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1. Periodic frameworks

Definitions:.

A d-periodic graph is a pair (G, I'), where G = (V, E) is a simple infinite graph
with vertices V , edges E and finite degree at every vertex, while

[ C Aut(G) is a free Abelian group of automorphisms that has rank d, acts
without fixed points and has a finite number of vertex (and hence, also edge)
orbits.

A periodic placement of a d-periodic graph (G, IN) in RY is defined by two functions:
p:V>RY and 1l >T(RY)

with p assigning points in RY to the vertices of G and

1t a faithful representation of I into the group of translations, with image a lattice of

rank d.

These two functions must satisfy  p(gv) = it(g)(p(v))



Fragment of a 2-periodic framework (d = 2), with n = 2 equivalence classes of
vertices and m = 3 equivalence classes of edges. The generators of the periodicity
lattice are marked by arrows, which, in this example, are not edges.

Figure from Borcea, C.S. and Streinu, I.: Minimally rigid periodic graphs, Bulletin LMS (2011) .



Given a periodic placement (G, I, p, 1), we may fix the length of all edges

£(uv) = |p(v) - p(u)]

and obtain a weighted periodic graph (G, I, £). Assuming G connected, we
also refer to (G, I, p, ) as a periodic framework.

A realization of the weighted d-periodic graph (G, I, £) in R9 is a periodic
placement that induces the given weights.

Realizations that differ by an isometry of R will be considered as the same
configuration, hence the configuration space of (G, T, I) is the quotient
space of all realizations by the group E(d) of all isometries of RY.

The deformation space of a periodic framework (G, ', p, ) is
the connected component of the corresponding configuration.

For tetrahedral crystal frameworks (e.g. silica and zeolites), the infinitesimal
deformation space is at least three-dimensional.

[Borcea-Streinu, Thm. 4.2, pg. 2644]



2. Frameworks of the silica polymorphs: cristobalite, quartz and tridymite

Structural determinations for these silica polymorphs date back to the early days of
X-ray diffraction.

Fig. 7.—a and b. Laue diagrams of « quartz and 2 quartz. After . Rinne.

Figure from Bragg, W.L. and Gibbs, R.E.: The structure of a and B quartz,
Proc. Roy. Soc. A 109 (1925), 405-427.



The framework structures of quartz, cristobalite and tridymite can be described as
periodic articulations of tetrahedra with oxygen at the vertices and silicon at the
center of each tetrahedron.

Structural diagrams for high cristobalite and high quartz (projections); from
Gibbs, R.E.: The polymorphism of silicon dioxide and the structure of tridymite,
Proc. Roy. Soc. A 113 (1926), 351-368.



An illustration with “kissing spheres” for the local disposition of oxygen.

Fra. 12. —antolmhtc Fra. 13.—Tridymite. Iic. 14.—Quartz.

Ibid. Gibbs (1926).



3. Geometric deformations of crystal frameworks

3.1 Cristobalite

Ideal high cristobalite framework. Cubes are traced only for suggestive purposes.
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Deforming the ideal high cristobalite framework. The periodicity lattice is generated
by the three vectors y, = t, - s, which vary as the framework deforms.

Theorem 1. The deformation space of the ideal high cristobalite framework
is naturally parametrized by the open neighborhood of the identity in SO(3)
where the depicted generators remain linearly independent.



3.2 Quartz
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A fragment of the tetrahedral framework of quartz. The periodicity lattice is generated
by the four marked vectors, which must maintain a zero sum under deformation. The
full framework is obtained by translating the depicted tetrahedra with all periods.

Theorem 2. The deformation space of the quartz framework is naturally parametrized
by an open set of the three-dimensional torus (S?)3.



3.3 Tridymite

The tetrahedral framework of tridymite. The periodicity lattice is generated by
the marked vectors, subject to the relations (C2-C1)+(D2-D1) = (A2 - A1) and
(C2-C1)+(E2-E1)=(B2 - B1).



With an adequate choice of orthogonal transformations Q, Q,, Q, , maintaining the two
relations of linear dependence between the five generators of the period lattice
amounts to solving the system

e+Qe=Q,e,+Q,e;, i=1,2

Note that Q; are orthogonal matrices and hence the above system
involves quadratic conditions.

However, we may interpret the system as a problem about a spherical four-bar
mechanism and obtain a simple geometrical solution. We assume Q € SO(3) given
in a neighborhood of the identity and we look for solutions Q,, Q,.



The spherical four-bar mechanism associated to the system. The geodesic arcs
e,e, and Qe,Qe, have length n/2.



Spherical four-bar mechanism and reflection in [M1,M2].



/Y\/]\/I\ Fragment of the

ideal high tridymite (the aristotype)
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Theorem 3. The deformation space of the tridymite framework in a neighborhood
of the aristotype can be represented as a ramified covering with four sheets of a
three-dimensional domain. There is a natural Z, x Z, action on this covering which
fixes the singularity at the aristotype framework.

The tangent space at this singularity is six-dimensional.

Sheets paired by the relabeling involution (Q;,Q,) - (Q,,Q,) meet transversely at
the singularity. Otherwise, the ramification locus is of codimension two and is
determined by reflection invariant configurations of the spherical quadrilateral.



Summary of results

For a periodic graph (G, IN), with G = (V, E), we let |V/T |=n and |E/T |=m.

We have investigated the deformation spaces of the of the ideal framework
structures associated to three silica polymorphs (cristobalite, quartz and
tridymite) for the maximal periodicity lattice of the high phase.

For cristobalite (n=4,m=12) and quartz (n=6,m=18), the deformation spaces
are smooth three-dimensional manifolds.

For tridymite (n=8,m=24), the deformation space is and can be
described in a neighborhood of the aristotype as a with
four-sheets of a three-dimensional domain.
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