof

Proof needs graph reduction technique 



Theorem 

Theorem 

: Given a graph G=(V,E) and non-

: Given graph G and non-edge 
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2D Connected configuration space: 
Theorem

f=AB, if G has 2D CCS on f (single interval) if 
and only all 2-Sum components of G U AB 
containing both A and B are partial 2-trees.

edge set F, G has 2D CCS on F if and only if all 
2-Sum components containing any subset of F 
are partial 2-trees.



Arbitrary dimensions

Cayley configuration space 

Outline

Definition and notation

2D connected/convex configuration space
3D connected configuration space

Application: Helix packing configurations
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3D Connected Configuration Space

f f



44

Examples without 3D Connected 
Configuration Space

B

A

B

3 4

1 2

2 3

4 5

(3)

1

A

B

A

B

E

F

A

A B

A

B

E

E

F
F

(1) (2)

(5)

(4)

(6)
(7) (8)

5

A

(3) B

1

4

2 3B

A
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Examples with 3D Connected 
Configuration Space

Case 1: G U f has universally inherent CCS in 
3D
Case 2: G U f doesn’t have universally inherent 
CCS in 3D

A B

1

54

2

3

BA



Theorem :
realizable, for any non-edge f, G doesn’t have 
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Theorem on Maximal 3-realizable Graphs

if a graph G is maximal 3-

3D connected configuration space on f.
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3D Connected Configuration Space : 
Conjectures

Conjecture 1: Given partial 3-tree G and virtual 
edge AB,  if  A and B must be shrunk together 
in order to get a K5 or K222 minor, then G has 
3D connected configuration space on f.

A B

1

54

2

3

BA



given graph G and non-edge AB, G 

shrinking while preserving AB as non-edge

48

Conjecture 2: 
doesn’t have 3D connected configuration space on f if and 
only if G can be reduced to one of the eight cases by edge 

B

A

B

3 4

1 2

2 3

4 5

(3)

1

A

B

A

B

E

F

A

A B

A

B

E

E

F
F

(1) (2)

(5)

(4)

(6)
(7) (8)

5

A

(3) B

1

4

2 3B

A



Arbitrary dimensions

Cayley configuration space 

8

Outline

Definition and notation

2D connected/convex configuration space
3D connected configuration space

Application: Helix packing configurations
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Universally Inherent CCS

We obtain strong results in arbitrary dimension for more 
restrictive class of graphs

Definition: H has an universally inherent CCS in 
δ-dimension if for every partition of H as G U F 
where G has a CCS on F.
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Universally Inherent CCS : Examples

K5 and K222 doesn’t have universally inherent CCS
in 3D.
Any proper subgraph of K5 or K222 has universally 
inherent CCS in 3D.

C D

E
FB

A

K222K5
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Universally Inherent CCS: Results
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Previous results on δ-realizability

Previous Theorem: a graph G is 2-realizable 
if and only if G has no K4 minor; a graph G is 
3-realizable if and only if it has no K5 or K222
minor [Belk, Connelly].



Theorem 

25

Graph Characterization for Universally 
Inherent CCS

: a graph G has universally inherent 
CCS in 2D if and only if it has no K4 minor; in 3D 
if and only if it has no K5 or K222 minor.



Arbitrary dimensions

Cayley configuration space 

Outline

Definition and notation

2D connected/convex configuration space
3D connected configuration space

Application: Helix packing configurations
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Helix Packing: Problem

Simulate and sample the 
configuration space of helices 
Focused on two helices in the 
current stage
Helix is modeled as a collection of 
rigid balls; collision should be 
avoided between two balls from 
two different helices
“Critical” configurations should be 
captured  
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Helix Packing: Bi-Incidence

hi

hj
a

a

b

b

i1

i2

j1

j2
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Bi-Incidence
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Helix Packing: Graphs for Which Configuration Space is 
Sought for all possible edge subgraphs

6*5 6*4 6*4 6*3 6*3

5*5 5*5 5*4 5*4 5*4 5*4 5*4

5*3 5*3 5*3 5*3

4*3 4*3 4*3 4*3 4*3 4*3

3*3 3*3 3*3 3*3

6*6
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Thanks!
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