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Symmetric sets

A symmetric set is a pair (V,G ), with V a finite set on which a
subgroup G of its permutations acts transitively. We often call V
itself a symmetric set; then G is the automorphism group of V. We
always think of the n := cardV points of V as ordered in some way.

Example
The vertex-set V of an abstract regular polytope P, with G the
automorphism group of P.

Pick e ∈ V any element, and let H be the stabilizer of e in V.
Thus we may identify V with the family of (right) cosets Hx of H
in G , and write x for the corresponding element of V. However, it
is helpful to retain V as a separate entity.

Remark
In particular, we can identify e with the identity of G .
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Diagonal classes and layers

A diagonal in V is an unordered pair {x , y} of elements of V. A
diagonal class consists of a family of diagonals equivalent under G .
We label the diagonal classes D0, . . . ,Dr , with the trivial class
D0 := {x , x} always first.

Similarly, the points of V fall into layers Lk from the initial point e:

Lk := {x ∈ V | {e, x} ∈ Dk}.

If `k := cardLk , so that `0 + · · ·+ `r = n (and `0 = 1), then we
define

Λ := (`0, . . . , `r )

to be the layer vector of (V,G ) (or of V).
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Realizations

A realization of (V,G ) is a mapping Ψ : V × G → E×O, with E a
euclidean space and O its orthogonal group, such that

(xg)Ψ = (xΨ)(gΨ)

for all x ∈ V and g ∈ G . In other words, Ψ is compatible with the
group action; in particular, Ψ induces a homomorphism on G .

Write G := GΨ and V := VΨ . Thus G is a finite orthogonal group
acting transitively on V . We often identify Ψ with the image set V .

Remark
Such a geometric situation is often a starting point, with (V ,G)
playing the rôle of (V,G ).

The dimension of V is dimV := dim linV .
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Wythoff space

The Wythoff space of a realization Ψ is the set of points W of E
fixed by H := HΨ , namely,

W := {x ∈ E | xΦ = x for all Φ ∈ H}.

We thus call the image v := eΨ of the initial point e ∈ V the
initial point of the realization. Observe that some representations
of G may have trivial Wythoff spaces W = {o}, and so yield trivial
realizations.

Henceforth, we demand that V 6= {o} (and hence W 6= {o}), so
that V is a subset of some sphere centred at the origin o.
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Operations on realizations

There are three basic ways of combining realizations. In these,
x ∈ V is a general point.

The scaled realization λΨ of Ψ by λ ∈ R is given by

x(λΨ) := λ(xΨ).

The blend Ψ #Ω of realizations Ψ and Ω is defined by

x(Ψ #Ω) := (xΨ, xΩ).

The (tensor) product Ψ ⊗Ω of realizations Ψ and Ω is given by

x(Ψ ⊗Ω) := (xΨ)⊗ (xΩ).
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Inner-product vectors

Let {x , y} represent the kth diagonal class Dk of V. If Ψ is a
realization of V, write

σk = σk(Ψ) := 〈xΨ, yΨ 〉.

Then Σ = Σ(Ψ) := (σ0, . . . σr ) is the inner-product vector of Ψ .

Theorem
The inner-product vector Σ determines the realization Ψ up to
congruence.

We scale inner-product vectors and add them in the usual way. We
further define a (term-by-term) product ab of two vectors
a = (α0, . . . , αr ) and b = (β0, . . . , βr ) by

ab := (α0β0, . . . , αrβr ).
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Realization cone

The effects of the operations on realizations are captured in

Theorem
If Ψ and Ω are two realizations of V and λ ∈ R, then

Σ(λΨ) = λ2Σ(Ψ),

Σ(Ψ #Ω) = Σ(Ψ) +Σ(Ω),

Σ(Ψ ⊗Ω) = Σ(Ψ)Σ(Ω).

We identify two realizations Ψ and Ω if the corresponding images
VΨ and VΩ are congruent, and henceforth use V to mean the
family of congruence classes of realizations. In this sense, we have

Corollary
The family V has the structure of an (r + 1)-dimensional closed
convex cone, called the realization cone.



Realization cone

The effects of the operations on realizations are captured in

Theorem
If Ψ and Ω are two realizations of V and λ ∈ R, then

Σ(λΨ) = λ2Σ(Ψ),

Σ(Ψ #Ω) = Σ(Ψ) +Σ(Ω),

Σ(Ψ ⊗Ω) = Σ(Ψ)Σ(Ω).

We identify two realizations Ψ and Ω if the corresponding images
VΨ and VΩ are congruent, and henceforth use V to mean the
family of congruence classes of realizations. In this sense, we have

Corollary
The family V has the structure of an (r + 1)-dimensional closed
convex cone, called the realization cone.



Algebra of realizations

Since we identify congruent realizations, we have

Theorem
Products of realizations are associative and commutative.

It is clear also that products interact with scaling and blending by

Theorem
If Φ, Ψ,Ω are realizations and λ ∈ R, then

(λΦ)⊗ Ψ = λ(Φ⊗ Ψ),
Φ⊗ (Ψ #Ω) = (Φ⊗ Ψ) # (Φ⊗Ω).

Last, we also have

Theorem
The multiplicative unity Ψ0 is given by xΨ0 = 1 ∈ R for all x ∈ V.
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Purity

Since we are only concerned with congruence classes, we see that

λV # µV = νV

with ν2 = λ2 + µ2. In particular, V always admits trivial
expressions V = λV # µV as a blend, with λ2 + µ2 = 1.

A realization V that cannot be expressed as a blend in a non-trivial
way is called pure.

Remark
It should be clear that pure realizations V correspond to irreducible
representations Ψ of the group G .
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Realization domain

Identifying a realization Ψ with its image V = VΨ , we shall write
λV , U # V , U ⊗ V , and so on. In this sense, the unity Ψ0 is
identified with {1}, and is called the henogon.

A realization V is normalized if V is a subset of the unit sphere.
The realization domain N of (V,G ) consists of the normalized
realizations. Observe that {1} ∈ N .

General (non-negative) linear combinations in V are replaced by
convex ones in N . More specifically, we are restricted to scaling
and blending combinations λU # µV , where λ2 + µ2 = 1.

Then we have

Theorem
The realization domain N has the structure of an r-dimensional
compact convex set. It is a pyramid with apex {1}.
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Cosine vectors

The cosine vector Γ = Γ (Ψ) = (γ0, γ1, . . . , γr ) of a realization Ψ is
given in terms of its inner-product vector Σ = (σ0, . . . , σr ) by

Γ := σ−1
0 Σ;

the cosine vector is the inner-product vector of the normalization of
Ψ (recall that σ0 > 0 by assumption). Note that γ0 := 1 represents
the trivial diagonal class {x , x}.

The unity or henogon has cosine vector

Γ0 = Γ (Ψ0) = Γ ({1}) = (1r+1) = (1, 1, . . . , 1).

Theorem
The product Ψ ⊗Ω of realizations has cosine vector

Γ (Ψ ⊗Ω) = Γ (Ψ)Γ (Ω).
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Layer inequality

The cosine vector Γ of a centred realization (that is, the centroid
of its points is the origin o) must satisfy the layer equation

〈Λ, Γ 〉 = 0

(take the inner product of
∑

x∈V x = o with the initial point v).

More generally, a cosine vector Γ must satisfy the layer inequality
〈Λ, Γ 〉 > 0. If Γ = α0Γ0 + α1Γ1, a convex combination, with Γ1
corresponding to the centred component, then α0 = 〈Λ, Γ 〉/n.

The meaning of this is

Lemma
If λ is the distance from o to the centroid of V , then

λ2 = 〈Λ, Γ 〉/n.
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Λ-inner-product

Define the (positive definite) Λ-inner-product 〈·, ·〉Λ by

〈a, b〉Λ := 〈ab, Λ〉/n,

with ab the term-by-term product of a, b ∈ Rr+1 defined earlier.

The product of realizations is another realization. Moreover, if
{u1, . . . , ud} is an orthonormal basis of Ed and x ∈ Ed , then
〈x ⊗ x , u1 ⊗ u1 + · · ·+ ud ⊗ ud 〉 = ‖x‖2. There follows

Lemma
I If Γ1, Γ2 are cosine vectors of realizations of V, then
〈Γ1, Γ2〉Λ > 0.

I If the realization V has cosine vector Γ , then

‖Γ‖2Λ := 〈Γ, Γ 〉Λ >
1

dimV
.
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Dimension equation

The simplex realization T ∈ N of V is the ordered orthonormal
basis (e1, . . . , en) of En; its cosine vector is thus Γ (T ) = (1, 0r ).

Theorem
If the simplex realization T of V is decomposed into components
V1, . . . ,Vs in orthogonal subspaces, where Vj has dimension dj and
cosine vector Γj for j = 1, . . . , s, then

s∑
j=1

djΓj = n(1, 0r ).

This (linear) dimension equation follows from the fact that the
radius ρj of Vj satisfies ρ2

j = dj/n.
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Central symmetry

If G has a central involution which fixes no point of V, then we call
V centrally symmetric.

If the centrally symmetric set V has n = 2m points, then it has a
cross-polytope realization X , whose points are those of an ordered
orthonormal basis (e1, . . . , em) of Em, together with their opposites
(−e1, . . . ,−em).

Morever, these points can then be identified in opposite pairs, to
give the small simplex realization S , whose points are those of an
ordered orthonormal basis (e1, . . . , em) of Em.

There are natural analogues of the dimension equation for X and
S . Observe that a pure realization of V is (up to scaling) a
component either of X or of S .
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give the small simplex realization S , whose points are those of an
ordered orthonormal basis (e1, . . . , em) of Em.

There are natural analogues of the dimension equation for X and
S . Observe that a pure realization of V is (up to scaling) a
component either of X or of S .
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Simplex and cross-polytope

The (vertex-set of the) d -simplex has layer vector Λ = (1, d), and
two pure realizations with cosine vectors

Γ0 = (1, 1),

Γ1 = (1,− 1
d ).

The d -cross-polytope has layer vector Λ = (1, 2(d − 1), 1), and
three pure realizations with cosine vectors

Γ0 = (1, 1, 1),

Γ1 = (1,− 1
d−1 , 1),

Γ2 = (1, 0,−1).
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Λ-orthogonality

The Λ-orthogonality theorem is a fundamental relationship
governing realizations.

Theorem
If the simplex realization T of V is decomposed into components
V1, . . . ,Vs in orthogonal subspaces, where Vj has dimension dj and
cosine vector Γj for j = 1, . . . , s, then

〈Γj , Γk 〉Λ =
δjk
dk

;

here, δjk is the Kronecker delta function.

For this, take the Λ-inner-product of the dimension equation with
Γk , and use the fact that 〈Γj , Γk 〉Λ > 0 and ‖Γk‖2Λ > 1/dk .
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Comments

We have already seen the Λ-norm, given by ‖Γ‖2Λ := 〈Γ, Γ 〉Λ; we
can also talk about Λ-orthogonality. Among other things, the last
theorem says:

I the cosine vector Γ of a d -dimensional pure realization satisfies

‖Γ‖2Λ = 1/d ;

I if V1,V2 are two pure realizations of different dimensions, then
V1 ⊗ V2 is centred.

Note also something that is useful for calculations: if Γ1, Γ2, Γ3 are
any cosine vectors, then

〈Γ1Γ2, Γ3〉Λ = 〈Γ1, Γ2Γ3〉Λ.



Wythoff space

Let W be the Wythoff space of a subfamily of realizations with a
given symmetry group G. Different realizations V (x) will usually
arise from different choices of x ∈W . If x , y ∈W , then we write

V (x) + V (y) := V (x + y),

which we call their sum; more generally, with scaling as well we can
form linear combinations of realizations.

Linear combinations and blends interact as follows.

Lemma
If U,V are realizations with symmetry group G, then

U # V = (λU + µV ) # (µU − λV )

whenever λ, µ ∈ R are such that λ2 + µ2 = 1.
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Essential Wythoff space

Write VG for the subcone of V of all realizations which are blends
of ones with a fixed irreducible symmetry group G.

If G has a non-trivial centralizer in O (that is, other than {±I}),
then it will be isomorphic to the complex numbers of unit modulus
or the unit quaternions. We pass to an essential Wythoff space
W ∗, transverse to the action of the centralizer, whose dimension
w∗ will be w/2 or w/4, as appropriate.

Cases when w > 1 are associated with asymmetric diagonal classes
{e, x}, such that (e, x) 6≡ (x , e) under G . We have

Lemma
The diagonal class containing {e, x} is symmetric if and only if

x−1 ∈ HxH .
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Coefficient matrix

For a fixed orthonormal basis E = (e1, . . . , ew∗) of W ∗, there are
Γjk = Γkj (depending only on E ) such that the realization V (x)
with initial point x = ξ1e1 + · · ·+ ξw∗ew∗ ∈W ∗ has inner-product
vector

Σ(x) =
w∗∑

j ,k=1

ξjξkΓjk .

A general member V ∈ VG thus has inner-product vector of the
form Σ(A) =

∑
j ,k αjkΓjk , with A = (αjk) a symmetric w∗ × w∗

matrix; A is the coefficient matrix of Σ(A) or of V (A) := V .

Theorem
The symmetric matrix A is the coefficient matrix of a realization
V (A) ∈ NG if and only if A is positive semi-definite with trace 1.
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Λ-orthogonal basis

It should come as no surprise that the Γjk form a Λ-orthogonal
basis for the inner-product vectors in VG. More exactly, we have

Theorem
If the irreducible representation G of G has degree d and the Γjk
are defined as before with respect to a fixed orthonormal basis E of
an essential Wythoff space of dimension w∗, then

I distinct Γjk are Λ-orthogonal,
I for 1 6 j , k 6 w∗, ‖Γjk‖2Λ =

1+ δjk
2d

.

Observe that the theorem assigns a ‘notional’ dimension 2d to
those Γjk with j 6= k .
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Numerical relationships

We can now put together all the Γjk arising from different
irreducible representations to obtain a Λ-orthogonal basis of the
whole of V. Counting the various contributions, we then arrive at

Theorem
With the previous notation,∑

Ψ

w∗(Ψ)d(Ψ) = n,∑
Ψ

1
2w
∗(Ψ)

(
w∗(Ψ) + 1

)
= r + 1.

In each case, the sum runs over all irreducible representations Ψ of
the automorphism group G .



Cosine matrix

A cosine matrix of V is obtained by listing, in some order, the Γjk
for each irreducible representation G. Bear in mind that, when
w∗(G) > 1, these depend on a choice of basis of W ∗.

When w∗ = 2, a useful alternative expression for the general cosine
vector of a pure realization in NG is

Γ (ϑ) = Γm + cos(2ϑ)Γc + sin(2ϑ)Γs ,

where

Γm = 1
2(Γ11 + Γ22), Γc = 1

2(Γ11 − Γ22), Γs = Γ12.

Each of Γm, Γc , Γs has square Λ-norm 1/2d ; only Γm is a genuine
cosine vector.
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Induced cosine vectors

Henceforth, we just consider polytopes with a lot of symmetry
(such as regular or uniform ones), although much of what we say
generalizes.

A sufficiently symmetric section Q of an abstract polytope P will
itself have a layer vector ΛQ, and a cosine vector Γ of P will give a
corresponding induced cosine vector ΓQ of Q, whose entries will be
a subset of those of Γ .

The layer inequality 〈ΓQ, ΛQ〉 > 0 for the induced cosine vector
must hold, and so yields a criterion for Γ to be a cosine vector of P.

However, particularly in the case that Q is the vertex-figure or facet
of a regular polytope P, induced cosine vectors can also help to
find cosine vectors of the latter.
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Vertex-figure inequality

If Q is the vertex-figure of the regular polytope P and P is a
realization of P with cosine vector Γ , then we write

ηv (P) := 〈ΛQ, ΓQ(P)〉/m,

where Q has m vertices. Now ηf (P) is the squared distance of the
centroid of the corresponding realization Q of Q from o. Taking Q
to form layer L1, we therefore have

Theorem
For each realization P of P,

ηv (P) >
(
γ1(P)

)2
,

with equality if w(P) = 1.



Icosahedron

Treating the icosahedron {3, 5} just as a symmetric map shows
that it is centrally symmetric with layer vector Λ = (1, 5, 5, 1), and
so with 12 vertices. Since each diagonal is symmetric, w(P) = 1
for each pure realization P .

The small simplex realization S thus has a single non-trivial pure
component (the 5-simplex), with cosine vector Γ1 = (1,−1

5 ,−
1
5 , 1).

For the components of the cross-polytope realization X , from the
layer equation and Λ-orthogonality with respect to Γ1 we see that
the cosine vectors are of the form (1, α,−α,−1) for some α. The
induced layer and cosine vectors of the vertex-figure Q = {5} are
ΛQ = (1, 2, 2) and ΓQ = (1, γ1, γ2). We thus have

α2 = ηv = 1
5

(
1+ 2α+ 2(−α)

)
= 1

5 =⇒ α = ± 1√
5
.
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Dimensions

We have not assumed anything about the dimensions of these last
two realizations. With α = ± 1√

5
, the Λ-orthogonality theorem tells

us that their common dimension d is given by

1
d = 1

12

(
1+ 5α2 + 5(−α)2 + 1

)
= 1

3 =⇒ d = 3.

We have thus obtained the cosine matrix of {3, 5}, namely,

1 1 1 1

1 −1
5 −1

5 1

1 1√
5
− 1√

5
−1

1 − 1√
5

1√
5
−1


.
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Hemi-icosidodecahedron

Abstractly, this is the 15 diameters of the icosidodecahedron acted
on by the icosahedral group [3, 5]+. Then Λ = (1, 4, 4, 4, 2∗), where
an asterisk indicates an asymmetric diagonal class (only 3-fold
rotations permute three mutually orthogonal diameters).

The five sets of mutually orthogonal diameters can be identified in
threes, giving cosine vector (1,−1

4 ,−
1
4 ,−

1
4 , 1) and dimension 4.

The layer equation and Λ-orthogonality show that the remaining
cosine vectors are of the form (1, α, β, γ,−1

2), with α+ β + γ = 0.
With dimension 15− 1− 4 = 10 but 3 diagonal classes to account
for, it follows that d = 5 and w∗ = 2 is the only possibility.
Applying the Λ-orthogonality theorem for the dimension leads to
the 2-parameter family α2 + β2 + γ2 = 3

8 .
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Facet inequality

If now Q is the facet of a regular polytope P and P is a realization
of P, then we write

ηf (P) := 〈ΛQ, ΓQ(P)〉/m,

where m is the number of vertices of Q. In this situation, we have

Theorem
If P is a pure realization of P such that ηf (P) > 0, then the dual
Pδ of P has a pure realization Pδ with the same symmetry group.
Moreover, if w(P) = 1, then there is such a dual Pδ for which

ηf (Pδ) = ηf (P).

Here, the vertices of Pδ are the scaled centroids of the facets of P .
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Dodecahedron

The dodecahedron {5, 3}has layer vector Λ = (1, 3, 6, 6, 3, 1); its
facet Q = {5} has induced cosine vector ΓQ = (1, γ1, γ2). Since
the dual {3, 5} has trigonal facets, each of its pure realizations has
ηf > 0; these give rise to pure realizations of {5, 3} of the same
dimensions 1, 5, 3, 3.

However, we have to find a further pure component of each of S
and X , both of dimension 4. The first, identifying opposite vertices,
will have cosine vector of the form Γ (P) = (1, α, β, β, α, 1), with
1+ 3α+ 6β = 0 from the layer equation. But ηf (P) = 0, because
P cannot give rise to a geometric dual; therefore the induced
realization of the facet {5} must be centred. Hence we also have
1+ 2α+ 2β = 0, from which follows

Γ (P) = (1,−2
3 ,

1
6 ,

1
6 ,−

2
3 , 1).
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Dodecahedron (continued)

We cannot perform the same trick for the component of X , because
the layer equation tells us nothing in the centrally symmetric case,
with cosine vectors of the form (1, α, β,−β,−α,−1). Nevertheless,
since the induced cosine vector for the vertex-figure {3} is (1, γ2),
and all diagonals of the dodecahedron are symmetric, we can apply
the vertex-figure criterion, and solve

α2 = 1
3(1+ 2β), 1+ 2α+ 2β = 0,

to obtain α = −2
3 or 0. We recognize the first as that of the

component of S which we have already found (our calculation
made no distinction between S and X ), and so the second gives the
cosine vector we are looking for, namely,

Γ = (1, 0,−1
2 ,

1
2 , 0,−1).



Dodecahedron (continued)

Our approach is not the most efficient; it is designed to illustrate
various techniques. The cosine matrix of {5, 3} is

1 1 1 1 1 1

1 −2
3

1
6

1
6 −2

3 1

1 1
3 −1

3 −1
3

1
3 1

1
√

5
3

1
3 −1

3 −
√

5
3 −1

1 −
√

5
3

1
3 −1

3

√
5

3 −1

1 0 −1
2

1
2 0 1


.

The dimension vector (listing them) is D = (1, 4, 5, 3, 3, 4).
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Final remarks

We only have time just to mention a case using the product. If
Γ5, Γ6 are the cosine vectors of the realizations {3, 3, 5}, {3, 3, 5

2}
of the abstract 600-cell {3, 3, 5}, then Γ1, Γ2, Γ3, given by

Γ 2
5 = 1

4Γ0 +
3
4Γ1,

Γ 2
6 = 1

4Γ0 +
3
4Γ2,

Γ5Γ6 = Γ3,

are mutually Λ-orthogonal cosine vectors of realizations of
{3, 3, 5}/2. They must be pure; their dimensions are 9, 9, 16.

From the dimension equation for the small simplex realization S ,
the final cosine vector Γ4 of {3, 3, 5}/2 is given by

Γ0 + 9Γ1 + 9Γ2 + 16Γ3 + 25Γ4 = 60Γ (S).
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