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Classical Regular Polytopes — Review

Convex polytope: convex hull of finitely many points in En

Key observation: topologically spherical, both globally and

locally!

Regularity : flag transitivity of the symmetry group

(other equivalent definitions).

• n=2: polygons {p} (Schläfli-symbol)

• n=3: Platonic solids {p, q}

{3,5}



DIMENSION n≥4
name symbol #facets group order

simplex {3,3,3} 5 S5 120

cross-polytope {3,3,4} 16 B4 384

cube {4,3,3} 8 B4 384

24-cell {3,4,3} 24 F4 1152

600-cell {3,3,5} 600 H4 14400

120-cell {5,3,3} 120 H4 14400
simplex {3,. . . ,3} n+1 Sn+1 (n+ 1)!

cross-polytope {3,. . . ,3,4} 2n Bn+1 2nn!

cube {4,3,. . . ,3} 2n Bn+1 2nn!



24-cell {3,4,3}
(with thickened edges)

4D cube {4,3,3}



Symmetry group of {p, q, r} is the Coxeter group

with string diagram

•
p
•

q
•

r
•

Presentation

ρ2
0 = ρ2

1 = ρ2
2 = ρ2

3 = 1

(ρ0ρ1)p = (ρ1ρ2)q = (ρ2ρ3)r = 1

(ρ0ρ2)2 = (ρ1ρ3)2 = (ρ0ρ3)2 = 1

Generators are reflections in the walls of a funda-

mental chamber.



Presentation for 3-cube

ρ2
0 = ρ2

1 = ρ2
2 = 1

(ρ0ρ1)4 = (ρ1ρ2)3 = (ρ0ρ2)2 = 1
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• Regular star-polyhedra — Kepler-Poinsot polyhedra

(Kepler 1619, Poinsot 1809). Cauchy (1813).

• Ten regular star-polytopes in dimension 4. None in

dimension > 4.



Dim. Symbol f0 fn−1 Group

n = 3 {3, 5
2} 12 20 H3

{5
2,3} 20 12

{5, 5
2} 12 12

{5
2,5} 12 12

n = 4 {3,3, 5
2} 120 600 H4

{5
2,3,3} 600 120

{3,5, 5
2} 120 120

{5
2,5,3} 120 120

{3, 5
2,5} 120 120

{5, 5
2,3} 120 120

{5,3, 5
2} 120 120

{5
2,3,5} 120 120

{5, 5
2,5} 120 120

{5
2,5,

5
2} 120 120

Regular Star-Polytopes
in En (n ≥ 3)



Regular Honeycombs

Euclidean space

n=2: with triangles, hexagons, squares
{3,6}, {6,3}, {4,4}

n≥2: with cubes, {4,3,...,3,4}
n=4: with 24-cells, {3,4,3,3}

with cross-polytopes, {3,3,4,3}

Hyperbolic space

n=2: each symbol {p,q} with 1
p + 1

q <
1
2

n=3: # =15 {3,5,3}, {4,3,5}, {5,3,5},{6,3,3}, . . .

n=4: # =7 {5,3,3,4}, {5,3,3,5},{3,4,3,4}, . . .

n=5: # =5 {3,3,4,3,3}, {3,3,3,4,3}, . . .

n≥6: none



Abstract Polytopes P of rank n

P ranked partially ordered set

i-faces elements of rank i ( = -1,0,1,...,n)

i=0 vertices

i=1 edges

i=n-1 facets

• Faces F−1, Fn (of ranks -1, n)

• Each flag of P contains exactly n+2 faces

• P is connected

• Intervals of rank 1 are diamonds:
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i− 1P is regular iff Γ(P) flag transitive.



P is chiral iff Γ(P) has two orbits on the flags such that
adjacent flags always are in different orbits.

Nothing new in ranks 0, 1, 2 (points, segments, polygons)!

Rank 3: maps (2-cell tessellations) on closed surfaces.

{4,4}(5,0)

(0,0) (5,0)
v v

v v

Rich history: Klein, Dyck, Brahana, Coxeter, Jones & Singer-
man, Wilson, Conder .........



Well-known: torus maps {4,4}(b,c),{3,6}(b,c),{6,3}(b,c).

Classification of regular and chirals maps by genus (Conder)

— orientable surfaces of genus 2 to 300
— non-orientable surfaces of genus 2 to 600

Rank n ≥ 4: How about polytopes of rank 4 (or higher)?

Local picture for a 4-polytope of type {4,4,3}

Facets: torus maps {4,4}(s,0) (s× s chessboard)

Vertex-figures: cubes {4,3}
2 tori meeting at each 2-face

3 tori surround each edge

6 tori surround each vertex

Problems: local — global; universal polytopes; finiteness.



regular polytopes ⇐⇒ C-groups

C-group Γ = 〈ρ0, . . . , ρn−1〉

•


ρ2
i = (ρiρj)

2 = 1 (|i− j| ≥ 2)

(ρ0ρ1)p1 =(ρ1ρ2)p2 = . . .=(ρn−2ρn−1)pn−1 =1

& in general additional relations!

• Intersection property 〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉=〈ρi | i ∈ I ∩ J〉

Polytope associated with Γ

j-faces — right cosets of Γj := 〈ρi | i 6= j〉

partial order: Γjϕ ≤ Γkψ iff j ≤ k and Γjϕ ∩ Γkψ 6= ∅.

Quotient of the Coxeter group • p1
• p2

• · · · · · · • pn−1
•



Topological classification (of universal polytopes)

Classical case spherical or locally spherical
m

quotient of a regular tessellation in Sn−1, En−1 or Hn−1

Grünbaum’s Problem (mid 70’s): Classify toroidal
and locally toroidal regular polytopes.

Step 1: Tessellations on the (n−1)-torus (globally toroidal)

Step 2: Locally toroidally polytopes only in ranks n = 4,5,6.

A lot of progress! Enumeration complete for n = 5; almost
complete for n = 4; conjectures for n = 6.

McMullen & S.; also Weiss, Monson



Toroids

Torus maps {4,4}(b,c),{3,6}(b,c),{6,3}(b,c). How about higher-
dimensional tori?

Tessellations T in euclidean space

n = 2: with triangles, hexagons, squares,
{3,6}, {6,3}, {4,4}

n ≥ 2: with cubes, {4,3, ...,3,4}
n = 4: with 24-cells, {3,4,3,3}

with cross-polytopes, {3,3,4,3}

Regular toroids of rank n+ 1 (McMullen & S.)

Quotients T /Λ of regular tessellations T in En by
suitable lattices Λ.



A toroid with 27 cubical facets on the 3-torus (rank 4)
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(0,0,0) (3,0,0)
w w

w w

w w

w w

Type {4,3,4}(3,0,0)

(ρ0ρ1ρ2ρ3ρ2ρ1)3 = 1



Cubical Toroids {4,3n−2,4}s on n-Torus

s vertices facets order lattice

(s,0, . . . ,0) sn sn (2s)n · n! sZn

(s, s,0, . . . ,0) 2sn 2sn 2n+1sn · n! sDn

(s, . . . , s) 2n−1sn 2n−1sn 22n−1sn · n! 2sD∗n

Standard relations for • 4 • 3 • . . . • 3 • 4 •

and the single extra relation

(ρ0ρ1 . . . ρnρn−1 . . . ρk)ks = 1 (k = 1,2 or n, resp.)



Exceptional Toroids {3,3,4,3}s on 4-Torus (up to duality)

s vertices facets order lattice

(s,0,0,0) s4 3s4 1152s4 sD4
(self-reciprocal D4)

(s, s,0,0) 4s4 12s4 4608s4 sD4

Standard relations for • 3 • 3 • 4 • 3 •

and the single extra relation (ρ0 σ τ σ)s = 1 if s = (s,0,0,0),

(ρ0 σ τ)2s = 1 if s = (s, s,0,0),

where σ = ρ1 ρ2 ρ3 ρ2 ρ1 and τ = ρ4 ρ3 ρ2 ρ3 ρ4.



Locally Toroidal Regular Polytopes

• universal polytopes = {facets,vertex-figures}

Rank n=4

{{4,4}s, {4,3}},

{{4,4}s, {4,4}t},

{{6,3}s, {3, r}} (r = 3,4,5),

{{6,3}s, {3,6}t},

{{3,6}s, {6,3}t},

where s = (s,0) or (s, s) and t = (t,0) or (t, t).



Locally toroidal 4-polytopes {{4,4}(s,0), {4,3}}

Coxeter group Ws
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ρ0

ρ2

ρ3

(ρ0ρ1ρ2ρ1)s = 1

Γs := 〈ρ0, ρ1, ρ2, ρ3〉 ∼= Ws o C2 is the correct group!

The universal polytope is finite iff s = 2 or s = 3.

The polytope for s = 3 (with group S6 oC2) can be realized
by a tessellation on S3 consisting of 20 tori (Grünbaum and
Coxeter & Shephard).



More on Rank 4

s v f g Group

(2,0) 4 6 192 D4 o S4
(3,0) 30 20 1440 S6 × C2
(2,2) 16 12 768 C2 oD6

The finite polytopes {{4,4}s, {4,3}}, s = (s,0), (s, s).



s t v f g Group

(2,0) (t, t), 4 2t2 64t2 (Dt×Dt×C2×C2)
t ≥ 2 o(C2oC2)

(2,0) (2m,0), 4 4m2 128m2 (C2×C2) o [4,4](2,0)
m ≥ 1 if m = 1;

(Dm×Dm)o[4,4](2,0)
if m ≥ 2

(3,0) (3,0) 20 20 1440 S6×C2
(3,0) (4,0) 288 512 36864 C2 o [4,4](3,0)
(3,0) (2,2) 36 32 2304 (S4×S4)o(C2×C2)
(2,2) (2,2) 16 16 1024 C4

2 o [4,4](2,2)
(2,2) (3,3) 64 144 9216 C6

2 o [4,4](3,3)
(3,0) (5,0) 19584 54400 3916800 Sp4(4)× C2 × C2

The finite polytopes {{4,4}s, {4,4}t}
(except {{4,4}(s,0), {4,4}(t,0)}, with s, t odd and distinct)



Conjecture

The universal polytopes {{4,4}(s,0), {4,4}(t,0)}, with s, t

odd and distinct, are finite iff the regular tessellation

{s, t} is spherical (that is, iff (s, t) = (3,5), (5,3).)

Case (s, t) = (3,5): Sp4(4)× C2 × C2.



Still more on Rank 4

r s v f g Group

3 (2,0) 10 5 240 S5 × C2
(3,0) 54 12 1296 [1 1 2]3 o C2
(4,0) 640 80 15360 [1 1 2]4 o C2
(2,2) 120 20 2880 S5 × S4

4 (1,1) 12 8 288 S3 o [3,4]
(2,0) 16 16 768 [3,3,4] o C2

5 (2,0) 240 600 28800 [3,3,5] o C2

The finite polytopes {{6,3}s, {3, r}}
(s = (s,0), (s, s) and r = 3,4,5).



Thm The universal regular 4-polytope {{6,3}(s,0), {3,6}(t,0)}
exists for all s, t ≥ 2. In particular, it is finite if and only if

(s, t) = (2, k) or (k,2), with k = 2,3,4. In this case, its

group is [1 1 2]k o (C2 × C2), of order 480,108 · 4!,256 · 5! if

k = 2,3,4, respectively.

Thm The universal regular 4-polytope {{6,3}(s,s), {3,6}t},
with t = (t,0) or (t, t), exists for all s, t ≥ 2. In particular, it

is finite if and only if s = 2 and t = (2,0); in this case, its

group is S5 × S4 × C2.

Somewhat open: {{3,6}s, {6,3}t}



Locally toroidal regular polytopes (cont.)

Rank n = 5

s vertices facets group order

(2,0,0) 24 8 C3
2 o F4 9216

(2,2,0) 48 32 C5
2 o F4 36864

(2,2,2) 1536 2048 (C6
2 o C5

2) o F4 2359296

Finite polytopes {{3,4,3}, {4,3,4}s}

(with s = (s,0,0), (s, s,0), (s, s, s))

•
3
•

4
•

3
• F4



Locally toroidal regular polytopes (cont.)

Rank n = 6 (first type)

s vertices facets order
(2,0,0,0) 20 960 368640
(2,2,0,0) 160 30720 11796480
(3,0,0,0) 780 189540 72783360

Conjectured finite polytopes of type

{{3,3,3,4}, {3,3,4,3}s}



Rank n = 6 (second type)

s t vertices facets order
(2,0,0,0) (t,0,0,0) 32 2t4 36864t4

(t even)
(2,0,0,0) (t, t,0,0) 32 8t4 147476t4

(t even)
(2,2,0,0) (2,2,0,0) 2048 2048 150994944
(3,0,0,0) (3,0,0,0) 2340 2340 218350080

Conjectured finite polytopes of type

{{3,3,4,3}s, {3,4,3,3}t}



Rank n = 6 (third type)

s t vertices facets order
(s,0,0,0) (2,0,0,0) 3s4 16 18432s4

(s even)
(s, s,0,0) (2,0,0,0) 12s4 16 73728s4

(s,0,0,0) (2,2,0,0) 6s4 64 73728s4

(s even)
(s, s,0,0) (2,2,0,0) 24s4 64 294912s4

(s even)
(2,0,0,0) (2,2,2,2) 384 1024 18874368
(2,0,0,0) (4,0,0,0) 12288 65536 1207959552
(3,0,0,0) (3,0,0,0) 2340 780 72783360

Conjectured finite polytopes of type
{{3,4,3,3}s, {4,3,3,4}t}



Open Problem

Classify all locally toroidal chiral polytopes!

Rank 4: {{4,4}(b,c), {4,3}}, {{4,4}(b,c), {4,4}(e,f)}, .....

Almost completely open!



Chirality

Γ(P ) has 2 flag-orbits, represented by adjacent flags!

• Rank 3: Lots of chiral torus maps! Occurrence very spo-

radic, at least for small genus g (next for g = 7).

Generators σ1, σ2 for type {p, q} in rank 3

σ
p
1 = σ

q
2 = (σ1σ2)2 = 1 & generally more relations.



Local definition: P not regular, but for some base flag

Φ := {F1, F0, . . . , Fn} there exist σ1, . . . , σn−1 ∈ Γ(P) such

that σi fixes each face in Φ \ {Fi−1, Fi} and cyclically per-

mutes consecutive i-faces in the section Fi+1/Fi−2.
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i+ 1

σi cyclically permutes vertices

(edges) of pi-gon

Two enantiomorphic forms: Chiral polytopes occur in a

“right-hand” and a “left-hand” version, distinguished by the

choice of base flag.



Rank 4

Generators σ1, σ2, σ3 for type {p, q, r} in rank 4

Standard relations

σ
p
1 = σ

q
2 = σr3 = (σ1σ2)2 = (σ2σ3)2 = (σ1σ2σ3)2 = 1

Example: The universal {{4,4}(b,c), {4,3}} has extra relation

(σ−1
1 σ2)b(σ1σ

−1
2 )c = 1

Intersection property

〈σ1〉 ∩ 〈σ2〉 = 〈ε〉 = 〈σ2〉 ∩ 〈σ3〉, 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉



Polytopes associated with the groups

Regular polytopes: Γ generated by ρ0, . . . , ρn−1

j-faces: right cosets of Γj := 〈ρi | i 6= j〉

Chiral polytopes: Γ generated by σ1, . . . , σn−1

j-faces: right cosets of

Γj :=


〈σ2, . . . , σn−1〉 if j = 0,

〈{σi | i 6= j, j + 1} ∪ {σjσj+1}〉 if j = 1, . . . , n− 2,

〈σ1, . . . , σn−2〉 if j = n− 1.

Partial order in both cases:

Γjϕ ≤ Γkψ iff j ≤ k and Γjϕ ∩ Γkψ 6= ∅.



Rank 4

Plenty of locally toroidal chiral 4-polytopes. (Coxeter, Weiss
& S., Monson, Nostrand; 1990’s and earlier.)

Key idea: Relevant hyperbolic Coxeter groups have nice rep-
resentations as groups of Möbius transformations over Z[i],
Z[ω], .... Rotation subgroups have generators like σ1, σ2, σ3.

Then construct polytopes by modular reduction of the cor-
responding groups of 2× 2 matrices.

Example: Take rotation subgroup of • 4 • 4 • 3 • and
work over Zm, where −1 is a quadratic residue mod m. Gives
chiral polytopes of type {{4,4}(b,c), {4,3}} with m = b2 + c2,
(b, c) = 1 and group PSL2(Zm) or PSL2(Zm) o C2. (Work
modulo the ideal in Z[i] generated by b+ ic.)



Higher ranks

• Lots of finite examples in ”low ranks” by Conder, Hubard
& Pisanski; Breda, Jones & S.; Conder & Devillers, . . .

• Finite examples for every rank n ≥ 3 (Pellicer, 2009)!

• Extension problem: Chiral n-polytope P as the facet of a
chiral (n+ 1)-polytope Q? Facets of P regular!

(a) Universal: Γ(Q)=Γ(P )∗Γ+(F ) Γ(F ) (Weiss & S., 1994)

(b) Finite Q, if P is finite. (Cunningham & Pellicer, 2013)

• n-torus is the only compact euclidean space form with
regular or chiral tessellations. Chirality only when n = 2!
(Hartley, McMullen & S., 1999)



..... The End .....

Thank you



Abstract

The past three decades have seen a revival of interest in

the study of polytopes and their symmetry. The most ex-

citing new developments all center around the concept and

theory of abstract polytopes. The lecture gives a survey of

currently known topological classification results for regular

and chiral polytopes, focusing in particular on the univer-

sal polytopes which are globally or locally toroidal. While

there is a great deal known about toroidal regular polytopes,

there is almost nothing known about the classification lo-

cally toroidal chiral polytopes.



Example: P = {{6,3}(s,s), {3,3}}

• 6 • 3 • 3 •

extra relation: (ρ2(ρ1ρ0)2)
2s

= 1

Polytopes of type {6,3,r}

1. Normal subgroup W of Γ(P) of finite index!

2. “Locally unitary” representation

ϕ : W 7→ GLm(C)



which preserves a hermitian form h on Cm.

3. Finiteness of P is decided by h!

P = {{6,3}(s,s), {3,3}}



4
·

τ3

s ·3
s s

τ2
s

· ·
1 τ1 2



W = 〈σ1, σ2, σ3, σ4〉

σ2
i = (σiσj)

3 = 1

(σiσjσkσj)
s = 1

GROUP: Γ(P ) = W n S4

ρ0 = σ1, ρ1 = τ1, ρ2 = τ2, ρ3 = τ3

Structure of W = Ws ?



REPRESENTATION

ϕ : W 7→ GL4(C)

σi 7→ Si (i = 1,2,3,4),
where

Si(x) = x− 2h(x, ei) ei

4
·

τ3

s ·3
s s

τ2

s

· ·
1 τ1 2



HERMITIAN FORM:

e1, . . . , e4 canonical basis of C4

h(x, y) :=
4∑
i=1

xiyi −
∑
i 6=j

cijxiyj ,

〈Si, Sj, Sk〉 ∼= [1 1 1]s (“locally unitary”).

Choice of cij:

c12 = c34 = c31 = e2πi/s

2

c23 = c24 = c41 = e−2πi/s

2



Situation: W acts on C4 as a reflection group

Theorem: W finite iff h positive definite

Classification of unitary reflection groups: Shephard, Todd,
Coxeter, Cohen

Consequence: {{6,3}(s,s), {3,3}} finite
iff h positive definite

det(h) = 1
16(−9− 16 cos 2π

s − 2 cos 4π
s )



h is


positive definite for s = 2
positive semi-definite for s = 3
indefinite for s ≥ 4

Thm: P := {{6,3}(s,s), {3,3}} exists for

each s ≥ 2, and P is finite iff s = 2.

s=2: Γ(P ) = S5 × S4,

W = S5 = 〈(1 5), (2 5), (3 5), (4 5)〉


