Traveling wave solutions for a chemotaxis system

Florin Catrina ¹ Victor Reyes ²

¹St. John's University, Queens, NY 11439

²CUNY, Graduate Center, New York, NY 10016

13th International Symposium on Mathematical and Computational Biology

The Fields Institute, Toronto, Ontario, Canada, November, 2013

- System
- 2 Traveling Waves
- 3 Case $D_V = 0$
- 4 Case $D_V > 0$
- Conclusion

Reaction-Diffusion-Chemotaxis System

$$\begin{cases}
\frac{\partial U}{\partial T} = \nabla \cdot (D_U \nabla U) - \nabla \cdot (U \cdot \chi(V) \cdot \nabla V) + f(U) \\
\frac{\partial V}{\partial T} = \nabla \cdot (D_V \nabla V) + g(U, V)
\end{cases}$$
(1)

U(T,X) = density of bacteria at time T and location XV(T,X) = density of attractant substrate

 D_U , D_V = diffusion coefficients f(U), g(U, V) = reaction/kinetic terms $\chi(V)$ = chemotactic coefficient

Figure: Salmonella typhimurium pattern (from "Mathematical Biology" by J. D. Murray, experiments by Howard Berg and Elena Budrene (1991)).

One Space Dimension

$$\begin{cases} \frac{\partial U}{\partial T} = D_U \cdot \frac{\partial^2 U}{\partial X^2} - \frac{\partial}{\partial X} \left(U \cdot \chi(V) \cdot \frac{\partial V}{\partial X} \right) \\ \frac{\partial V}{\partial T} = D_V \cdot \frac{\partial^2 V}{\partial X^2} - k \cdot U \end{cases}$$
 (2)

$$\chi(V) = D_U \frac{m - pV^{p-1}}{mV - V^p} \tag{3}$$

for some $p \ge 1$ and m > p, k > 0

 $(T,X)\in (0,\infty)\times \mathbb{R}$. Want $U,\ V$ positive, and for any T>0 fixed

$$U(T,X) o 0$$
 as $|X| o \infty$, $V(T,X) o 0$ as $X o -\infty$, $V(T,X) o 1$ as $X o \infty$. (4)

Figure: Typical solution at time T.

With these asymptotic conditions, the mass of bacteria is conserved; i.e. for any T > 0,

$$\int_{-\infty}^{\infty} U(T,X) \ dX = \int_{-\infty}^{\infty} U(0,X) \ dX$$

Traveling Wave Solutions of (2)

Solutions of the form

$$U(X,T) = u(\xi)$$
 and $V(X,T) = v(\xi)$, where $\xi = X - cT$

The system (2) becomes

$$\begin{cases}
-cu' = (D_U \cdot u' - u \cdot \chi(v) \cdot v')' \\
-cv' = D_V \cdot v'' - k \cdot u,
\end{cases}$$
(5)

with asymptotic conditions

$$u(\xi) \to 0 \text{ as } |\xi| \to \infty,$$

 $v(\xi) \to 0 \text{ as } \xi \to -\infty,$ (6)
 $v(\xi) \to 1 \text{ as } \xi \to \infty.$

Assumptions

 $D_U > 0$, $D_V \ge 0$ and k > 0 are constants.

Wave Speed

Integrating the second equation in (5)

$$cv' = -D_V \cdot v'' + k \cdot u$$

from $-\infty$ to ∞ , because $\nu(\xi)\to 0$ as $\xi\to -\infty$ and $\nu(\xi)\to 1$ as $\xi\to\infty$, we get the speed of the wave in terms of the total mass of bacteria

$$c = k \int_{-\infty}^{\infty} u(\xi) \ d\xi$$

Chemotactic Coefficient

$$\chi(v) = D_U \frac{m - pv^{p-1}}{mv - v^p} \quad \text{with} \quad m > p \ge 1$$
 (7)

Table: Cases considered

$D_V = 0$	p=1	linear first order
		explicit solutions
$D_V = 0$	p > 1	nonlinear first order
		explicit solutions
$D_{V} > 0$	p=1	linear second order
		explicit solutions
$D_V = 2D_U > 0$	<i>p</i> > 1	nonlinear second order
		explicit solutions
$D_{V} > 0$	p > 1	nonlinear second order
		fixed point argument

First equation in (5) can be integrated to

$$\frac{u'}{u} = -\frac{c}{D_U} + \frac{\chi(v)}{D_U} \cdot v'$$

Integrating again from 0 to ξ we get

$$\ln(u(\xi)) = \int_0^{\xi} -\frac{c}{D_U} + \frac{\chi(v(\zeta))}{D_U} \cdot v'(\zeta) \ d\zeta + \ln(u(0))$$

$$u(\xi) = u(0) \cdot \exp\left(-\frac{c}{D_U}\xi\right) \cdot \exp\left(\int_0^\xi \frac{\chi(v(\zeta))}{D_U} \cdot v'(\zeta) \ d\zeta\right)$$

$$u(\xi) = u(0) \cdot \exp\left(-\frac{c}{D_U}\xi\right) \cdot \exp\left(\int_0^\xi \frac{\chi(v(\zeta))}{D_U} \cdot v'(\zeta) \ d\zeta\right) \quad (8)$$

If χ has no singularity at v = 0 then

$$\lim_{\xi \to -\infty} \int_0^\xi \chi(v(\zeta)) \cdot v'(\zeta) \ d\zeta = \lim_{v(\xi) \to 0} \int_{v(0)}^{v(\xi)} \chi(v) \ dv, \quad \text{finite.}$$

Equation (8) implies $\lim_{\xi\to-\infty}u(\xi)=\infty$ and this violates the requirement $\lim_{\xi\to-\infty}u(\xi)=0$.

In the Keller and Segel paper the choice of a singular $\chi(v)=\frac{\delta}{v}$ (with $\delta>D_U$) is attributed to the "pervasiveness of the Weber-Fechner Law".

$$\chi(v) = D_U \frac{m - pv^{p-1}}{mv - v^p}$$
 for $p = 1$ becomes $\chi(v) = \frac{D_U}{v}$

Denote the values of the unknowns at $\xi=0$ by u(0)=a>0 and $v(0)=b\in(0,1)$

$$u(\xi) = \frac{a}{mb - b^{p}} \left(mv(\xi) - v^{p}(\xi) \right) \cdot \exp\left(-\frac{c\xi}{D_{U}} \right)$$
 (9)

for
$$p = 1$$
 it simplifies to $u(\xi) = \frac{a}{b}v(\xi) \cdot \exp\left(-\frac{c\xi}{D_U}\right)$ (10)

where v is solution of the second equation in (5)

$$D_V v''(\xi) + cv'(\xi) - ka \frac{mv(\xi) - v^p(\xi)}{mb - b^p} \cdot \exp\left(-\frac{c\xi}{D_U}\right) = 0 \quad (11)$$

Under the change of variables

$$t = \exp\left(-\frac{c\xi}{2D_U}\right) \in (0, \infty) \quad \text{and} \quad v(\xi) = f(t) > 0$$
 (12)

Equation (11) becomes

$$D_V f_{tt} + \frac{D_V - 2D_U}{t} f_t - \frac{4akD_U^2}{c^2(mb - b^p)} (mf - f^p) = 0$$
 (13)

with boundary conditions f(0) = 1 and $f(\infty) = 0$, and the extra-requirement that $f(1) = b \in (0, 1)$

$$\frac{-2D_U}{t}f_t - \frac{4akD_U^2}{c^2(mb - b^p)}(mf - f^p) = 0$$
 (14)

If
$$p=1$$
, then $v(\xi)=b^{\exp\left(-\frac{c\xi}{D_U}\right)}$, $c=\sqrt{-\frac{akD_U}{b\ln b}}$

Figure: $D_U = 1$, $D_V = 0$, p = 1, a = 1.3, b = 0.5, k = 1; c = 1.936751689

If
$$p>1$$
, then $v(\xi)=\left(\frac{m}{1+(m-1)\left(\frac{m-b^{p}-1}{b^{p}-1(m-1)}\right)^{\exp\left(-\frac{c\xi}{D_U}\right)}}\right)^{\frac{1}{p-1}}$, $c=\left(\frac{akD_U(p-1)}{b\left(1-\frac{b^{p}-1}{m}\right)\ln\left(\frac{m-b^{p}-1}{(m-1)b^{p}-1}\right)}\right)^{\frac{1}{2}}$

Figure: $D_U = 1$, $D_V = 0$, p = 2, a = 1.3, b = 0.5, k = 1; c = 1.845273097

If
$$p = 1$$
, let $\nu = \frac{D_U}{D_V}$, then
$$v(\xi) = \frac{2}{\Gamma(\nu)} \left(\frac{1}{c} \sqrt{\frac{ak\nu D_U}{b}} \right)^{\nu} \cdot \exp\left(-\frac{c\nu\xi}{2D_U} \right) \\ \cdot K_{\nu} \left(\frac{2}{c} \sqrt{\frac{ak\nu D_U}{b}} \exp\left(-\frac{c\xi}{2D_U} \right) \right)$$

Figure: $D_U = 1$, $D_V = 2$, p = 1, a = 1.3, b = 0.5, k = 1; c = 3.289850865

If p>1 and $\nu=\frac{D_U}{D_V}=\frac{1}{2}$, then for suitable t_0 and c,

$$v\left(\xi\right) = \frac{\left(\frac{m(p+1)}{2}\right)^{\frac{1}{p-1}}}{\cosh^{\frac{2}{p-1}}\left(\frac{p-1}{c}\sqrt{\frac{makD_U}{2(mb-b^p)}}\left(e^{-\frac{c}{2D_U}\xi} - t_0\right)\right)}$$

Figure: $D_U = 1$, $D_V = 2$, p = 2, a = 1.3, b = 0.5, k = 1, m = 3; $t_0 = -3.658207544$, c = 3.300586405

Theorem

For any p > 1, $D_U > 0$, $D_V > 0$ let $\nu = \frac{D_U}{D_V}$. There exists $m_0 = m_0(\nu, p) \ge p$, such that for any $m > m_0$ in

$$\chi(v) = \frac{m - pv^{p-1}}{mv - v^p},$$

the system (5) with asymptotic conditions (6), admits solutions.

Solutions are obtained by a Fixed Point argument.

Relation to Previous Work

Keller, Evelyn F.; Segel, Lee A.; Traveling Bands of Chemotactic Bacteria: A Theoretical Analysis. Journal of Theoretical Biology (1971) Vol. 30, 235-248. considered $D_V=0$ and $\chi(v)=\frac{\delta}{v}$ with $\delta>D_U$.

Nagai, Toshitaka; Ikeda, Tsutomu; Traveling waves in a chemotactic model. J. Math. Biol. 30 (1991), no. 2, 169-184. considered $D_V \geq 0$ and $\chi(v) = \frac{\delta}{v}$ with $\delta > D_U$.

Horstmann, D.; Stevens, A.; *A constructive Approach to Traveling Waves in Chemotaxis*. J. Nonlinear Sci. Vol. 14. 1–25 (2005). considered general coefficients so that system (1) admits traveling wave solutions.

THANK YOU FOR YOUR ATTENTION!