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Classical Regular Polytopes — Review

Convex polytope: convex hull of finitely many points in E™
Key observation: topologically spherical, both globally and
locally!

Reqgularity: flag transitivity of the symmetry group

(other equivalent definitions).

e Nn=2: polygons {p} (Schlafli-symbol)

e N=3: Platonic solids {p, q}
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DIMENSION n>4

name symbol F#facets | group order
simplex {3,3,3} 5| Ss 120
cross-polytope | {3,3,4} 16 Ba 384
cube {4,3,3} 8| By 384
24-cell {3,4,3} 24 | Fy 1152
600-cell {3,3,5} 600 | Ha 14400
120-cell {5,3,3} 120 | Hy 14400
simplex {3,...,3} n+1| S,4+1 | (n+1)!
cross-polytope | {3,...,3,4} 2" | Bp41 27N
cube {4,3,...,3} 2n | By41 2™n!
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24-cell {3,4,3}
(with thickened edges)

4D cube {4,3,3}



Symmetry group of {p,q,r} is the Coxeter group

with string diagram

Presentation
pg=pi=ps5=p3=1
(pop1)? = (p1p2)? = (p2p3)" =1
> > >
(pop2)° = (p1p3)° = (pop3)° =1

Generators are reflections in the walls of a funda-
mental chamber.



Presentation for 3-cube

pg=p7 =p5=1

(por1)* = (p1p2)> = (pop2)? =




e Regular star-polyhedra — Kepler-Poinsot polyhedra
(Kepler 1619, Poinsot 1809). Cauchy (1813).

THE FOUR KEPLER-POINSOT SOLIDS

e Ten regular star-polytopes in dimension 4. None in
dimension > 4.



Dim. | Symbol | fo | fr,—1 | Group
n=3| {3,3} | 12 | 20 Hs
{2,3} | 20 | 12
{5,3} | 12 | 12
{3,5} | 12 | 12
n=4|{3,3,3} | 120 | 600 | Hy
{2,3,3} | 600 | 120
{3,5,3} | 120 | 120
{3,5,3} | 120 | 120
{3,2,5} | 120 | 120
{5,%,3} 120 | 120
{5,3,3} | 120 | 120
{3,3,5} | 120 | 120
{5,3,5} | 120 | 120
{3,5,3} | 120 | 120

Regular Star-Polytopes
in E" (n > 3)



Regular Honeycombs

Euclidean space
n=2: with triangles, hexagons, squares

{3,6}, {6,3}, {4,4}

n>2: with cubes, {4,3,...,3,4}

n=4: with 24-cells, {3,4,3,3}
with cross-polytopes, {3,3,4,3}

Hyperbolic space
n=2: each symbol {p,q} with zl?_l_ % <3

n=3:. # =15 {3,5,3}, {4,3,5}, {5,3,5},{6,3,3}, ...
n=4. #=7 {5,3,3,4}, {5,3,3,5},{3,4,3,4}, ...
n=>5: # =5 {3,3,4,3,3}, {3,3,3,4,3}, ...

n>6. none



Abstract Polytopes P of rank n

P ranked partially ordered set

i-faces elements of ranki ( = -1,0,1,...,n)
i=0 vertices

=1 edges

i=n-1 facets

e Faces F_q, Fyp (of ranks -1, n)
e Each flag of P contains exactly n+2 faces

e P is connected i+ 1

e Intervals of rank 1 are diamonds: 1

P is regular iff (P) flag transitive. 1—1



P is chiral iff (P) has two orbits on the flags such that
adjacent flags always are in different orbits.

Nothing new in ranks 0, 1, 2 (points, segments, polygons)!

Rank 3: maps (2-cell tessellations) on closed surfaces.

{4, 4}(5,0)

(0,0) (5,0)

Rich history: Klein, Dyck, Brahana, Coxeter, Jones & Singer-
man, Wilson, Conder .........



Well-known: torus maps {4,4} ),{3,6}(p0):{6: 3} (p.0)-

Classification of regular and chirals maps by genus (Conder)

— orientable surfaces of genus 2 to 300
— non-orientable surfaces of genus 2 to 600

Rank n > 4: How about polytopes of rank 4 (or higher)?
Local picture for a 4-polytope of type {4,4,3}

torus maps {4,4} oy (s x s chessboard)
cubes {4, 3}
2 tori meeting at each 2-face
3 tori surround each edge

6 tori surround each vertex

Problems: local — global; universal polytopes; finiteness.



regular polytopes <— C-groups

C-group I = (po;---;pPn-1)

2 ) .
[ p7=(pip))° =1 (li—3j]>2)
(pop1)"r=(p1p2)"?=...=(pp-—2pp-1)""1=1
| & in general additional relations!

[
7\

e Intersection property {(p;li € I) N {p;|li € J)={p;j|li € INJ)
Polytope associated with

j-faces — right cosets of I ;= (p; | i & J)

partial order: Mo < Ty iff 5 <kand NNy #£ 0.

Quotient of the Coxeter group e o ® ®. ... °




Topological classification (of universal polytopes)

Classical case gpnerical or locally spherical

0

quotient of a regular tessellation in S7—1, En—1 or gn—1

Grunbaum'’s Problem (mid 70’s): Classify toroidal
and locally toroidal regular polytopes.

Step 1: Tessellations on the (n — 1)-torus (globally toroidal)
Step 2: Locally toroidally polytopes only in ranks n =4,5,6.

A lot of progress! Enumeration complete for n = 5; almost
complete for n = 4; conjectures for n = 6.

McMullen & S.: also Weiss, Monson



Toroids

Torus maps {4,4},.):{3:6}(3.0):16: 3} (p)- HOw about higher-
dimensional tori?

Tessellations 7 in euclidean space
n = 2. Wwith triangles, hexagons, squares,
{3,6}, {6,3}, {4,4}
n > 2: with cubes, {4,3,...,3,4}

n = 4: with 24-cells, {3,4,3,3}
with cross-polytopes, {3, 3,4, 3}

Regular toroids of rank n 4+ 1 (McMullen & S.)

Quotients 7 /A of regular tessellations 7 in E™ by
suitable lattices A.



A toroid with 27 cubical facets on the 3-torus (rank 4)

Type {4, 3, 4}(3,0’0)

3
(Pop1p2p3P2P1)” =1

(0,0,0) (3,0,0)



Cubical Toroids {4,3"2 4}, on n-Torus

S vertices | facets order lattice
(s,0,...,0) s" s" (25)™ - n! YAk
(s,s,0,...,0) 25" 25" ontlgn. p sDp,
(s,...,8) pn—lgn | pn=lgn | pon=lgn p1 | 25D*
Standard relations for e ;03 ©®...0 ——e °

and the

k
(pop1---pPnpp—1---pr)"° =1

(k= 1,2 or n, resp.)




Exceptional Toroids {3,3,4,3}, on 4-Torus (up to duality)

S vertices | facets | order lattice
(s,0,0,0) s* 3s* | 115257 sDy
(self-reciprocal D)
(s,s,0,0) 4.5% 12s* | 4608s” sDy

Standard relations for e 5@

and the

(pooro)’ =1 ifs=(s0,0,0),
(poaT)QS =1 ifs=(s,s,0,0),

where o = p1 p2 p3 p2 p1 aNd T = p4 p3 p2 P3 P4-



Locally Toroidal Regular Polytopes
e universal polytopes = {facets,vertex-figures}

Rank n=4

114,4}s,14, 31},

14 4t 14 43¢t
{{6,3}s,{3,7}} (r=3,4,5),
116,3}5,13,6}¢ 1

113,61}, 16,3}t 1

where s = (s5,0) or (s,s) and t = (¢,0) or (¢,t).



Locally toroidal 4-polytopes {{4,4} o), {4,3}}
Coxeter group W, PO ¢

°
+ P1 P3

> po

(pop1p2p1)’ =1

s := (po, p1, P2, p3) = Ws x Cs is the correct group!
The universal polytope is finite iff s =2 or s = 3.
The polytope for s = 3 (with group Sg x C5) can be realized

by a tessellation on S3 consisting of 20 tori (Griinbaum and
Coxeter & Shephard).



More on Rank 4

S v f Joi Group
(2,0) | 4 | 6 192 | Dy X Sy
(3,0) | 30 |20 | 1440 | Sg x C>
(2,2) |16 | 12 | 768 | (! Dg

The finite polytopes {{4,4}5,{4,3}}, s = (s,0), (s, s).



S t v f g Group
(2,0) | (t,1), 4 Dt 64t (D¢ x Dy x Co x Co)
t>2 X (CoxC5)
(2,0) | (2m,0), 4 4m= | 128m* | (CoxC2) x [4,4](5 o)
m > 1 if m=1,
(Dm X Dm) X [4, 4] (270)
it m>2
(3,0) (3,0) 20 20 1440 Se x Co
(3,0) | (4,0) 288 512 36864 | C21[4,4](30)
(3, O) (2, 2) 36 32 2304 (54 X 54) X (CQ X CQ)
(2,2) | (2,2) 16 16 1024 | C3 x [4,4](5 2
(2,2) | (3,3) 64 144 9216 | C§ x 4,4](3.3)
(3,0) | (5,0) | 19584 | 54400 | 3916800 | Spa(4) x Co x Co

The finite polytopes {{4,4}s, {4,4}+}
(except {{4,4}0),{4:4}1,0)}, With s,t odd and distinct)




Conjecture
The universal polytopes {{4,4} 0),{4,4}0)}, With s,¢
odd and distinct, are finite iff the regular tessellation

{s,t} is spherical (that is, iff (s,t) = (3,5),(5,3).)

Case (s,t) = (3,5): Sps(4) x Cr x Cs.



Still more on Rank 4

r S v f g Group

31(2,0)] 10 | 5 | 240 Se x Co

(3,0) | 54 | 12 | 1296 | [112]°> xCy

(4,0) | 640 | 80 | 15360 | [112]* x C>o

(2,2) [ 120 | 20 | 2880 Se % Sy

41(1,1)| 12 | 8 | 288 | S3x[3,4]

(2,0) | 16 | 16 | 768 | [3,3,4] x C>

5 (2,0) | 240 | 600 | 28800 | [3,3,5] x Co

The finite polytopes {{6,3}s,{3,7}}
(S — (370)7 (878) and r = 37475)



Thm The universal regular 4-polytope {{6, 3}, 0),{3,6}(,0)}
exists for all s,t > 2. In particular, it is finite if and only if
(s,t) = (2,k) or (k,2), with £k = 2,3,4. In this case, its
group is [112]% x (Ca x C), of order 480,108 - 41,256 - 5! if
k= 2,3,4, respectively.

Thm The universal regular 4-polytope {{6,3} ), {3,6}t},
with t = (¢,0) or (¢,t), exists for all s,t > 2. In particular, it
is finite if and only if s =2 and t = (2,0); in this case, its
group is Sg X Sz x Co.

Somewhat open: {{3,6}s,{6,3};}



Locally toroidal regular polytopes (cont.)

Rank n =25
S vertices | facets group order
(2,0,0) 24 8 C3 x Fy 9216
(2,2,0) 48 32 C3 x Fy 36864
(2,2,2) | 1536 | 2048 | (C§ x C3) x Fy | 2359296

Finite polytopes {{3,4,3},{4,3,4}.}
(with s = (5,0,0), (s,5,0),(s,s,5))

° ° ° o [y



Locally toroidal regular polytopes (cont.)

Rank n = 6 (first type)

S vertices | facets order
(2,0,0,0) 20 960 368640
(2,2,0,0) 160 30720 | 11796480
(3,0,0,0) 780 189540 | 72783360

Conjectured finite polytopes of type
{{3,3,3,4},{3,3,4,3},}



Rank n = 6 (second type)

t vertices | facets order
(2,0,0,0) | (¢,0,0,0) 32 t% 36864t%
(t even)
(2,0,0,0) | (¢t,0,0) 32 8t* 147476t%
(t even)
(2,2,0,0) | (2,2,0,0) | 2048 | 2048 | 150994944
(3,0,0,0) | (3,0,0,0) | 2340 | 2340 |218350080

Conjectured finite polytopes of type
{{3,3,4,3},,{3,4,3,3};}




Rank n = 6 (third type)

S t vertices | facets order
(s,0,0,0) | (2,0,0,0) 357 16 1843257
(s even)

(s,5,0,0) | (2,0,0,0) | 12s% 16 73728s%
(s,0,0,0) | (2,2,0,0) 657 64 73728s%
(s even)

(s,5,0,0) | (2,2,0,0) | 24s% 64 2049125%
(s even)

(2,0,0,0) | (2,2,2,2) | 384 1024 | 18874368
(2,0,0,0) | (4,0,0,0) | 12288 | 65536 | 1207959552
(3,0,0,0) | (3,0,0,0) | 2340 780 72783360

Conjectured finite polytopes of type
{{3,4,3,3}4,{4,3,3,4};}




Open Problem

Classify all locally toroidal chiral polytopes!

Rank 4: {{474}(1),0)7{473}}’ {{474}(b,c)7{474}(6,f)}’ .....

Almost completely open!



Chirality

(P) has 2 flag-orbits, represented by adjacent flags!

e Rank 3: Lots of chiral torus maps! Occurrence very spo-
radic, at least for small genus g (next for ¢ = 7).

// %
NSy

Generators 01,05 for type {p,q} in rank 3

P _ g _ 2 _ -
01 =05 =1(0102) =1 & generally more relations.



Local definition: P not regular, but for some base flag
&b = {Fq, Fp,...,Fn} there exist o1,...,0,_1 € (P) such
that o; fixes each face in &\ {F;_1, F;} and cyclically per-
mutes consecutive i-faces in the section F;41/F;_».

|
1 o; cyclically permutes vertices
i1 (edges) of p,-gon

1 — 2

Two enantiomorphic forms: Chiral polytopes occur in a
“right-hand” and a “left-hand” version, distinguished by the
choice of base flag.



Rank 4
Generators o1, 09,03 for type {p,q,7} in rank 4
Standard relations
o) = 0% = 0% = (0102)? = (0203)° = (010203)° =1
The universal {{4,4} ), {4,3}} has extra relation

(o7t02) (o105 1) =1

Intersection property

(01) N (o2) = (€) = (02) N(03), (01,02)N(02,03) = (02)



Polytopes associated with the groups

Reqgular polytopes: ' generated by pg,...,pn—1
j-faces: right cosets of I ;= (p; | i = J)

Chiral polytopes: ' generated by o1,...,0,_1

g-faces: right cosets of

( {(0o,...,0n_1) IT j =0,
I_j::< <{UZ|Z#],]+1}U{OJUJ+1}> if9=1,...,n— 2,
| (01,...,0p_02) ITj=n—1.

Partial order in both cases:



Rank 4

Plenty of locally toroidal chiral 4-polytopes. (Coxeter, Weiss
& S., Monson, Nostrand; 1990's and earlier.)

Key idea: Relevant hyperbolic Coxeter groups have nice rep-
resentations as groups of Mdbius transformations over Z[i],
Z|w], .... Rotation subgroups have generators like 01,05, 03.

T hen construct polytopes by modular reduction of the cor-
responding groups of 2 x 2 matrices.

Example: Take rotation subgroup of e @ ® 3 and
work over Zm,, where —1 is a quadratic residue mod m. Gives
chiral polytopes of type {{4,4}, ., {4,3}} with m = b2+ 2,
(b,c) = 1 and group PSLs(Zym) of PSLy(Zm) x Cy. (Work
modulo the ideal in Z[i] generated by b+ ic.)



Higher ranks

e Lots of finite examples in " low ranks’ by Conder, Hubard
& Pisanski; Breda, Jones & S.;: Conder & Devillers, . ..

e Finite examples for every rank n > 3 (Pellicer, 2009)!

e Extension problem: Chiral n-polytope P as the facet of a
chiral (n 4+ 1)-polytope Q? Facets of P regular!

(a) Universal: F(Q):F(P)*r+(F> (F) (Weiss& S., 1994)
(b) Finite @, if P is finite. (Cunningham & Pellicer, 2013)
e n-torus is the only compact euclidean space form with

regular or chiral tessellations. Chirality only when n = 2!
(Hartley, McMullen & S., 1999)



Thank you



Abstract

The past three decades have seen a revival of interest in
the study of polytopes and their symmetry. The most ex-
citing new developments all center around the concept and
theory of abstract polytopes. The lecture gives a survey of
currently known topological classification results for regular
and chiral polytopes, focusing in particular on the univer-
sal polytopes which are globally or locally toroidal. While
there is a great deal known about toroidal regular polytopes,
there is almost nothing known about the classification lo-
cally toroidal chiral polytopes.



Example: P = {{6,3} ), {3,3}}

6 3 3

2
extra relation: (pQ(plpo)Q) =1

Polytopes of type {6,3,r}

1. Normal subgroup W of I'(P) of finite index!

2. “Locally unitary” representation



which preserves a hermitian form h on C™.

3. Finiteness of P is decided by h!

P = {{6, 3}(3,8)7 {3,3}}




71

T
3 (W = <O-17O-270-370-4>
-3
S S ) (J',L-2 — (Uiaj)3 =1
T
s 2 L (O',L'O'jO'kO'j)S =1
2

GROUP: T (P)=W x Sy

PO — 01, P1 —T1, P2 — T2, P3 — T3

Structure of W = Wg 7



REPRESENTATION
QY . W — GL4(C)

o, — S; (1=1,2,3,4),
where

Si(x) =x —2h(x,¢;) ¢

1

T3



HERMITIAN FORM:

e1,...,eq canonical basis of C4

4
h(z,y) == > xT; — > ijTilj
i=1 i
(S;, S5, Sk) = [111]° (“locally unitary”).

Choice of ¢;;:

e2mi/s
€12 — €34 — €31 — —»
. . e 2mi/s
€23 — €24 — C41 — 2




Situation: W acts on C#% as a reflection group

Theorem: W finite iff h positive definite

Classification of unitary reflection groups: Shephard, Todd,
Coxeter, Cohen

Consequence: {{6,3}),{3,3}} finite
iff h positive definite

det(h) = 75(—9 — 16 cos 2% — 2 cos 47)

S



positive definite for s = 2
h is positive semi-definite for s = 3
indefinite for s > 4

Thm: P:= {{6,3}),{3,3}} exists for
each s > 2, and P is finite iff s = 2.

s=2: '(P) = S5 X Sg,
W =S5 =((15),(25),(35),(45))



