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1. Definition of Kokotsakis meshes

Special case n = 4
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A Kokotsakis mesh is a polyhedral
structure consisting of an n-sided
central polygon f, surrounded by a
belt of polygons.

Each side a;, it = 1,...,n, of f;is
shared by a polygon f,. Each vertex
Vi of f, is the meeting point of four
faces.

Each face is seen as a rigid body;
only the dihedral angles can vary.
Under which conditions a Kokotsakis
mesh is continuously flexible ?

N



1. Definition of Kokotsakis meshes

Antonios KOKOTSAKIS
1899-1964

He was born on the island Crete in Greece.
As a precocious child, he was accepted at the
Department of Civil Engineering of Technical
University of Athens already in the age of 16.

After graduation he was appointed a lecturer
in the Department of Descriptive and Projective
Geometry. He finished his PhD-thesis entitled
“About flexible polyhedra” under the supervision
of K. CARATHEODORI in Munich/Germany.

His list of publications contains not more than 5
titles.
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1. Definition of Kokotsakis meshes

A Kokotsakis mesh for n = 4 is also
called Neunflach [German] (nine-flat)

(KOKOTSAKIS 1931, SAUER 1932)

For n = 3 the Kokotsakis mesh is
equivalent to an octahedron with
ViVoVs and WiW5W3 as opposite
triangular faces.

This offers an alternative approach to
R. BRICARD's flexible octahedra.

Wi

Special case: n =3
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1. Definition of Kokotsakis meshes

Kinematic interpretation:

The polygons represent different
systems >g, ..., 2, .

The sides a; of f, are instan-
taneous axes I;o of the relative
motions 33; /3.

The relative motions X;1/%;
between consecutive systems are
spherical four-bars mechanisms.

The polygons need not be planar
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1. Definition of Kokotsakis meshes
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The transmission from >, to the
foIIowing E’H-lv Qi = Qir1, IS
realized by a spherical four-bar:

To recall:

A spherical four-bar transmits the
rotation about the center Ay by the
coupler AB non-uniformly to the
rotation about By.

The two arms AgA and ByB
represent consecutive systems J;,

A

Zz‘—i—l .



1. Definition of Kokotsakis meshes
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The edge lengths V4 V5, ..., V4V
of the central polygon f, have no
influence on the flexibility =—

Theorem: A Kokotsakis-mesh for
n = 4 is flexible if and only if the
transmission .1 — X3 realized by
the two four-bars (V1,V5) on the
right hand side equals that via
(Vs,Vy) on the left hand side.

(we do not care about intersections
between the involved quadrangles)

A



1. Definition of Kokotsakis meshes

Some models of flexible
Kokotsakis meshes.

courtesy Nadja Posselt, Uwe Hanke, TU Dresden
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1. Definition of Kokotsakis meshes

024

Theorem: (A. KOKOTSAKIS (1932))

A Kokotsakis mesh is infinitesimally
flexible <> the points of intersection
123 between the traces of (f1, f3), (f5, fs)

and (f7, fs) are collinear.
}013 This is equivalent to the collinearity of
the intersection points (fa, f1), (fs, f7)

and (f87 f5)

\ 23y

The principle of “averaging” gives rise
to snapping Kokotsakis meshes.

124
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1. Definition of Kokotsakis meshes

In discrete differential geometry there is a
interest on polyhedral structures composed
of quadrilaterals (quadrilateral surfaces). If
all quadrilaterals are planar, they form a
discrete conjugate net = quad mesh.

Theorem: [BOBENKO, HOFFMANN,
SCHIEF 2008]

A discrete conjugate net in general position
is continuously flexible <— all its 3 x 3
complexes are continuously flexible.

BOBENKO et al., 2008:

has not been achieved yet”
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H. PorT™MANN, Y. LIUu, J. WALLNER,

A. BOBENKO, W. WANG:

Geometry of Multi-layer Freeform Structures for
Architecture. ACM Trans. Graphics 26 (3) (2007),
SIGGRAPH 2007

. the complete classification of flexible discrete conjugate nets ( “quad meshes”)

N



Also the folding of the roof at cabrios
Is based on a flexible quad mesh

courtesy: Nadja Posselt
Diploma thesis, TU Dresden 2010
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2. Three examples of flexible quad meshes
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Miura-ori

Unfolded miura-ori;
dashs are valley folds,
full lines are mountain folds
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iIs a Japanese folding
technique named after Prof. Koryo
Miura, The University of Tokyo.

It is used for solar panels because it
can be unfolded into its rectangular
shape by pulling on one corner only.

On the other hand it is used as kernel
to stiffen sandwich structures.

N



2. Three examples of flexible quad meshes




The edges of miura-ori constitute
two sets of folds. The zig-zag lines
placed in the horizontal planes €1, 5
are called horizontal folds. They are
compounds of alternate valley and
mountain folds.

The transversal folds are the
vertical, are either pure valley folds
or mountain folds. They are
generated by iterated reflections in
the horizontal planes £1,e5, hence
located in vertical planes.
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There is a hidden
local symmetry at
each vertex V:

The parallelograms
P, Py with angle o
and the elogations

3, P35 of those with
angle 180° — a form
a pyramid symmetric
with respect to the
fixed planes.

N



2. Three examples of flexible quad meshes
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H. GRAF, R. SAUER 1931: A T-flat is a compound of prisms &, V. ...
(see above: top view and side view. ‘T’ stands for ‘trapezoid’).

The horizontal folds e;, f;,... are located in horizontal planes, the vertical folds in

vertical planes €1, ¢9, ...
oy
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2. Three examples of flexible quad meshes

T-flat together with a flexion (in red).

The top view of ® performs a scaling with factor \ orthogonal to ¢ .
This implies analogous bendings of the other prisms W, . ..
— T-flats are continuously flexible.
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2. Three examples of flexible quad meshes

1/ N
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Any plane quadrangle is a tile for a
regular tessellation of the plane.
It is obtained by applying

e iterated 180°-rotations about the
midpoints of the sides of an initial
quadrangle or

e by applying iterated translations
on a centrally symmetric hexagon.



2. Three examples of flexible quad meshes

Any plane quadrangle is a tile for a
J T ? regular tessellation of the plane.

It is obtained by applying

? e iterated 180°-rotations about the
midpoints of the sides of an initial

7 quadrangle or
/ e by applying iterated translations
J on a centrally symmetric hexagon.
/B
A. KOKOTSAKIS, 1932 For a convex f; this polyhedral
Athens structure is continuously flexible.
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It can be proved that under continuous self-motions only such poses with vertices
on right circular cylinders can be obtained (translations — helical motions).
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2. Three examples of flexible quad meshes

S e
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NN\ oo\ = P
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2. Three examples of flexible quad meshes
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3. Transmission by one spherical four-bar

Four-bar motion ¥5/3; and its
spherical image
0 < ai,B1,71,01 < 180°
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3. Transmission by one spherical four-bar

We set

¥1
11 ;= tan — 1o := tan — .
1 all 5 3 2 5

P2

t1, to are projective coordinates on the
path circles a1, b; of Ay and By, resp.,
and obtain

ngt%t% —|— Cgot% —|— Cozt% —|— Clltltg —|— Coo — O Wlth Cik — f(Ozl, e o ey 51)
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3. Transmission by one spherical four-bar

The transmission ¢ — 9 by the four-
bar linkage defines a 2-2-correspondence
between the circles a; and bq:

ngt%tg + CQOt% + Coztg + C1 1t1t2 + Coo — 0

. like in the plane.

— tan PL .— tan 22
(tl ;= tan 5’ t2 ;= tan 5 )

On the sphere ambiguities arise as points
can be replaced by their antipodes.
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3. Transmission by one spherical four-bar

The coefficients in the biquadratic equation
ngt%t% + ngt% -+ COQt% + c11t1to + cogo = 0

are:

ery = sin 1B g 1Byt
Co0 = sin AFBHNTOL iy By 40y
c11 = —2 sinaq sin 81 # 0

Co2 = S O‘1+51;Wl_51 sin 041+512—V1—51
coo = sin 0‘1_51;71—51 sin 041—612—71—51
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The 2-2-correspondence
ngt%t% + Cgot% -+ Cogt% -+ Clltltg -+ Coo — 0

depends only on the ratio of the coefficients.
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3. Transmission by one spherical four-bar

The 2-2-correspondence

ngt%t% + ngt% -+ COQt% -+ Clltltg -+ Coo — 0

depends only on the ratio of the coefficients.

Theorem:

For any spherical four-bar linkage the coefficients c;;, are algebraically dependent:
ci1 IS a root of a O6th-degree polynomial with coefficients depending on
€00, €02, €20, C22 -

Conversely, in the complex extension any choice of coefficients in the biquadratic

equation above defines the spherical four-bar linkage uniquely — up to replacement
of vertices by their antipodes. However, the vertices need not be real.
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3. Transmission by one spherical four-bar

Particular cases of the 2-2-correspondence:
1) The 2-2-correspondence between a; and by splits into two projectivities <=
the quadrangle is a spherical isogram, i.e., 51 = a1 and 61 = y1 (cgp = c22 = 0).
In this case (. .. isogonal type)

sin o £ sin vy

t — 1ty = tp for ar #v, m—m

sin(a; — 1)

combines two linear functions.
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3. Transmission by one spherical four-bar

2) Under the condition
COS (v COS 1 = COS7Y1 COS g

(equivalent to det(c;r) = 0) each
quadrangle has orthogonal diagonals
(... orthogonal type).

The 2-2-correspondence maps pairs
of points on a; aligned with I5y onto
pairs of points on by located on the
orthogonal line through I .
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3. Transmission by one spherical four-bar

3) Deltoid type:
a1 =07 —> Ccogop=Co2=0.
The 2-2-correspondence splits:
t1 (cantits + coot1 + cr1ta) = 0;

a) t; = 0 corresponds to all t; € R,

b) 1-2-correspondence.
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4. Composition of spherical four-bars

Composition of two four-bars
22/21 and 23/21 and their
spherical images
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4. Composition of spherical four-bars

ngt%t% + Cgot% + COQt% + c11t1te + cgo = 0
dootits + doots + doots + dyitsta + dgg = 0

The four-bar transmissions are equi-
valent to these two bilinear equations.

We eliminate t5 by computing the
resultant with respect to t5. Thus we
obtain a biquartic equation in

t1 = tan 5+ and t3 = tan %2,

l.e., a 4-4-correspondence between
Aq € a1 and By € by .
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4. Composition of spherical four-bars

Continuous flexibility of a Kokotsakis
mesh for n = 4 means:

The 4-4-correspondence or — in the
reducible case — one of its components
can be decomposed in two different
ways.
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4. Composition of spherical four-bars

I. Planar-symmetric type (KOKOTSAKIS 1932):

The reflection in the plane of symmetry of V3 and
V4 maps each horizontal fold onto itself while the
two vertical folds are exchanged.

Il. Translational type:

There is a translation V; — V4 and Vo, — Vj
mapping the three faces on the right hand side
onto the triple on the left hand side.

The composition of two linear functions ¢; — t5 and t5 +— t3 is again linear =
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4. Composition of spherical four-bars

I1l: Isogonal type: (n > 4)

Miura-ori is a special case of

Theorem: [KOKOTSAKIS 1932]
A Kokotsakis mesh is flexible when at each
vertex V; opposite angles are either equal or
complementary, i.e.,
a; = B;, i =0; or
a=m— B, V=70

A quad mesh where all vertices are of this
type is continuously flexible and called Voss
surface (KOKOTSAKIS, GRAF, SAUER)
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4. Composition of spherical four-bars

Illa. Generalized isogonal type:

(A. KOKOTSAKIS (1932): At each vertex
opposite angles are congruent or complementary).

G. NAWRATIL (2010): At at least two of the four
pyramides opposite angles are congruent.

IV. Orthogonal type (GRAF, SAUER 1931):

Here the horizontal folds are located in parallel
(say: horizontal) planes, the vertical folds in
vertical planes (T-flat).
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4. Composition of spherical four-bars

V. Line-symmetric type (H.S. 2009):

A line-reflection maps the pyramide at V;
onto that of Vj; another one exchanges
the pyramides at V5 and V3.

This includes Kokotsakis' example of a
flexible tessellation.
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4. Composition of spherical four-bars

Under the conditions (case V)
a1+ P2 = 01 + 02

SQ1SY1 : SP25Y2 = 831807 : SQua80y =
(cB1cd1 — cagcyr) : (cBacys — cascds)

the 4-4-correspondance between t;
and t3 can be decomposed in two
ways in the product of two 2-2-
correspondences.
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4. Composition of spherical four-bars

Under the conditions (case IV)

cos o cos B = cosy; cosdi, o = [,

COS (g COS By = CcOS Y2 cosdy, O = —07,

both four-bars share the orthogonal
diagonals.

Due to GRAF and SAUER (1931)
there is a second decomposition
of the same kind; all four-bars
share one diagonal (spherical DIXON
mechanism).
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4. Composition of spherical four-bars

The 4-4-correspondence is the square
of a 2-2-correspondence

Cglt%tg -+ Clgtltg + c1o0t1 + co1t3 =0

with coefficients depending only on
tanaq , tandy, tan By .

In all known non-trivial examples
(I, 1V, V) the 4-4-correspondence
between t1 and t3 is reducible.

There is a new example of a reducible
composition:
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5. Flexibility vs. reducibility of meshes

BURMESTER's focal mechanism

Right hand figure: Reducible spherical
composition obeying DIXON's angle
condition for 1/
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5. Flexibility vs. reducibility of meshes

For the composition of two spherical four-bars Dixon's angle condition
J [10A1B1 =+ < I30B2As is equivalent to the statement that the discriminants
of both 2-2-correspondences with respect to 5

D1 — (611t2)2 — 4(62275% —+ CQO)(COQt% —+ Coo) and
Dy = (dy1t2)* — 4(dagot5 + do2)(daots + doo)

are proportional.

Then the 4-4-correspondence is reducible.
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5. Flexibility vs. reducibility of meshes

Theorem: (G. NAWRATIL, 2011)
There are 4 non-trivial cases where the 4-4-correspondence is reducible:

1. Isogonal case: One of the spherical quadrangles is isogonal.
2. Dixon case: The two spherical four-bars obey DIXON's angle condition.

3. Orthogonal case: Both spherical quadrangles are orthogonal and share one
diagonal (T-type).
4: Deltoid case: One of the quadrangles is a deltoid.

Workshop on Rigidity, October 11-14, 2011, Fields Institute, Toronto é 42



5. Flexibility vs. reducibility of meshes

Conjecture:

Apart from the trivial translatory type | and planar-symmetrical type Il there is no
continuously flexible Kokotsakis-mesh with irreducible 4-4-correspondence.

Pro-arguments: The (complete) 4-4-correspondence (most probably) defines the
10 coefficients cqq, ..., dog of its components uniquely — up to a common factor.
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5. Flexibility vs. reducibility of meshes

Conjecture:

Apart from the trivial translatory type | and planar-symmetrical type Il there is no
continuously flexible Kokotsakis-mesh with irreducible 4-4-correspondence.

Pro-arguments: The (complete) 4-4-correspondence (most probably) defines the
10 coefficients cqq, ..., dog of its components uniquely — up to a common factor.

Once the conjecture is proved, the only candidates for flexible Kokotsakis-meshes
are the four cases mentioned before. This should enable to classify of all flexible
Kokotsakis-meshes.
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