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Introduction

The calculation of the volume of a polyhedron in 3-dimensional space
E 3, H3, or S3 is a very old and difficult problem. The first known result in
this direction belongs to Tartaglia (1499-1557) who found a formula for
the volume of Euclidean tetrahedron. Now this formula is known as
Cayley-Menger determinant. More precisely, let be an Euclidean tetrahedron
with edge lengths dij , 1 ≤ i < j ≤ 4. Then V = Vol(T ) is given by

288V 2 =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d2

12 d2
13 d2

14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

∣∣∣∣∣∣∣∣∣∣

.

Note that V is a root of quadratic equation whose coefficients are integer
polynomials in dij , 1 ≤ i < j ≤ 4.
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Introduction

Surprisely, but the result can be generalized on any Euclidean polyhedron in
the following way.

Theorem 1 (I. Kh. Sabitov, 1996)

Let P be an Euclidean polyhedron. Then V = Vol(P) is a root of an even

degree algebraic equation whose coefficients are integer polynomials in

edge lengths of P depending on combinatorial type of P only.

P1 P2

(All edge lengths are taken to be 1)

Example

Polyhedra P1 and P2 are of the same combinatorial type. Hence,
V1 = Vol(P1) and V2 = Vol(P2) are roots of the same algebraic equation

a0V
2n + a1V

2n−2 + . . .+ anV
0 = 0.
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Introduction

Cauchy theorem (1813) states that if the faces of a convex polyhedron are
made of metal plates and the polyhedron edges are replaced by hinges, the
polyhedron would be rigid. In spite of this there are non-convex polyhedra
which are flexible.
Bricard, 1897 (self-interesting flexible octahedron)
Connelly, 1978 (the first example of true flexible polyhedron)
The smallest example is given by Steffen (14 triangular faces and 9 edges).
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Introduction

Bellows Conjecture

Very important consequence of Sabitov’s theorem is a positive solution of
the Bellows Conjecture proposed by Dennis Sullivan.

Theorem 2 (R. Connelly, I. Sabitov and A. Walz, 1997)

All flexible polyhedra keep a constant volume as they are flexed.

It was shown by Victor Alexandrov (Novosibirsk, 1997) that Bellows
Conjecture fails in the spherical space S3. In the hyperbolic space H3 the
problem is still open.

Recently, A.A. Gaifullin (2011) proved a four dimensional version of the
Sabitov’s theorem.

Any analog of Sabitov’s theorem is unknown in both spaces S3 and H3.
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Spherical orthoscheme

Theorem 3 (L. Schläfli)

The volume of a spherical orthoscheme with essensial dihedral angles A, B

and C

A

C

B
S

3

is given by the formula V = 1
4
S(A,B ,C ), where

S(
π

2
− x , y ,

π

2
− z) = Ŝ(x , y , z) =

∞∑

m=1

(
D − sin x sin z

D + sin x sin z

)m cos 2mx − cos 2my + cos 2mz − 1

m2
− x2 + y2 − z2

and D ≡
√

cos2 x cos2 z − cos2 y .
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Hyperbolic orthoscheme

The volume of a biorthogonal tetrahedron (orthoscheme) was calculated by
Lobachevsky and Bolyai in H3 and by Schläfli in S3.

Theorem 4 (J. Bolyai)

The volume of hyperbolic orthoscheme T is given by the formula

D

C

B

A

z

α

β

CD

AB

CBA

BCD

T

T

T

Vol (T ) =
tan γ

2 tanβ

z∫

0

z sinh z dz(
cosh2 z
cos2 α

− 1
)√

cosh2 z
cos2 γ

− 1
.
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Hyperbolic orthoscheme

The following theorem is the Coxeter’s version of the Lobachevsky result.

Theorem 5 (Lobachevsky, Coxeter)

The volume of a hyperbolic orthoscheme with essential dihedral angles A,B
and C

A

C

B
H

3

is given by the formula

V =
i

4
S(A,B ,C ),

where S(A,B ,C ) is the Schläfli function.
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Ideal polyhedra

Consider an ideal hyperbolic tetrahedron T with all vertices on the infinity

Opposite dihedral angles of ideal tetrahedron are equal to each other and
A+ B + C = π.

Theorem 6 (J. Milnor, 1982)

Vol(T ) = Λ(A) + Λ(B) + Λ(C ), where Λ(x) = −
x∫
0

log |2 sin t|dt is the

Lobachevsky function.

More complicated case with only one vertex on the infinity was investigated
by E. B. Vinberg (1993).
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Ideal polyhedra

Let O be an ideal symmetric octahedron with all vertices on the infinity.

O:

Then C = π− A, D = π−B , F = π− E and the volume of O is given by

Theorem 7 (Yana Mohanty, 2002)

Vol (O) = 2

(
Λ

(
π + A+ B + E

2

)
+ Λ

(
π − A− B + E

2

)

+Λ

(
π + A− B − E

2

)
+ Λ

(
π − A+ B − E

2

))
.
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Volume of tetrahedron

Despite of the above mentioned partial results, a formula the volume of an
arbitrary hyperbolic tetrahedron has been unknown until very recently. The
general algorithm for obtaining such a formula was indicated by
W.–Y. Hsiang (1988) and the complete solution of the problem was
given by
Yu. Cho and H. Kim (1999), J. Murakami, M. Yano (2001) and
A. Ushijima (2002).

In these papers the volume of tetrahedron is expressed as an analytic
formula involving 16 Dilogarithm of Lobachevsky functions whose
arguments depend on the dihedral angles of the tetrahedron and on some
additional parameter which is a root of some complicated quadratic
equation with complex coefficients.
A geometrical meaning of the obtained formula was recognized by
G. Leibon from the point of view of the Regge symmetry. An excellent
exposition of these ideas and a complete geometric proof of the volume
formula was given by Y. Mohanty (2003).
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Volume of tetrahedron

We suggest the following version of the integral formula for the volume.
Let T = T (A,B ,C ,D,E ,F ) be a hyperbolic tetrahedron with dihedral
angles A,B ,C ,D,E ,F . We set
V1 = A+ B + C , V2 = A+ E + F , V3 = B + D + F , V4 = C + D + E

(for vertices)
H1 = A+B +D +E , H2 = A+C +D +F , H3 = B +C +E +F , H4 = 0
(for Hamiltonian cycles).

Theorem 8 (D. Derevnin and M., 2005)

The volume of a hyperbolic tetrahedron is given by the formula

Vol (T ) = −1

4

z2∫

z1

log
4∏

i=1

cos Vi+z
2

sin Hi+z
2

dz ,

where z1 and z2 are appropriate roots of the integrand.

Alexander Mednykh (NSU) Volumes of polyhedra 19 October 2011 12 / 34



Volume of tetrahedron

More precisely, the roots in the previous theorem are given by the formulas

z1 = arctan
K2

K1

− arctan
K4

K3

, z2 = arctan
K2

K1

+ arctan
K4

K3

and

K1 = −
4∑

i=1

(cos(S − Hi ) + cos(S − Vi)),

K2 =
4∑

i=1

(sin(S − Hi ) + sin(S − Vi)),

K3 = 2(sinA sinD + sinB sinE + sinC sinF ),

K4 =
√

K 2
1 + K 2

2 − K 2
3 , S = A+ B + C + D + E + F .
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Volume of tetrahedron

Recall that the Dilogarithm function is defined by

Li 2(x) = −
x∫

0

log(1− t)

t
dt.

We set ℓ(z) = Li 2(e
iz) and note that ℑ(ℓ(z)) = 2Λ( z

2
).

The following result is a consequence of the above theorem.

Theorem 9 (J. Murakami, M. Yano, 2001)

Vol(T ) = 1
2
ℑ(U(z1,T )− U(z2,T )), where

U(z ,T ) =
1

2
(ℓ(z) + ℓ(A+ B + D + E + z)

+ℓ(A+ C + D + F + z) + ℓ(B + C + E + F + z)

−ℓ(π + A+ B + C + z)− ℓ(π + A+ E + F + z)

−ℓ(π + B + D + F + z)− ℓ(π + C + D + E + z)).
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More deep history

It is surprising that, more than a century ago, in 1906, the Italian
mathematician G. Sforza found the formula for the volume of a
non-Euclidean tetrahedron. This fact became known during a discussion of
the author with J. M. Montesinos at the conference in El Burgo d Osma
(Spain) in August 2006.

Let G be Gram matrix for hyperbolic tetrahedron T . We set
cij = (−1)i+jGij , where Gij is ij-th minor of matrix G .

Theorem 10 (G. Sforza, 1906)

The volume of a hyperbolic tetrahedron T is given by the following formula

Vol (T ) =
1

4

A∫

A0

log
c34 −

√
−det G sinA

c34 +
√
−det G sinA

dA,

where A0 is a root of the equation det G = 0.
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More deep history

Proof of Sforza formula

We start with the the following theorem.

Theorem 11 (Jacobi)

Let G = (aij)i ,j=1,...,n be an n× n matrix with detG = ∆. Denote by

C = (cij )i ,j=1,...,n the matrix formed by elements cij = (−1)i+jGij , where

Gij is ij-th minor of matrix G . Then

det (cij)i , j=1,...,k = ∆k−1
det (aij)i , j=k+1,...,n.
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Sforza formula

Apply the theorem to Gram matrix G for n = 4 and k = 2

G =




1 − cosA x x

− cosA 1 x x

x x x x

x x x x


 ,C =




x x x x

x x x x

x x c33 c34
x x c43 c44


 .

We have c33c44 − c234 = ∆(1− cos2 A).

By Cosine Rule

cosh ℓA =
c34√
c33c44

, hence

sinh ℓA =

√
c234 − c33c44

c33c44
=

sinA√
c33c44

√
−∆ .
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Sforza formula

Since exp(±ℓA) = cosh ℓA ± sinh ℓA we have

exp(ℓA) =
c34 + sinA

√
−∆√

c33c44
, exp(−ℓA) =

c34 + sinA
√
−∆√

c33c44
.

Hence,

exp(2ℓA) =
c34 + sinA

√
−∆

c34 − sinA
√
−∆

, and ℓA =
1

2
log

c34 + sinA
√
−∆

c34 − sinA
√
−∆

.

By the Schläfli formula

−dV =
1

2

∑

α

ℓαdα, α ∈ {A,B ,C ,D,E ,F}

V =

A∫

A0

(−ℓA
2

)dA =
1

4

A∫

A0

log
c34 −

√
−∆sinA

c34 +
√
−∆sinA

.

The integration is taken over path from (A,B ,C ,D,E ,F ) to
(A0,B ,C ,D,E ,F ) where A0 is a root of ∆ = 0.
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Symmetric polyhedra

A tetrahedron T = T (A,B ,C ,D,E ,F ) is called to be symmetric if
A = D, B = E , C = F .

Theorem 12 (Derevnin-Mednykh-Pashkevich, 2004)

Let T be a symmetric hyperbolic tetrahedron. Then Vol(T ) is given by

2

π/2∫

Θ

(arcsin(a cos t) + arcsin(b cos t) + arcsin(c cos t)− arcsin(cos t))
dt

sin 2t
,

where a = cosA, b = cosB , c = cosC , Θ ∈ (0, π/2) is defined by

sinA

sinh ℓA
=

sinB

sinh ℓB
=

sinC

sinh ℓC
= tanΘ,

and ℓA, ℓB , ℓC are the lengths of the edges of T with dihedral angles

A,B ,C , respectively.
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Sine and cosine rules

Sine and cosine rules for hyperbolic tetrahedron

Let T = T (A,B ,C ,D,E ,F ) be a hyperbolic tetrahedron with dihedral
angles A,B ,C ,D,E ,F and edge lengths ℓA, ℓB , ℓC , ℓD , ℓE , ℓF respectively.

Consider two Gram matrices

G =




1 − cosA − cosB − cos F
− cosA 1 − cosC − cosE
− cosB − cosC 1 − cosD
− cos F − cosE − cosD 1




and

G ∗ =




1 cosh ℓD cosh ℓE cosh ℓC
cosh ℓD 1 cosh ℓF cosh ℓB
cosh ℓE cosh ℓF 1 cosh ℓA
cosh ℓC cosh ℓB cosh ℓA 1


 .
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Sine and cosine rules

Starting volume calculation for tetrahedra we rediscover the following
classical result:

Theorem 13 (Sine Rule, E. d’Ovidio, 1877, J. L. Coolidge, 1909,
W. Fenchel, 1989)

sinA sinD

sinh ℓA sinh ℓD
=

sinB sinE

sinh ℓB sinh ℓE
=

sinC sinF

sinh ℓC sinh ℓF
=

√
detG

detG ∗
.

The following result seems to be new or at least well-forgotten.

Theorem 14 (Cosine Rule, M. Pashkevich and M., 2005)

cosA cosD − cosB cosE

cosh ℓB cosh ℓE − cosh ℓA cosh ℓD
=

√
detG

detG ∗
.

Both results are obtained as a consequence of Theorem 11 relating
complimentary minors of matrices G and G ∗.
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Symmetric octahedra

Octahedron O = O(a, b, c ,A,B ,C ) having mmm – symmetry
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Symmetric octahedra

Theorem 15 (Sine-Tangent Rule, N. Abrosimov, M. Godoy and M.,
2008)

Let O(a, b, c ,A,B ,C ) be a spherical octahedra having mmm-symmetry.

Then the following identities hold

sinA

tan a
=

sinB

tan b
=

sinC

tan c
= T = 2

K

C ,

where K and C are positive numbers defined by the equations

K 2 = (z − xy)(x − yz)(y − xz), C = 2 xyz − x2 − y2 − z2 + 1 ,

and x = cos a, y = cos b, z = cos c .
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Symmetric polyhedra: volume of mmm – octahedron

Theorem 16 (N. Abrosimov, M. Godoy and M., 2008)

Let O = O(A,B ,C ) be a spherical octahedron having mmm–symmetry.

Then volume V = V (O) is given

2

∫ θ

π

2

(
arth(X cos τ) + arth(Y cos τ) + arth(Z cos τ) + arth(cos τ)

) dτ

cos τ
,

where X = cosA, Y = cosB, Z = cosC and 0 ≤ θ ≤ π/2 is a root of the

equation

tan2 θ +
(1 + X )(1 + Y )(1 + Z )

1 + X + Y + Z
= 0.

Moreover, θ is given by the Sine –Tangent rule

sinA

tan a
=

sinB

tan b
=

sinC

tan c
= tan θ .
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Symmetric polyhedra: Euclidean mmm – octahedron

For the Euclidean case the following result holds.

Theorem 17 (R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, 2004)

Let V be the volume of an Euclidean octahedron O(a, b, c ,A,B ,C ) with

mmm –symmetry. Then V is a positive root of equation

9V 2 = 2(a2 + b2 − c2)(a2 + c2 − b2)(b2 + c2 − a2) .

Alexander Mednykh (NSU) Volumes of polyhedra 19 October 2011 25 / 34



Symmetric polyhedra: octahedron with 2|m –symmetry

D,d

D,d

p

m

2|m

Octahedron O = O(a, b, c , d ,A,B ,C ,D), having 2|m –symmetry.
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Symmetric polyhedra: volume of 2|m –octahedron

Theorem 18 (N. Abrosimov, M. Godoy and M., 2008)

Let O = O(A,B ,C ,D) be a spherical octahedron having 2|m –symmetry.

Then the volume V = V (O) is given by

2
θ∫
π

2

(
arth(X cos τ) + arth(Y cos τ) + arth(Z cos τ) + arth(W cos τ)

)
dτ
cos τ ,

where X = cosA, Y = cosB, Z = cos C+D
2

, W = cos C−D
2

and

θ, 0 ≤ θ ≤ π/2 is given by Sine –Tangent rule

sinA

tan a
=

sinB

tan b
=

sin C+D
2

tan c+d
2

=
sin C−D

2

tan c−d
2

= tan θ .
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Symmetric polyhedra: Euclidean 2|m –octahedron

For the Euclidean case the following result holds.

Theorem 19 (R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, 2004)

Let V be the volume of an Euclidean octahedron O(a, b, c , d ,A,B ,C ,D)
with 2|m –symmetry. Then V is a positive root of equation

9V 2 = (2a2 + 2b2 − c2 − d2)(a2 − b2 + cd)(b2 − a2 + cd) .
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Symmetric polyhedra: volume of spherical hexahedron

A

A

A

A

B

B
B

B

CC
C C

Hexahedron ≡ combinatorial cube H(A,B ,C )

Theorem 20 (N. Abrosimov, M. Godoy and M., 2008)

Volume of a spherical hexahedron H(A,B ,C ) with mmm – symmetry is

equal

2Re

Θ∫
π

2

(arcth ( X
cos t

) + arcth ( Y
cos t

) + arcth ( Z
cos t

) + arcth ( 1
cos t

)) dt
sin t

,

where Θ, 0 ≤ Θ ≤ π
2

is defined by

tan2Θ+
(2XYZ + X 2 + Y 2 + Z 2 − 1)2

4(X + YZ )(Y + XZ )(Z + XY )
= 0,

X = cosA, Y = cosB and Z = cosC .
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Lambert cube

The Lambert cube Q(α, β, γ) is one of the simplest polyhedra. By
definition, this is a combinatorial cube with dihedral angles α, β and γ at
three noncoplanar edges and with right angles at all other edges. The
volume of the Lambert cube in hyperbolic space was obtained by R.
Kellerhals (1989) in terms of the Lobachevsky function. We give the
volume formula of the Lambert cube in spherical space.

la

lb

lg
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Lambert cube: spherical volume

Theorem 21 (D. A. Derevnin and M., 2009)

The volume of a spherical Lambert cube Q(α, β, γ), π
2
< α, β, γ < π is

given by the formula

V (α, β, γ) =
1

4
(δ(α,Θ) + δ(β,Θ) + δ(γ,Θ) − 2δ(

π

2
,Θ)− δ(0,Θ)),

where

δ(α,Θ) =

π

2∫

Θ

log(1− cos 2α cos 2τ)
dτ

cos 2τ

and Θ, π
2
< Θ < π is defined by

tan2Θ = −K +
√

K 2 + L2M2N2, K = (L2 +M2 + N2 + 1)/2,

L = tanα, M = tanβ, N = tan γ.
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Lambert cube: hyperbolic volume

Remark. The function δ(α,Θ) can be considered as a spherical analog of
the function

∆(α,Θ) = Λ(α+Θ)− Λ(α−Θ).

Then the main result of R.Kellerhals (1989) for hyperbolic volume can be
obtained from the above theorem by replacing δ(α,Θ) to ∆(α,Θ) and K

to −K .
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Lambert cube: hyperbolic volume

As a consequence of the above mentioned volume formula for Lambert
cube we obtain

Proposition 1 (D. A. Derevnin and M., 2009)

Let L (α, β, γ) be a spherical Lambert cube such that

cos2 α+ cos2 β + cos2 γ = 1. Then

Vol L (α, β, γ) =
1

4
(
π2

2
− (π − α)2 − (π − β)2 − (π − γ)2).

Before a similar statement for spherical orthoscheme was done by Coxeter.

Proposition 2 (H. S. M. Coxeter, 1935)

Let T (α, β, γ) be a spherical orthoscheme such that

cos2 α+ cos2 β + cos2 γ = 1. Then

Vol T (α, β, γ) =
1

4
(β2 − (

π

2
− α)2 − (

π

2
− γ)2).
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Rational Volume Problem

The following problem is widely known and still open.

Rational Volume Problem. Let P be a spherical polyhedron whose
dihedral angles are in πQ. Then Vol (P) ∈ π2Q.

Examples

1. Since cos2 2π
3
+ cos2 2π

3
+ cos2 3π

4
= 1, by Proposition 1 we have

Vol L (
2π

3
,
2π

3
,
3π

4
) =

31

576
π2.

2. Let P be a Coxeter polyhedron in S3 (that is all dihedral angles of P
are π

n
for some n ∈ N). Then the Coxeter group ∆(P) generated by

reflections in faces of P is finite and

Vol (P) =
Vol (S3)

|∆(P)| =
2π2

|∆(P)| ∈ π2Q.
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