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 The Navier−Stokes equations with the standard set of boundary 
conditions cannot be used if some of the rigid and free 
boundaries of the flow intersect, resulting in contact lines.

 One way to show the above is to treat the shape of the free 
boundary as given, then demonstrate that the pressure at the 
contact liner is infinite.

 If, however, the contact angle is 180°, the pressure singularity 
simply does not arise.

 Two papers explored flows with a 180° contact angle: Benney & 
Timson (1980) and Nir & Pismen (1982). Both were shown to 
contain errors – actually, the same error – by Ngan & Dussan V. 
(1982).

The background
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 In the paper by Nir & Pismen the error turned out to be “fatal”...

 ...but the “amended” result of Benney & Timson seems to be  
physically meaningful.

 In particular, the amended shape of the free boundary in BT80 is 
given by
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where a > 0, and q > 1 is one of the roots of the equation
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The velocity V  of the contact line in the analysis of BT80 remains 
undetermined.
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 Despite the apparent self-consistency of the amended version of 
the BT80 result, Ngan & Dussan V. still insisted that...

“...it is our belief that there is something inherently wrong 
with this [considered by BT80]  boundary-value problem. 
We strongly expect that the solution for the interface 
shape is completely determined upon specifying the 
contact angle. However, the approach of BT80 does not 
have this basic characteristic because of the fact that, 
regardless of the choice of q, the value of the constant a 
remains undetermined.”
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In this work, the disagreement between BT80 and Ngan & Dussan 
V. (1984) is resolved.

We consider an example tractable both locally and globally and 
demonstrate that a is uniquely determined by matching the former 
solution to the latter. We also show that matching determines the 
choice of the root for q. Finally, the global solution yields the 
velocity of the contact line.

Overall, the local analysis of BT80 and our global analysis provide a 
fully consistent description of a flow with a 180° contact angle and 
no singularity.

The aim of the present work
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Why is this problem important?

1. The result of BT80 appeals to the scientist’s general philosophy, 
according to which a new concept should not be introduced in a 
problems where the old one (in this case, the no-slip boundary 
condition) is not exhausted completely.

2. Recent experiments show that, if surface tension is sufficiently 
strong, drops rolling on a rigid substrate can indeed exhibit 
contact angles close, or even equal, to 180°.

3. The above and some other examples suggest that, if there are 
strong forces in the problem that push the contact line “to the 
limit”, they enforce a 180° contact angle .
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Couette flows with a free boundary

Type I:

Type II:
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The formulation

 Two spatial dimensions. 

 The limit Re → 0 (hence, Stokes equations).

 Standard boundary conditions:

• at the rigid boundaries: no flow/no slip,

• at the free boundary: no tangential stress and a jump in the 
normal stress due to surface tension.
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The asymptotic analysis

2 non-dimensional parameters:
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We shall assume  ε << 1,  α ~ 1  (which implies that  Ca << 1). 
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Boundary layer BL1 :   x2 + y2 ~ H2.

Governed by a mixed BVP for the biharmonic equation.

Boundary layer BL2 :   x2 + y2 << H2.

Governed by the BT80 theory, “truncated” at the leading order in 
Ca (in particular, it yields q ≈ 2, 3, 4...).

The outer region :  x2 + y2 >> H2.

Governed by the lubrication approximation (if ε << 1, the slope of 
the free boundary is small).
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The outer region

Introduce the following non-dimensional variables:
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Then the outer solution is governed by (asterisks omitted)
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The boundary conditions:
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Due to the extra boundary condition, our boundary-value problem 
determines both h(x, t) and V(t).
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In fact, one can show that
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Steady solutions for the outer region
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The dotted lines show the asymptotics as α → 0 and α → ∞.

Solutions (1) and (2) are illustrated on the next slide.
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The region inside the channel is shaded, which shows that solution 
(2) is meaningless physically.
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Thus, if α  > αc, where αc  ≈ 0.1255, a Couette flow with a free 
boundary cannot be steady.

,012.0,016.0 <α<ε

i.e., a steady solution exists (α < αc), and it is physically meaningful 

(ε << 1).

To understand whether αc is large or small physically, let the liquid 

under consideration be water at 20°C.

Let also H > 1 mm, U < 15 cm/s.

For these parameter values,

Thus, the results obtained are experimentally verifiable.
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Couette flows of type II

No steady solutions exist for any values of α.

To understand why, recall that, for flows of type I, hydrostatic 
pressure causes negative  diffusion, which balances the positive 
diffusion due to surface tension.

For flows of type II, however, both effects cause positive diffusion – 
hence, cannot hold the solution together.
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Concluding remarks

1. Time-dependent solutions.

2. Modelling of “drops without a contact line” rolling down a 
sloping substrate (Richard & Quere 1999, Reznik & Yarin 2002).
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