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Polytopes

A polytope is a geometric structure with vertices, edges,
and (usually) other elements of higher rank, and with some
degree of uniformity and symmetry.

There are many different kinds of polytope, including both
convex polytopes like the Platonic solids, and non-convex

‘star’ polytopes:

Tetrahedron Icosahedron Dodecahedron Octahedron Cube




. as well as examples of rank 2, known as maps:

[Examples on every orientable surface of genus g > 1, and on

non-orientable surfaces of genus p for infinitely many p > 2]



Abstract polytopes

An abstract polytopes is a generalised form of polytope,
considered as a partially ordered set:




Definition

O
—1

An abstract polytope of rank n is a partially ordered set
P endowed with a strictly monotone rank function having
range {—1,...,n}. For —1 < j < n, elements of P of rank j
are called the j-faces, and a typical j-face is denoted by Fj.

This poset must satisfy certain combinatorial conditions
which generalise the properties of geometric polytopes.



We require that P has a smallest (—1)-face F';, and a
greatest n-face Fjp, and that each maximal chain (or flag)
of P haslengthn+2, eg. FFy—Fog—F1—Fo—...— F,,_1— Fj.

The faces of rank 0,1 and n—1 are called the vertices, edges
and facets (or co-vertices) of the polytope, respectively.

Two flags are called adjacent if they differ by just one face.

We require that P is strongly flag-connected, that is, any
two flags ® and W of P can be joined by a sequence of flags
D = Py, Pq,...,P, = WV such that each two successive faces
®,_1 and P; are adjacent, and NV C b, for all q.



Finally, we require the following homogeneity property, which
is often called the diamond condition:

Whenever F < G, with rank(F) = j—1 and rank(G) = j4+1,
there are exactly two faces H of rank 5 such that FF < H < .



Symmetries of abstract polytopes
An automorphism of an abstract polytope P is an order-
preserving bijection P — P.

Just as for maps (on surfaces), every automorphism is uniquely
determined by its effect on any given flag.

Regular polytopes

The number of automorphisms of an abstract polytope P is
bounded above by the number of flags of P.

When the upper bound is attained, we say that P is regular:

An abstract polytope P is regular if its automorphism group
Aut P is transitive (and hence regular) on the flags of P.



Involutory ‘swap’ automorphisms
Let P be a regular abstract polytope, and let ® be any flag
Fq1—Fo—Fy —F>—...—F,_1— Fn. Call this the base flag.

For 0 <+ <n-—1, there is an automorphism p; that maps &
to the adjacent flag ®* (differing from & only in its i-face).

Then also p; also takes ®! to @ (by the diamond condition),
so p; swaps & with & hence p;2 fixes ®, so p; has order 2:

Fitq

b F! ... p; swaps F; with F/
and fixes every other F;



Connection with Coxeter groups

The automorphism group of any regular polytope P of rank
n IS generated by the ‘swap’ automorphisms pg, p1,-- -, Pn—1,
which satisfy the following relations

e p?=1 for0<i<n-1,

o (pi_1p)ti=1 for1<i<n-—1,

e (ppj)?=1 for0<i<i4+1l<j<n—L.

These are precisely the defining relations for the Coxeter
group [ k1, ko, .., kn—1] (with Schlafli symbol { k1, ko, .., kn—1}).
In particular, Aut/P is a quotient of this Coxeter group.

We usually call {kq1,kp,....,k,_1} the type of the polytope.



Example: the cube (a 3-polytope of type {3,4})

Sa x Co is a quotient of the [3,4] Coxeter group

Y

Aut(Q3z)



Stabilizers and cosets

StabAutP(FO) — <:017:0271037--->pn—27pn—1>
Stabaytp(F1) = (p0; 2,035+ Pn—2,Pn—1)
Stabaytp(F2) = (p0;P1,P35- > Pn—2,Pn—1)

(PO, P1, P2y Pr—3y Pr—1)
(PO, P13 P25 - -+ s Pn—3 Pn—2)

Sta bAutP(Fn—l)

As P is flag-transitive, Aut’P acts transitively on :-faces for
all i, so i-faces can be labelled with cosets of Staba ,+ p(F;),
for all 2, and incidence is given by non-empty intersection.

Also this can be reversed, giving a construction for regular
polytopes from smooth quotients of (string) Coxeter groups,
as for regular maps, but under certain extra assumptions ...



T he Intersection Condition

When P is regular, the generators p; for Aut’P satisfy an
extra condition known as the intersection condition, namely

(piiel)y N (pied) = (p;rielnd)
for every two subsets I and J of the index set {0,1,...,n—1}.

Conversely, this condition on generators pg, p1,-..,pn—1 OF
a quotient of a Coxeter group [kq,ko,..,k,_1] ensures the
diamond condition and strong flag connectedness. Hence:

If G is a finite group generated by n elements pg, p1,...,Pn—1
which satisfy the defining relations for a string Coxeter group
of rank n, with orders of the p; and products p;p; preserved,
and these generators p; satisfy the intersection condition,
then there exists a regular polytope P with AutP = d.



Chiral polytopes

If the automorphism group Aut’P has two orbits on flags,
such that adjacent flags always lie in different orbits, then
the polytope P is said to be chiral. (This is like a chiral map:
if f and f’ are the two faces containing a given arc (v,e),
then the flags (v,e, f) and (v, e, f/) lie in different orbits.)

The automorphism group of every chiral n-polytope P is
a smooth quotient of the orientation-preserving subgroup
[k1, k2, kn—1]T = (p0p1,P1P2; - Pn—2pn—1) Of the relevant
Coxeter group [ k1, ko, .., kn—1], and {kq, ko, .., k,—1} is its type.
There is also an analogue of the intersection condition,
which can be used to construct examples.



Construction of small regular polytopes

All ‘small’ regular polytopes can be found/constructed via
their automorphism groups, which are (smooth) quotients
of string Coxeter groups [k1,ko, .., k,_1].

Michael Hartley used the database of small finite groups to
find all regular polytopes with N flags, where 1 < N < 2000
but N %= 1024,1536. See www.abstract-polytopes.com/atlas.

T his approach, however, is limited by the database, and the
very large numbers of 2-groups and {2,3}-groups of small
order. A much more effective approach is to use ‘low index
subgroup’ methods (applied to the Coxeter groups).



Atlas of small chiral and regular polytopes
[Joint work with Dimitri Leemans (2012/13)]

We now have complete lists of all regular polytopes with up
to 4000 flags and all chiral polytopes with up to 4000 flags.

These come from an initial computation for rank 3, and

then increasing ranks, using the following consequence of
the intersection condition:

if P is a regular/chiral polytope of type {k1, ko, ..., k,—1}, and
its facets have m flags, then P has at least mk,,_1 flags.

Up to 4000 flags, the largest rank for regular is 6, and the
largest rank for chiral is 5. [Website yet to be created.]



The smallest regular polytopes

For each n > 3, what are the regular n-polytopes with the
smallest numbers of flags? [Daniel Pellicer (Oaxaca, 2010)]

Answer [MC (Adv. Math. (2013), described at Fields (2011)]

For every n > 9, the smallest regular n-polytope is a unique
polytope of type {4,”.7.1,4}, with 2-47"—1 flags. The smallest
ones are known (exactly) also for n < 8.

Lemma: If P is a regular n-polytope, of type {k1,...,kn_1},
then # of flags of P = |Aut(P)| > 2k1ky ... kyp_1.

If this lower bound is attained, we say that P is tight.



Tight regular polytopes

If P is a tight regular polytope of type {k1,...,k,—_1}, then
every regular sub-polytope of P is tight.

Also if n > 3 then 2kiks...k,—_1 = |Aut(P)| is even (since
two of the generators of Aut(P) are commuting involutions),
so at least one k; is even, indeed no two consecutive k; can
be odd. [Observations made by Gabe Cunningham]

Theorem [GC (2013)] If m and k are not both odd, then
there exists a tight regular 3-polytope of type {m, k}.

Gabe also conjectured that if k is odd and m > 2k (or vice
versa), there is no tight regular 3-polytope of type {m,k}.



Tight regular polytopes (cont.)

Theorem [MC & GC (2013)] There exists a tight regular
3-polytope of type {m,k} if and only if

e m and k are both even, or

e m IS odd and k divides 2m, or k is odd and m divides 2k.

The proof relies on a connection with some work by MC
and Tom Tucker on regular Cayley maps for cyclic groups,
or more generally, on groups having a factorisation G = AB
where the subgroups A and B are cyclic and AN B = {1}.

Corollary [MC & GC (2013)] There exists a tight orientable
regular polytope of type {kq1,...,k,_1} if and only if kj IS an
even divisor of 2k; whenever k; is odd and 53 =14 1.



More on the intersection condition
(piie€lyN{pj:iedJ)y=(p;,:1e€lNJ)

n

: : L . 2 :
The intersection condition involves up to (2) pairs (I,J).

Question: How many of these need to be checked?

For some of them, the IC is always satisfied (e.g. if I C J).

For rank 2, we need only check the pair (I,J) = ({1}, {2}),
and for that, the IC never fails when the quotient is smooth.

For rank n > 2, there are inductive processes for determin-
ing a minimal set of pairs that need to be checked (see
P. McMullen and E. Schulte, Abstract Regular Polytopes,
Cambridge (2002)).



The rank 3 case

Rank 3 polytopes are simply non-degenerate maps (where
non-degeneracy follows the diamond condition).

Theorem: Let G be any finite group generated by three
involutions a, b,c such that ab, bc, ac have orders k, m, 2,
where k£ > 3 and m > 3. Then either G is the automorphism
group of a reqgular 3-polytope, or G has non-trivial cyclic
normal subgroup N (contained in {(ab) or (bc)).

Sketch proof. By smoothness, there is really only one pair
(I,J) to check, namely ({0,1},{1,2}). If the IC fails for that
pair, then some non-trivial element of (ab) or (bc) generates
a normal subgroup of G. []



Corollary 1: If G is a finite simple group, or more gen-
erally, has no non-trivial cyclic normal subgroups (e.g. Apn
or S, for some n), then G is the automorphism group of a
regular 3-polytope of type {m,k} whenever G is a smooth
quotient of the [m, k] Coxeter group.

Corollary 2: For every non-negative integer g, there exists
a polytopal regular map on an orientable surface of genus g.
(In other words, for every such g there exists a fully regular
orientable map of genus g that is also a 3-polytope.)

Proof. There exists a family of groups G, of order 16n (for
n € Z1), with each G, being a smooth quotient of the [4, 2n]
Coxeter group, and they satisfy the IC since they have no
cyclic normal subgroups of the kind given by the theorem.

These are ‘Accola-Maclachlan’ maps AM,, (of genus n—1).



The rank 4 case (Joint work with Deborah Oliveros)

For rank 4, easy observations show there are just four pairs
(I,J) for which the intersection condition has to be checked:

(I,J) = ({0,1},{1,2}), as in the rank 3 test;

(1,J) = ({0,1,2},{3});

(I,J) = ({0,1,2},{2,3});

(I,J) = ({0,1,2},{1,2,3}).
For some types, many (and sometimes all) of these cases can
be easily eliminated. For example, if the type is {k1, ko, k3}

and the IC fails for ({0,1,2},{2,3}), then (po, p1, p2) N {p2, p3)
Is a subgroup of (p3, p3) = Dy, strictly containing (p2) = C5.

So if k3 is prime then this is (po, p3), and p3 € {(po, p1, pP2)-



Amazing Theorem 1 (for type {3,5,3})

Every smooth homomorphism ¢ from the [3,5,3] Coxeter
group onto a finite group G gives a regular 4-polytope P of
type {3,5,3} with Aut(P) = G, except in precisely one case,
where G = PSL(2,11) x C» and the v-images pg, p1, P2, P3
in G of the standard Coxeter generators satisfy the relation

(pop1p2)° = (p1p2p3)°.

The proof shows that the IC holds for all four of the critical
pairs (I,J), except ({0,1,2},{1,2,3}), for which a failure
requires (pop1p2)° = (p1pap3)> to be a central involution.

Remarkably, adding that relation to the [3,5,3] Coxeter
group gives quotient PSL(2,11) x C5, and this is the only
possible exception.



Amazing Theorem 2 (for type {5,3,5})

Every smooth homomorphism ¢ from the [5,3,5] Coxeter
group onto a finite group G gives a regular 4-polytope P of
type {5,3,5} with Aut(P) = G, except in precisely one case,
where G = PSL(2,19) x C» and the vy-images pg, p1, P2, P3
in G of the standard Coxeter generators satisfy the relation

(pop1p2)° = (p1p2p3)°.

Curiously, Dimitri Leemans and Egon Schulte showed in
2007 that the only regular polytopes of rank 4 or more with
automorphism group PSL(2,q) for some ¢ are Grinbaum’s
11-cell of type {3,5,3} for PSL(2,11), and Coxeter's 57-cell
of type {5,3,5} for PSL(2,19).

There's a similar theorem for {4,3,5}, with no exceptions.



Corollary: For all but finitely many positive integers n,
the alternating group A, and the symmetric group S, are
automorphism groups of at least one regular 4-polytope of
each of the types {3,5,3}, {4,3,5} and {5,3,5}.

Proof. It is known (MC, Martin & Torstensson (2006)) that
all but finitely many A, are smooth quotients of [3,5, 3].
The same can be shown to hold also for S,,, and for the
types {4,3,5} and {5,3,5} as well.

Note that this does not hold for the other locally spherical
type {ki, ko, k3} for which the Coxeter group [kq, ko, k3] is
infinite, namely {4,3,4}, because the [4,3,4] Coxeter group
IS solvable, having a free abelian normal subgroup of index
48 with quotient S4 x C>. But because of the latter fact,
the regular 4-polytopes of type {4,3,4} are all known.



ODbvious question

Is it true that whenever the Coxeter group [k1,...,kg] is
infinite and insoluble, all but finitely many alternating and
symmetric groups are the automorphism group of at least
one regular (d+1)-polytope of type {ki,ko,kg}7

For rank 3, this is more-or-less known to be true (by work of
Everitt (2000) on alternating quotients of Fuchsian groups).

What about higher ranks? [Open question]



Constructions for chiral polytopes

Until 8 years ago, the only known finite chiral polytopes had
ranks 3 and 4. Then Isabel Hubard, Tomaz Pisanski & MC
found some (small) examples of rank 5, and then later, Alice
Devillers & MC constructed examples of ranks 6, 7 and 8.

This was all surpassed spectacularly by the following

Theorem [Daniel Pellicer (2010)]: For every d > 3, there
exists a finite chiral polytope of rank d.

It is easy to prove that if P is a chiral polytope of rank d, then
its sub-polytopes of rank d — 2 are regular (not chiral), so a
recursive construction is impossible. Daniel Pellicer’s proof
involved a construction for chiral polytopes with prescribed
regular facets. But these can be very large!



Chiral polytopes of type {3,3,...,3,k}

The regular d-simplex is a regular polytope of rank d and
type {3,3,...,3}, with automorphism group Sg41.

Alice Devillers and MC constructed chiral polytopes of ranks
6, 7 and 8 with type {3,3,...,3,k} for various k, having facets
iIsomorphic to the regular 5-, 6- and 7-simplex respectively.

These chiral polytopes can be analysed by expressing the
automorphism group as a transitive permutation group, and
then considering the (sub-)orbits of the stabiliser of a facet.
Since each facet is a regular d-simplex, of type {3,3,...,3},
its stabiliser (in the automorphism group) is the alternating
group Agyi. This gives a way to construct new examples
— namely from permutation representations of A 4.



Theorem [Hubard, O'Reilly-Regueiro, Pellicer & MC(C]
For all but finitely many n, there exists a chiral 4-polytope P
of type {3,3,k} for some k, with AutP = Alt(n) or Sym(n).

‘Almost’ theorem [same people as above]

For all d > 4, there are infinitely many n for which there
exists a chiral d-polytope P of type {3,3,..,3,k} for some k,
with AutP = Alt(n) or Sym(n).

Conjecture/challenge [MC]

For all d > 4, ‘infinitely many’ can be replaced by ‘all but
finitely many’.
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Title: An update on polytopes with many symmetries
Speaker: Marston Conder, University of Auckland, N.Z.

Abstract: In this talk I'll give a brief update on some recent
discoveries about regular and chiral polytopes, including

e the smallest regular polytopes of given rank

e simplifications/applications of the intersection condition
e computer-assisted determination of all regular and chiral
polytopes with up to 4000 flags

e conditions on the Schlafli type {p1,p2,...,pn} fOr the exis-
tence of a tight regular n-polytope (with 2p1p> ... pn flags)
e chiral polytopes of type {3,3,...,3,k} (with some A, or
Sn as automorphism group).

Pieces of these involve joint work with Gabe Cunningham,
Isabel Hubard, Dimitri Leemans, Deborah Oliveros, Eugenia
O’'Reilly Regueiro and Daniel Pellicer.



