Traveling wave solutions for a chemotaxis system
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Reaction-Diffusion-Chemotaxis System

O V- (DyVU) =V - (U-x(V)-VV)+£(U)
oT (1)

ov

U(T, X) = density of bacteria at time T and location X
V(T,X) = density of attractant substrate

Dy, Dy = diffusion coefficients
f(U), g(U, V) = reaction/kinetic terms
x(V) = chemotactic coefficient
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Figure: Salmonella typhimurium pattern (from " Mathematical Biology” by J.
D. Murray, experiments by Howard Berg and Elena Budrene (1991)).



One Space Dimension

ou 92U 0 oV
WZDU'W_M<U'X(V)'0X> a

oV 0%V
ar ~Pvigxe KV
m— pVP-1
V) =Dum v ()

forsome p>1and m>p, k>0

(T,X) € (0,00) x R. Want U, V positive, and for any T > 0 fixed

U(T,X) —0as |X|— oo,

4
V(T,X)—0as X - —oo, V(T,X) = 1as X — oc. “)
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Figure: Typical solution at time T.

With these asymptotic conditions, the mass of bacteria is
conserved; i.e. for any T > 0,

/_Z U(T, X) dX:/_Z U(0, X) dx




Traveling Waves

Traveling Wave Solutions of (2)

Solutions of the form

UX, T)=u(§) and V(X, T) = v(§), where { =X —cT

The system (2) becomes
—a = (Dy - —u-x(v)-V)
—cv/ =Dy -V —k-u,

with asymptotic conditions

u(¢) — 0 as [£] = o,
v(§) — 0 as § — —oo, (6)
v(§) = 1 as £ — oc.




Dy >0, Dy > 0 and k > 0 are constants.

Wave Speed

Integrating the second equation in (5)

o' =—-Dy-v'+k-u

from —oo to 0o, because v(§) — 0 as { — —oo and
v(§) — 1 as £ — oo, we get the speed of the wave in terms of the

total mass of bacteria
c—k [ u(e) ot

— 00




Traveling Waves

Chemotactic Coefficient

_ m — pvP~1 .

Table: Cases considered

Dy =0 p=1 linear first order
explicit solutions

Dy =0 p > 11| nonlinear first order
explicit solutions

Dy >0 p=1 linear second order

explicit solutions
Dy =2Dy >0 | p> 1 | nonlinear second order
explicit solutions
Dy >0 p > 1 | nonlinear second order
fixed point argument




Traveling Waves

First equation in (5) can be integrated to

u/

v_ e,
u Dy Dy

x(v) Y

Integrating again from 0 to £ we get

3 (o v
n(u(€) = [~ + M0 ) a4 ngu)




Traveling Waves

@)= u0) o0 () om ([ XD vy a6) )

If x has no singularity at v = 0 then

3 v(€)
lim /Ox(v(C))~v’(() d¢ = lim / x(v) dv, finite.

£——0c0 v(€)—0 (0)

Equation (8) implies lim wu(§) = oo and this violates the

E——o00
requirement lim wu(§) = 0.
E——o00

5
In the Keller and Segel paper the choice of a singular x(v) = —
v

(with § > Dy) is attributed to the " pervasiveness of the
Weber-Fechner Law".



Traveling Waves

m — pvP~1

x (v) = Dy for p =1 becomes x (v) = —

mv — vP %

Denote the values of the unknowns at £ = 0 by u(0) = a > 0 and
v(0) = b € (0,1)

a

W) = T () =)o (-5 ) (9
for p =1 it simplifies to u(§) = %v(f) - exp (—g) (10)
where v is solution of the second equation in (5)

DyV(€) + oV (€) — kaw _exp (-Bi) =0 (11)




Under the change of variables

t =exp <_2CD§U> € (0,00) and v(§)=f(t)>0 (12)

Equation (11) becomes

Dy —2Dy . 4akD?,

_ fP) —
Do+ o~ ey g (mf = 1) =0 (13)

with boundary conditions f(0) =1 and f(o0) = 0, and the
extra-requirement that f(1) = b € (0,1)




—2Dy 4akD?,
fr —

t c2(mb — bP)

= = exp<_57£) = —akDU
If p=1, then v(§{) = b u/, c =4/ binb

(mf — fP) =0 (14)

|

Figure: Dy =1, Dy =0,p=1,a=13, b=0.5, k=1; c = 1.936751689
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p—1
If p>1, then v(&) = = - (_i) ,
1+(m—1)<7b[’"__112';;11)> P\"oy

1

e akDy(p—1) :
b(1—25) (i)

Figure: Dy =1, Dy =0,p=2,a=13, b=0.5, k=1; c = 1.845273097



If p=1, let v = EY, then

0= 25 (252 oo (~55%)

)

Figure: Dy=1 Dy=2 p=1,a=13 b=0.5 k=1; c =3.289850865



Case Dy >0

If p>1and v = % = % then for suitable ty and c,

1

(m(p+1)) p—1

v(£) =

2
coshp-1 (

i ()

2 0 2 4

Figure: Dy=1, Dy =2,p=2,a=13,b=05 k=1 m=3;
to = —3.658207544, ¢ = 3.300586405



Theorem

Foranyp>1, Dy >0, Dy >0 letv = 3—5. There exists
mo = mo(v, p) > p, such that for any m > mg in

m — pvP~1

x(v) = ————2-,

the system (5) with asymptotic conditions (6), admits solutions.

Solutions are obtained by a Fixed Point argument. |




Conclusion

Relation to Previous Work

Keller, Evelyn F. ; Segel, Lee A.; Traveling Bands of Chemotactic Bacteria: A
Theoretical Analysis. Journal of Theoretical Biology (1971) Vol. 30, 235-248.
considered Dy = 0 and x(v) = % with 6 > Dy.

Nagai, Toshitaka; Ikeda, Tsutomu; Traveling waves in a chemotactic model. J.
Math. Biol. 30 (1991), no. 2, 169-184. considered Dy, > 0 and
x(v) = £ with § > Dy.

Horstmann, D.; Stevens, A.; A constructive Approach to Traveling Waves in
Chemotaxis. J. Nonlinear Sci. Vol. 14. 1-25 (2005). considered general
coefficients so that system (1) admits traveling wave solutions.




Conclusion

THANK YOU FOR YOUR ATTENTION! )
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