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Motivation

Pattern formation on a evolving biological surface modelled by
reaction-diffusion equation.



Schnakenberg Model

Let M be two dimensional manifold and u : M → R2. The
model is given by

∂tu1 − d1∆Mu1 = γ(a− u1 + u21u2) = γf1(u)

∂tu2 − d2∆Mu2 = γ(b− u21u2) = γf2(u)

where dj , a, b and γ are some positive constants.



Schnakenberg Model

The stationary problem

− d1∆Mu1 = γ(a− u1 + u21u2)

− d2∆Mu2 = γ(b− u21u2)

The constant (positive) solution is

u =
(
a+ b,

b

(a+ b)2

)



Schnakenberg Model

To get diffusion-driven instability, choose a and b such that

(a+ b)3 + a− b > 0 and a < b



Schnakenberg Model

and diffusion parameters such that√
d2
d1

>
(a+ b)

(
a+ b+

√
2b(a+ b)

)
b− a

In particular d2 > d1.



Variational formulation

To solve model on the sphere S2 with metric g, let Vh be some
finite dimensional subspace of H1(S2) and let

Vh = span
(
ψ1, . . . , ψm

)
The approximate solution u = (u1, u2) can be written as

uj(x, t) =

m∑
i=1

cji (t)ψi(x)



Variational formulation

Find (u1, u2) such that

∂t

∫
S2

u1ψjωS2 + d1

∫
S2

g(grad(u1), grad(ψj))ωS2 = γ

∫
S2

f1(u)ψjωS2

∂t

∫
S2

u2ψjωS2 + d2

∫
S2

g(grad(u2), grad(ψj))ωS2 = γ

∫
S2

f2(u)ψjωS2

where ωS2 is the area form.



Discretization

Let δt be the time step and cj,ni = cji (nδt) and

unj =

m∑
i=1

cj,ni ψi ≈ uj(x, nδt)

using implicit Euler method for time discretization(
(1 + δt γ)Mn+1 + δt d1R

n+1 − δt γ M̃n
)
c1,n+1 = Mnc1,n + δt γ aFn+1(

Mn+1 + δt d2R
n+1 + δt γ M̂n

)
c2,n+1 = Mnc2,n + δt γ bFn+1



Discretization

where

Mn
ij =

∫
S2

ψiψjω
n
S2 Rnij =

∫
S2

g(grad(ψi), grad(ψj))ω
n
S2

Enijk` =

∫
S2

ψiψjψkψ`ω
n
S2 Fni =

∫
S2

ψiω
n
S2

M̃n
ij =

∑
k,`

En+1
ijk` c

1,n
k c2,n` M̂n

ij =
∑
k,`

En+1
ijk` c

1,n
k c1,n`



Domain composition

The sphere S2 is covered with 6 patches Dj

D1 = (−1, 1)× (−1, 1) ϕ1(z) = γ
− 1

2
1

z1z2
1


D2 = (1, 3)× (−1, 1) ϕ2(z) = γ

− 1
2

2

 1
z2

2− z1


D3 = (−1, 1)× (1, 3) ϕ3(z) = γ

− 1
2

3

 z1
1

2− z2


Dj+3 = Dj ϕj+3 = −ϕj

where

γ1 = 1+|z|2 , γ2 = 1+(z1−2)2+z22 , γ3 = 1+z21+(z2−2)2

Hence ϕj : Dj → S2



Identification



Identification



Triangulation

Using Riemannian metric Gj = dϕTj dϕj in triangulation



Triangulation



Changing manifold

The growing manifold is topologically the sphere S2 with
changing Riemannian metric.
To produce the growing manifold, define β : S2 → R3 and
ϕ̂j = β ◦ ϕj then the Riemannian metric is

Ĝj = dϕ̂Tj dϕ̂j = dϕTj dβ
Tdβdϕj



Growing sphere (Isotropic grow)

Let β(x) = ρ(t)(x1 , x2 , x3) where

ρ(t) =
ert

1 + 1
K (ert − 1)

Then ϕ̂j = ρ(t)ϕj and the corresponding Riemannian metric is
Ĝj = ρ(t)2Gj



Growing sphere (Isotropic grow)

choosing parameters as follows

d1 d2 γ a b K r δt

1 10 200 0.1 0.9 1.5 0.1 0.01



Growing sphere (Isotropic grow)

The concentrations u1 and u2 at t = 5



Growing sphere (Isotropic grow)

The concentrations u1 and u2 at t = 10



Growing sphere (Isotropic grow)

The concentrations u1 and u2 at t = 20



Growing sphere (Isotropic grow)

The concentrations u1 and u2 at t = 50



Evolving sphere (Anisotropic grow)

Define
β(x) =

(
lx1 , lx2 , (lx3/h)1/2p

)
such that 

h(t) = l(t)
q(t)2p

q(t) = q0
β+(1−β)e−rt

l(t) = l0
(
1 + α(1− e−kt)

)



Evolving sphere (Anisotropic grow)

Choose parameters as

d1 d2 γ a b q0 l0 α β r k p

1 100 500 0.1 0.9 0.5 0.1 0.8 0.3 0.5 0.5 5



Evolving sphere (Anisotropic grow)



Evolving sphere (Anisotropic grow)

The concentrations u1 and u2 at t = 0.1 with δt = 0.0005



Evolving sphere (Anisotropic grow)

The concentrations u1 and u2 at t = 1.6 with δt = 0.0005



Evolving sphere (Anisotropic grow)

The concentrations u1 and u2 at t = 1.68 with δt = 0.0005



Evolving sphere (Anisotropic grow)

The concentrations u1 and u2 at t = 2.75 with δt = 0.0005



Eigenfunctions role in pattern formation

y1 and y2 are two positive roots of

p0(y) = d1d2(a+ b)y2 +
(

(a+ b)3d1 + (a− b)d2
)
y + (a+ b)3

Then we call I = (y1, y2) critical interval.
Let λ be an eigenvalue of −∆ and vλ be the corresponding
eigenfunction.
If λ/γ ∈ (y1, y2) then the linearized Schnackenberg problem has
a solution of form Cvλe

µγt where µ is the positive solution of

p1(µ, λ) = (a+b)µ2+
(

(d1+d2)(a+b)λ+(a+b)3+a−b
)
µ+p0(λ)



Eigenfunction and pattern formation

Choosing parameters as follows

d1 d2 a b

1 10 0.1 0.9

The computed critical interval is I = [0.2, 0.5].



Eigenfunction and pattern formation

Let t = 1.6 be the ending time.

λ1 = 3.64 and λ2 = 14.76 are two first eigenvalues.

Set γ = 15 then just λ1/γ ∈ I = [0.2, 0.5].



Eigenfunction and pattern formation

The eigenfunction and concentration u1



Eigenfunction and pattern formation

Changing the parameter as follows

d1 d2 a b

1 20 0.2 1

The computed critical interval is I = [0.169, 0.425].



Eigenfunction and pattern formation

The ending time t = 1.6 and λ3 = 15.01.

Set γ = 72 then λ3/γ ∈ I.



Eigenfunction and pattern formation

The eigenfunction and concentration u1



Our approach can also readily be extended to more
complicated surfaces.

Since all computations are done in two dimensional
domains there is no error related to the approximation of
the surface in three dimensional space.

In the case of restricting the parameters such that one
eigenvalue of Laplace operator belongs to the critical
interval, we are able to predict sort of pattern formation.

The method benefits from simplicity in programming for
different kinds of curved surfaces.



Question?

Thanks for your attention


