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Problem: Find
rnp = max{r : n disks of radius r can be packed into a unit disk.}

(1-4 trivial; 5-7 Graham (1968); 8-10 Pirl (1969); 11 Melissen (1994); 12 Fodor

(2000); 13 Fodor (2003); 14 unsolved)



Covering of a Disk with Congruent Disks

Problem: Find rnc = min{r : n disks of radius r can cover a unit disk.}
Solutions for n ≤ 8:

For n = 5 and 6 the optimal con�guration has only a mirror symmetry.
(1-4, 7 trivial; 5-6 K. Bezdek (1979,1983); 8-9 G. Fejes Tóth (1999); 10 ?)



R. Connelly's Problem:

I Given n and rnp ≤ r ≤ rnc , �nd the con�guration of n disks of radius
r, that covers the most of the are of a unit disk.

I Understand how the rotational symmetry of the optimal
con�guration for n = 5, r = r5p is lost as r grows continuously from
r5p to r5c .

???−→ ???−→



Derivative of the Volume of Flowers
De�nitions

I A lattice polynomial f(x1, . . . , xk) is a formal expression built from
the variables x1, . . . , xn and the binary operation symbols ∧ and ∨.
Example: x1 ∧ (x2 ∨ x3).

I A �ower is a body obtained by evaluating a lattice polynomial
f(x1, . . . , xk) on some balls xi = Bi with operations ∨ = ∪, ∧ = ∩.

I The power of a point p with respect to a ball B = B(c, r) is
PB(p) = ‖p− c‖2 − r2.

I The (truncated) Dirichlet�Voronoi cell of the ball Bi in the �ower
f(B1, . . . , Bk) is the set

Ci = {x : f(PB1
(x), . . . , f(PBk

(x)) = f(PBi
(x)},

where f is evaluated on the powers with operations ∨ = min,
∧ = max.

I The wall Wij between the Dirichlet�Voronoi cells Ci and Cj if
Wij = Ci ∩ Cj .



Derivative of the Volume of Flowers

Theorem
Suppose that each variable xi occurs in the lattice polynomial

f(x1, . . . , xk) exactly once. Let εij be 1 if the the shortest subexpression

of f that contains both xi and xj is a ∨ of shorter lattice polynomials,

−1 otherwise.

If the ball Bi(t) = B(ci(t), ri) move in a di�erentiable way, then the

volume V (t) of the �ower f(B1(t), . . . , Bk(t)) is di�erentiable at each t
at which the balls Bi(t) are di�erent and

V ′ =
∑

1≤i<j≤k

εijV oln−1(Wij)d
′
ij ,

where dij = ‖ci − cj‖.

Observation (R. Connelly)
If a con�guration of balls maximizes the volume of a �ower, then the

tensegrity obtained by connecting ci and cj by a cable if εij = −1 and a

strut if εij = 1 is rigid. The volumes of the walls provide a self stress

ωij = εij
V oln−1(Wij)

dij
.



Formulae in the Euclidean Plane

I Orient the plane and all the circles in the positive direction.

I J � rotation by +π
2 .

I For a collection of k disks Di = D(ci, ri) with boundary circles
Ci = S(ci, ri), denote by pij the point where Ci enters Cj ,
provided that this point exists.

I For a �ower f(D1, . . . , Dk), de�ne the vertex set V as the set of
crossings pij , lying on the boundary of the �ower.

Theorem
Assume that the disks Di = D(ci, ri) move smoothly and the speed

vectors of their centers are vi, i = 1, . . . , k. If all the disks are di�erent,

then the derivative of the area V of the �ower f(D1, . . . , Dk) exists and
can be expressed as follows

V ′ =

k∑
i=1

〈
vi, J

( ∑
pij∈V

εijpij −
∑

pji∈V
εijpji

)〉
=
∑
pij

εij〈vi − vj , Jpij〉.



Formulae in the Euclidean Plane
Critical Con�gurations and the Hessian

I Given a lattice polynomial f(x1, . . . , xk), an arrangement of disks
D1, . . . , Dk is called critical con�guration if the derivative of the
area of f(D1, . . . , Dk) is 0 for any smooth variation of the disks.

Corollary
A con�guration of disks is critical for a given f , if and only if

∀i :
∑

pij∈V
εijpij −

∑
pji∈V

εijpji = 0.

Theorem
If for a given critical con�guration, there are no tangent pair of circles,

the contact point of which is on the boundary of the �ower, then the

area of the �ower is twice di�erentiable at this con�guration and its

Hessian can be computed by the formula

Hess(V,V) =
∑

pij∈V

εij
rirj sin θij

(vi − vj)
T (ci − pij)(cj − pij)

T (vi − vj),

where V = (v1, . . . ,vk)).



Covering the Most with 2 Congruent Disks



Optimal Coverings by 3 Disks
joint work with B. Szalkai

First Step. Classify all combinatorially di�erent arrangements that can
possibly give critical con�gurations.

I Find criteria that rule out geometrically not realizable combinatorial
structures.

I Find criteria that are necessarily satis�ed by optimal con�gurations.
I Develop a software that lists all the remaining cases.

This produces a list of combinatorial con�guration types to be dealt with.



Optimal Coverings by 3 Disks
joint work with B. Szalkai

Second Step. Find all critical con�gurations belonging to one of the
listed combinatorial types. The hardest con�guration is

Lemma
Given a circle C, an intersecting straight line e and two points P,Q ∈ e
on di�erent sides of C, and one of the half planes H bounded by e, there
is a unique point R ∈ H such that a+ b+ c = 0.



Optimal Coverings by 3 Disks
joint work with B. Szalkai

The proof of the Lemma requires to show that two algebraic curves of
degree four have exactly one intersection point in H.

Theorem
For any r3p ≤ r ≤ r3c , the opimal covering of a unit disk with three

congruent disks of radius r is given by the unique rotationally symmetric

critical con�guration of the following combinatorial type



Optimal Coverings by 5 Disks

Computer search for optimal covering was done by Tarnai�Gáspár�Hincz,
using a mechanical model.
They observed that

I there is a unique rotationally symmetric critical con�guration;
I for small values of r ≥ r5p, the unique rotationally symmetric critical

con�guration is the best;
I as r increases above a certain value r0, two critical con�gurations

grow out of the rotationally symmetric one, an egg shaped and a
pumpkin shaped.



Question
How can we compute r0? In which directions should we deform the

rotationally symmetric critical con�guration at r0 to push toward the

pumpkin or egg shaped critical con�gurations?

I The Hessian can be computed using the general formulae presented
above.

I Fixing the big circle, the Hessian is de�ned on a 10-dimensional
Euclidean space.

I In�nitesimal rotations about the origin are in the kernel.

I We consider the Hessian on the orthogonal complement.

I Here is a numeric plot of the graph of its determinant:
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I H is negative de�nite at the beginning, has two positive eigenvalues
in the valley.

Question
Is there a double root? or two roots very close to one another?



Theorem
The dihedral group D5 is a symmetry group of the con�guration. Thus,

it acts on the tangents space, on which the Hesse form is de�ned. The

Hesse form is invariant under the action of D5. Thus, the irreducible

factors of this representation are invariant under the Hesse map. As a

result, we obtain an orthonormal basis diagonalizing the Hesse form. The

Hesse map has consant eigenvalue on irreducible factors.



Eigenvectors of the Hesse map



Thank you for your attention!!!


