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Motivation

Pattern formation on a evolving biological surface modelled by
reaction-diffusion equation.

N vnvensitvor




Schnakenberg Model

Let M be two dimensional manifold and u : M — R2. The
model is given by

Our — diApur = y(a — u1 + ujuz) = yf1(u)
Oy — daAprus = (b — uius) = v fa(u)

where d;, a, b and ~y are some positive constants.




Schnakenberg Model

The stationary problem

—d1Apug = v(a —ug + u%uQ)

— daAprug = (b — uius)

The constant (positive) solution is

u:(a+b,ﬁ)




Schnakenberg Model

To get diffusion-driven instability, choose a and b such that

(a+b>*4+a—-b>0 and a<b




Schnakenberg Model

and diffusion parameters such that

da . (a+b)(a+b+/2b(a+D))
d1 b—a

In particular do > d;.




Variational formulation

To solve model on the sphere S? with metric g, let V}, be some
finite dimensional subspace of H'(S?) and let

Vi = Span(wl’ ce 7Q;/)m)

The approximate solution u = (u1,u2) can be written as




Variational formulation

Find (u1,ug) such that

o [ wvyose +di [ gferadtun). grade)os =7 [ Ao

52

O /52 ughjwgz + do /52 g(grad(uz), grad(v;) )wsz = 7/52 f2(u)pjwge

where wg2 is the area form.




Discretization

using implicit Euler method for time discretization

(144t VM 4 5t dy RV — 5ty ]\Z”)cl””rl = M"c"" 4 5t yaF™ !
(M™1 4 5t dy R + 5ty M™) 3™ = M + 5ty bF™ !




Discretization

where

M = /52 Vijwee R} = /52 g(grad(vy;), grad(1;) )we
Efjie = / Vijhphews  F'= | iwgs
52 S2

no n+1 _1,n 2n o n+l 1n 1n
M;j; = ZEiij Cr €y M;; = ZEijkE Cr Cp
k0 k¢




Domain composition

The sphere S? is covered with 6 patches D;
_; 1
2

D1 = (—1,1) X (—1,1) 1 Z = 22
Dy = (1,3) X (—1, 1) 2

Dy =(=1,1)x(1,3)  ¢a(z

(M
]

2— 29
Djy3 = D Pj+3 =
where

n=1+E L e =12 s = A (2 2)

Hence ¢; : Dj — S?
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Identification
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Triangulation

Using Riemannian metric G; = dgo?dgoj in triangulation
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Triangulation
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Changing manifold

The growing manifold is topologically the sphere S? with
changing Riemannian metric.

To produce the growing manifold, define 3 : S — R3 and
pj = B o, then the Riemannian metric is

G = dptdp; = dptdpTdBdyp;




Growing sphere (Isotropic grow)

Let B(x) = p(t)(x1, x2, x3) where

ert

p(t) = [Ty

Then ¢; = p(t)¢; and the corresponding Riemannian metric is
Gj = p(t)’G;




Growing sphere (Isotropic grow)

choosing parameters as follows

d1 dg Y a b K T ot
1 110}200(01]09|15]0.1]0.01




Growing sphere (Isotropic grow)

The concentrations u; and us at t =5




Growing sphere (Isotropic grow)

The concentrations u; and us at t = 10




Growing sphere (Isotropic grow)

The concentrations u; and us at t = 20




Growing sphere (Isotropic grow)

The concentrations u; and us at t = 50




Evolving sphere (Anisotropic grow)

Define
B(x) = (lzy, lwa, (lzs/h)'/?P)

such that
1)




Evolving sphere (Anisotropic grow)

Choose parameters as

di| do | v | a|b|lqg/|l|a|p|r|k
1 /100 |500(01/0905]01]08]03]0.51]0.5

(Sl se)




Evolving sphere (Anisotropic grow)

AAAAAAAAAAAAAA




Evolving sphere (Anisotropic grow)

The concentrations u; and us at t = 0.1 with 6t = 0.0005




Evolving sphere (Anisotropic grow)

The concentrations u; and us at t = 1.6 with 6t = 0.0005

oyo




Evolving sphere (Anisotropic grow)

The concentrations u; and us at t = 1.68 with 6t = 0.0005




Evolving sphere (Anisotropic grow)

The concentrations uq and us at ¢ = 2.75 with §¢ = 0.0005




Eigenfunctions role in pattern formation

y1 and yo are two positive roots of
po(y) = dida(a+b)y? + ((a +b)ds + (@ = b)dz )y + (a +b)°

Then we call I = (y1,y2) critical interval.

Let A be an eigenvalue of —A and vy be the corresponding
eigenfunction.

If A/ € (y1,y2) then the linearized Schnackenberg problem has
a solution of form Cvye*"t where p is the positive solution of

1, N) = (a+b)u?+ ((dl +d2)(a+b))\+(a+b)3+a—b>,u+]?0()\)




Eigenfunction and pattern formation

Choosing parameters as follows

d1 d2 a b
1 110]0.11]09

The computed critical interval is I = [0.2,0.5].




Eigenfunction and pattern formation

Let t = 1.6 be the ending time.
A1 = 3.64 and Ay = 14.76 are two first eigenvalues.

Set v = 15 then just A\;/y € I =[0.2,0.5].




Eigenfunction and pattern formation

The eigenfunction and concentration ug

o




Eigenfunction and pattern formation

Changing the parameter as follows

d1 d2 a
11201021

The computed critical interval is I = [0.169, 0.425].




Eigenfunction and pattern formation

The ending time ¢t = 1.6 and A3 = 15.01.

Set v = 72 then A3/~ € I.




Eigenfunction and pattern formation

The eigenfunction and concentration ug

>




m Our approach can also readily be extended to more
complicated surfaces.

m Since all computations are done in two dimensional
domains there is no error related to the approximation of
the surface in three dimensional space.

m In the case of restricting the parameters such that one
eigenvalue of Laplace operator belongs to the critical
interval, we are able to predict sort of pattern formation.

m The method benefits from simplicity in programming for
different kinds of curved surfaces.




Question?

Thanks for your attention



