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Classification of the finite simple groups

Context: Classification of the finite simple groups.
18 infinite families.
26 sporadic groups.

Question left open: To achieve a unified geometric
interpretation of all finite simple groups (Buekenhout).
Encouragement in this direction:
Theory of Buildings by J. Tits.
Applies to 17 of the 18 infinite families
leaving aside the Alt(n) and the 26 sporadic groups.



Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

Classification of the finite simple groups

Context: Classification of the finite simple groups.
18 infinite families.
26 sporadic groups.

Question left open: To achieve a unified geometric
interpretation of all finite simple groups (Buekenhout).
Encouragement in this direction:
Theory of Buildings by J. Tits.
Applies to 17 of the 18 infinite families
leaving aside the Alt(n) and the 26 sporadic groups.



Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

Classification of the finite simple groups

Context: Classification of the finite simple groups.
18 infinite families.
26 sporadic groups.

Question left open: To achieve a unified geometric
interpretation of all finite simple groups (Buekenhout).
Encouragement in this direction:
Theory of Buildings by J. Tits.
Applies to 17 of the 18 infinite families
leaving aside the Alt(n) and the 26 sporadic groups.



Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

Classification of the finite simple groups

Context: Classification of the finite simple groups.
18 infinite families.
26 sporadic groups.

Question left open: To achieve a unified geometric
interpretation of all finite simple groups (Buekenhout).
Encouragement in this direction:
Theory of Buildings by J. Tits.
Applies to 17 of the 18 infinite families
leaving aside the Alt(n) and the 26 sporadic groups.



Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

Classification of the finite simple groups

Context: Classification of the finite simple groups.
18 infinite families.
26 sporadic groups.

Question left open: To achieve a unified geometric
interpretation of all finite simple groups (Buekenhout).
Encouragement in this direction:
Theory of Buildings by J. Tits.
Applies to 17 of the 18 infinite families
leaving aside the Alt(n) and the 26 sporadic groups.



Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

Classification of the finite simple groups

Context: Classification of the finite simple groups.
18 infinite families.
26 sporadic groups.

Question left open: To achieve a unified geometric
interpretation of all finite simple groups (Buekenhout).
Encouragement in this direction:
Theory of Buildings by J. Tits.
Applies to 17 of the 18 infinite families
leaving aside the Alt(n) and the 26 sporadic groups.



Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

Two main traces have been developed in incidence
geometry

1 Classify geometries over a given diagram
2 Given a group G, classify all incidence geometries of this

group and find a good set of axioms to impose on them.
This subject is known as Coset geometry
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Sample of known results

Sample of known results, theorical and experimental

Every Alt(n) and Sym(n) for n ≤ 8 (Cara)
Sporadic groups (Buekenhout, Dehon, Gottchalk,
Leemans, Miller):
M11,M12,M22,M23,M24, J1, J2, J3,HS,Mcl
O’Nan (partial results)
Sz (Leemans)
Every PSL(2,q) for q ≤ 19 (Cara, Dehon, Leemans,
Vanmeerbeek)
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On the way to classify all geometries of PSL(2,q)

Idea
Classify all coset geometries for every PSL(2,q)
(q prime-power).



Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

On the way to classify all geometries of PSL(2,q)

Idea
Classify all coset geometries for every PSL(2,q)
(q prime-power).

Classification of all coset geometries of rank two on which
some group PSL(2,q), q a prime power, acts flag-transitively.

Classification under additional conditions, to be explained.
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Incidence geometry of rank two

Geometry of rank two

A geometry Γ is a four-tuple (X , ∗, t , I) where
1 X is a set whose elements are called the elements of Γ;
2 I is the set {0,1} whose elements are called the types of Γ;
3 t : X → I is a mapping from X onto I;
4 ∗ is a symmetric and reflexive relation on X × X such that

no two distinct elements of the same type are incident.
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Incidence geometry of rank two

Geometry of rank two

A geometry Γ is a four-tuple (X , ∗, t , I) where
1 X is a set whose elements are called the elements of Γ;
2 I is the set {0,1} whose elements are called the types of Γ;
3 t : X → I is a mapping from X onto I;
4 ∗ is a symmetric and reflexive relation on X × X such that

no two distinct elements of the same type are incident.
Every element of a given type is incident to at least one element
of the other type.

Flag

In a geometry, a flag F is a set of pairwise incident elements.
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Coset Geometry: Definition (due to Tits)

Let I = {0,1} be the type set; let G be a group with two distinct
subgroups (Gi)i∈I .
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Motivation Definitions Main steps of the classification Self-normalizing and Borel-self-normalizing Locally s-arc-transitive graphs

Coset Geometry: Definition (due to Tits)

Let I = {0,1} be the type set; let G be a group with two distinct
subgroups (Gi)i∈I .
We require:
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Construction of a Coset geometry for (G, {G0,G1})
We construct a geometry Γ = Γ(G, (Gi)i∈I) = (X , t , ∗, I) as
follows

1 The set of elements is X = {gGi |g ∈ G,Gi ∈ (Gi)i∈I}.
2 We define an incidence relation ∗ on X × X by

gGi ∗ hGj ⇔ gGi
⋂

hGj 6= ∅

3 The type function on Γ is defined by t(gGi) = i
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Set of axioms on the geometries

Let Γ = Γ(G; {G0,G1}) be a geometry of rank two:

the geometry Γ must be firm (F);
the geometry Γ must be residually connected (RC);
the group G must act flag-transitively (FT) on Γ;
the group G must act
residually weakly primitively (RWPRI) on Γ;
the geometry Γ must be locally two-transitive (2T )1.
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Set of axioms on the geometries

Let Γ = Γ(G; {G0,G1}) be a geometry of rank two:

the geometry Γ must be firm (F);
the geometry Γ must be residually connected (RC);
the group G must act flag-transitively (FT) on Γ;
the group G must act
residually weakly primitively (RWPRI) on Γ;
the geometry Γ must be locally two-transitive (2T )1.

Lemmas
1 If Γ is a rank two geometry, then G acts FT on Γ.
2 If Γ is RWPRI, then it is also firm and RC.
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Set of axioms on the geometries

Let Γ = Γ(G; {G0,G1}) be a geometry of rank two:

the geometry Γ must be firm (F);
the geometry Γ must be residually connected (RC);
the group G must act flag-transitively (FT) on Γ;
the group G must act
residually weakly primitively (RWPRI) on Γ;
the geometry Γ must be locally two-transitive (2T )1.

The only axioms we must verify for the rank two are:
RWPRI and (2T )1.
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RWPRI and 2T1

Let Γ(G; {G0,G1}) be a geometry of rank 2.
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Γ is (2T )1 if G0 and G1 act two-transitively on the cosets of
G01
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Method

1 Enumerate the possible configurations
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Method

1 Enumerate the possible configurations
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2 Count the geometries:

up to isomorphism

up to conjugacy
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Classification Theorem of rank two geometries of
PSL(2,q) groups

Classification Theorem (DS and Leemans)

Let G ∼= PSL(2,q) and Γ(G; {G0,G1,G0 ∩G1}) be a locally
two-transitive RWPRI geometry of rank two. If G0 is isomorphic
to one of Eq : (q−1)

(2,q−1) , D2
(q±1)
(2,q−1) , A4, S4, A5, PSL(2,qi) or

PGL(2,qi), then Γ is isomorphic to one of the geometries
appearing in the following tables
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G0
∼= S4 q = p > 2 and q = ±1(8)

G01 G1 ] up to ] up to Extra conditions on q
conj. isom.

D6 D12 2 1 q = ±1(24)
D18 2 1 q = ±1(72) or q = ±17(72)

S4 2 1 q±1
6 even

S4 1 1 q±1
6 odd

D8 D16 2 1 q = ±1(16)
D24 2 1 q = ±1(24)

S4 2 1 q±1
8 even

S4 1 1 q±1
8 odd

A4 A5 2 1 q = ±1(40) or q = ±9(40)

Table: The RWPRI and (2T )1 geometries with G0 = S4.
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Conclusion

The classification of the rank two geometries under the
given conditions is complete.
Our list comprises infinite classes of geometries up to
conjugacy (resp. isomorphism) depending on the prime
power pn.
If q ≤ 97 there are 329 geometries up to conjugacy and
190 geometries up to isomorphism.
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Perspectives

Idea
Classify all incidence geometries for PSL(2,q) groups under the
given axioms.

Steps
1 Classify all geometries of rank two.
2 What is the maximal rank?
3 Classify all geometries with no restriction on the rank.
4 Use another axiom to reduce the number of geometries:
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Perspectives

Idea
Classify all incidence geometries for PSL(2,q) groups under the
given axioms.

Steps
1 Classify all geometries of rank two.
2 What is the maximal rank?
3 Classify all geometries with no restriction on the rank.
4 Use another axiom to reduce the number of geometries:

Self-normalizing or a slightly weaker version
Borel self-normalizing
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Self-normalizing and Borel-self-normalizing

Conclusions on BSN-SN
Under BSN, there exists no geometry in which G0 is
isomorphic to A4, Eq : q−1

(2,q−1) .

Under SN, there exists no geometry in which G0 is
isomorphic to A4, Eq : q−1

(2,q−1) and PSL(2,q) over a subfield.

For q ≤ 97, BSN (resp. SN) leaves only 42 (resp. 36)
geometries out of 190, up to isomorphism.
If we impose BSN on higher ranks we restrict the number
of possible maximal parabolic subgroups to 3, namely:
Eq : q−1

(2,q−1) , PSL(2,q′) and PGL(2,q′) (over a subfield).

M11,M12,M22,M23,M24, J1, J2, J3,HS and McL have at
least one geometry satisfying SN.
If we apply SN to the classification of RWPRI geometries
for the Sz groups only the Building remains.
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Locally s-arc-transitive graphs: Context

Interesting examples of locally s-arc transitive graphs
arise naturally from incidence graphs of various structures.
In particular: Incidence graphs of coset geometries over a
given group.
Context: Search for locally s-arc transitive graphs related
to families of simple groups.
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Locally s-arc-transitive graphs: Context

Interesting examples of locally s-arc transitive graphs
arise naturally from incidence graphs of various structures.
In particular: Incidence graphs of coset geometries over a
given group.
Context: Search for locally s-arc transitive graphs related
to families of simple groups.

Idea:
Given a group G ∼= PSL(2,q),
use the classification of RWPRI and (2T )1 rank 2 geometries to
obtain for each geometry the highest value of s such that the
incidence graph is locally s-arc-transitive.
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Sample of earlier work

Sample of earlier work:
Sz (Leemans, 1998 and Praeger-Fang, 1999)
Ree (Praeger, Fang and Li, 2004)
Sporadic groups (Leemans, 2009):
M11,M12,M22,M23,M24, J1, J2, J3,HS,Mcl ,He,Ru,Suz,Co3
O′Nan (partial results)
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locally s-arc-transitive graph

Let G(V ,E) be a finite simple undirected connected graph.
An s-arc is an (s + 1)-tuple (α0, ..., αs) of vertices such that
{αi−1, αi} is an edge of G for all i = 1, ..., s and αj−1 6= αj+1
for all j = 1, ..., s − 1.
Given G ≤ Aut(G).
We call G locally (G, s)-arc-transitive if G contains an s-arc
and given any two s-arcs α and β starting at the same
vertex v , there exists an element g ∈ Gv mapping α to β.
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locally s-arc-transitive graph

Let G(V ,E) be a finite simple undirected connected graph.
An s-arc is an (s + 1)-tuple (α0, ..., αs) of vertices such that
{αi−1, αi} is an edge of G for all i = 1, ..., s and αj−1 6= αj+1
for all j = 1, ..., s − 1.
Given G ≤ Aut(G).
We call G locally (G, s)-arc-transitive if G contains an s-arc
and given any two s-arcs α and β starting at the same
vertex v , there exists an element g ∈ Gv mapping α to β.
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Giudici, Li, Praeger, 2004

Search for graphs G having G acting as a locally 2-arc-transitive
automorphism group is equivalent to determining the pairs of
subgroups {G0,G1} in G such that

(P1) G0 (resp. G1) has a 2-transitive action on the cosets of
B = G0 ∩G1 in G0 (resp. G1)
(this ensures local 2-arc-transitivity)⇔ (2T )1;
(P2) 〈G0,G1〉 = G
(this ensures connectedness of the graph)⇔ RC ;
(P3) B = G0 ∩G1 is core-free in G.
This is clearly satisfied since G ∼= PSL(2,q) is simple.
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Giudici, Li, Praeger, 2004

Search for graphs G having G acting as a locally 2-arc-transitive
automorphism group is equivalent to determining the pairs of
subgroups {G0,G1} in G such that

(P1) G0 (resp. G1) has a 2-transitive action on the cosets of
B = G0 ∩G1 in G0 (resp. G1)
(this ensures local 2-arc-transitivity)⇔ (2T )1;
(P2) 〈G0,G1〉 = G
(this ensures connectedness of the graph)⇔ RC ;
(P3) B = G0 ∩G1 is core-free in G.
This is clearly satisfied since G ∼= PSL(2,q) is simple.

The Algorithm of Tits shows that:

These locally (G,2)-arc-transitive graphs are rank two
geometries.
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All rank two geometries satisfying (2T )1 and RWPRI classified
in the Theorem satisfy (P1),(P2) and (P3)

⇓
They are locally 2-arc-transitive graphs.

Aim
For every geometry Γ given in the classification Theorem, we
try to determine the highest value of s such that the incidence
graph of Γ is a locally s-arc-transitive graph.
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All rank two geometries satisfying (2T )1 and RWPRI classified
in the Theorem satisfy (P1),(P2) and (P3)

⇓
They are locally 2-arc-transitive graphs.

Aim
For every geometry Γ given in the classification Theorem, we
try to determine the highest value of s such that the incidence
graph of Γ is a locally s-arc-transitive graph.
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Conclusion

Most values of s are 2 or 3.

Open problem
In a few cases, we only get a set of possible values for s.
The exact value may be computed by Magma but only for
small values of q.
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Conclusion

Most values of s are 2 or 3.

Open problem
In a few cases, we only get a set of possible values for s.
The exact value may be computed by Magma but only for
small values of q.

Examples:

Γ(PSL(2,q); S4,S4,D8) s = 4 for the values
q = 9,17,23,31,41,47,71,73,79,89;
Γ(PSL(2,q); S4,D16,D8) s = 7 for the values
q = 17,31,79,97.
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The end

Thank you!
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Incidence graph

For each pair of subgroups {G0,G1} of G satisfying (P1), (P2)
and (P3)

the corresponding graph is the incidence graph G of Γ
which is the graph whose vertices are the left cosets of the
subgroups (Gi)i∈I .
Two vertices are joined provided the corresponding cosets
have a non-empty intersection.
The type of a vertex v = gGi of the incidence graph is i .
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Lemma (Leemans 2009)

Let G be a group and {G0,G1} be a pair of subgroups
satisfying properties (P1), (P2) and (P3). Denote by bi the index
of B := G0 ∩G1 in Gi (with i = 0,1). If (G; G0,G1,G01) is a
locally s-arc-transitive graph (with s ≥ 2), then

((b0 − 1)(b1 − 1))
s−1

2 divides |B| if s is odd;

((b0 − 1)(b1 − 1))
s−2

2 .lcm(b0 − 1,b1 − 1) divides |B| if s is
even,

where lcm(b0 − 1,b1 − 1) is the lowest common multiple of
b0 − 1 and b1 − 1.

Corollary (Leemans 2009)

If (G; G0,G1,G01) is a locally s-arc-transitive graph with
B := G0 ∩G1 a cyclic group of prime order and with at least one
bi not equal to 2, then s is at most 3. Moreover, if s = 3, then
one of b0 or b1 must be equal to 2.
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Observe also that the SN property implies the BSN property. In
the classification of RWPRI and (2T )1 geometries of rank two,
the only geometries that satisfy the BSN property but do not
satisfy the SN property are

Γ
(

PSL(2,22n); PSL(2,2n),E22n : (2n − 1),E2n : (2n − 1)
)

with n 6= 1

and

Γ
(

PSL(2,p2n); PGL(2,pn); Ep2n : (pn − 1); Epn : (pn − 1)
)

with p odd prime .
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G0
∼= S4 q = p > 2 and q = ±1(8)

G01 G1 BSN SN Extra conditions on q
D6 D12 no no q = ±1(24)
D6 D18 no no (q = ±1(72) or q = ±17(72))

and q±1
18 even

D6 D18 yes yes (q = ±1(72) or q = ±17(72))
and q±1

18 odd
D6 S4 no no q±1

6 even
D6 S4 yes yes q±1

6 odd
D8 D16 no no q = ±1(16)
D8 D24 no no q = ±1(24) even
D8 D24 yes yes q = ±1(24) odd
D8 S4 no no q±1

8 even
D8 S4 yes yes q±1

8 odd
A4 A5 no no q = ±1(40) or q = ±9(40)

Table: The RWPRI and (2T )1 geometries with G0 ∼= S4.
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G0
∼= S4 q = p > 2 and

q ≡ ±1(8)

G01 G1 locally(G, s)- Extra conditions on q
arc-transitive graphs

D6 D12 s = 3 q ≡ ±1(24)
D6 D18 s = 2or3 q ≡ ±1(72) or

q ≡ ±17(72)
D6 S4 s = 2 q ≡ ±1(6)

D8 D16 s = 3,5or7 q = ±1(16)
D8 D24 s = 2,3or4 q ≡ ±1(24)
D8 S4 s = 2,3or4 none
A4 A5 s = 3 q ≡ ±1(40)

or q ≡ ±9(40)

Table: locally s-arc-transitive graphs that are not locally
(s + 1)-arc-transitive with G0 ∼= S4.
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