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Motivation: Graph Partitioning/Vertex Separator

@ Model NP-hard problem using quadratic-quadratic program

@ approximate/relax using eigenvalue bounds and semidefinite
programming

@ bounds: we follow approaches for eigenvalue and projected eigenvalue
bounds in:
Hadley, Rendl, W. 1990 [1, 5]
Rendl, Lisser, Piacenti, (RLP) 2012 [4]
and
Semidefinite bounds in: W., Zhao 1996 [6].



Background/Notation

Given graph G and set sizes
@ G = (N, E) edge-weighted undirected graph
N ={1,2,...,n} node set
Ej,ij = 1,2,...,n edge weights

my
m = ( : ) (pos. integer) set sizes, with m'e = n
M

Set of all Partitions

{(S1,.--,Sk) = Si CN, [Si| =m; Vi;
SiﬁSj:Q)Vi#j; Uj Si:N}

Partition matrix : col. incidence vector of

1 ifiesS;
Xij:{ J

0 otherwise.
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Partition Matrix Constraints

linear/quadratic constraints (many are redundant)

set of: zero-one; nonnegative; linear equalities; m-diagonal
orthogonality type; e-diagonal orthogonality type; and gangster
constraints, respectively:

Z = {X eR™k:X; e {0,1},Vij}
= {X e Rk : X = X, Vij }
N = {X eR™k:X;>0,Vij}
E = {XeR™k:Xe=¢e,XTe=m}
={X eR™k | Xe —e|?>+|XTe —m|? =0}
Do = {X e R™k:XTX = Diag(m)}
De = {X e R™K.diag(XXT)=e}

G = {XeR™k:X;oX;=0,Vi#j}, oHadamard prod.




Equivalent Representations of Partition Matrices

The set of partition matrices in

Mmnm = ENZ

= gﬂDoﬂN
ENDoNDe NN
= ENZNDoNG NN




Cuts and Separators, Objective

Cut of a partition
@ §(S;,Sj) - set of edges between sets S, S;
® §(S) = Uij<k0(Sk, Sj) - set of edges with endpoints in
distinct partition sets Sq,.... Sk 1

@ The minimum of the cardinality |§(S)| is denoted
(objective)  cut(m) = min{|6(S)| : S € Pm}

has a vertex separator

graph G has a vertex separator if there exists S € P, with
5(S) =10, i.e., cut(m) = 0.

(see (RLP) [4], Hager, Hungerford 2013 [2] for relationship with
bandwidth of graph and other applications)




Trace Representation of Cut Problem

eel" —l,_; O

._ k
@ B .= [ 0 ol € SK,
Sk -k x k symm. matrices with trace inner-product.
e e o |1 ifE;#0
@ A = (a;) - adjacency matrix, a; = { 0 otherwise

® L:=Diag(Ae) —A =Yg (e —&)ei — )T -
Laplacian (e;j unit vectors)

for

Proposition RLP [4, Prop. 2] For partition S € P, and
associated partition matrix X € M ,, the cardinality of the
partition is

6(S)| = 5 trace AXBXT = 1 trace(—L)XBXT O




Basic Eigenvalue Bound

cut(m) > pgg(m)
;= min  itrace AXBXT (Aor —L)
S.t. X € Do
Do = {X ¢ R™k : XTX =M := Diag(m)}
(orthogonal type cols for X)

| A\

Hoffman-Wielandt '53 [3] bound/Theorem
C, D symmetric order n. k, resp., k < n. Then
min {trace CXDXT : XTX = Iy} =

min {Z, A(D)Ag»(C) 9N — {1,...,k}isan |nJect|on}
minimum attained for X = (Pg(1):-- -+ Psx)) QT where py
normalized eigenvector to A, )(C) and cols of

Q= |01 ... 0k contains normalized eigenvectors g of
Ai(D).




Basic Eigenvalue Bound Il

Lemma (RLP)
k-ordered eigs of B := MY/2BM*/2 satisfy

M(B) < X2(B) < ... < A—2(B) < A—1(B) = 0 < X (B).

Basic Eigenvalue Bound, apply Hoffman-Wielandt Theorem

Let —A\1(L) > —X2(L) > —An(L) denote ordered n eigenvalues
of —L; —\(L) denotes corresponding vector of eigenvalues.
Pad the 0 eigenvalue of B with further zeros to get an ordered
vector of length n and denote it by \(B). Then

cut(m) > 0 > pgy = —A(L) A(B)




Two Projected Eigenvalue Bound

Relaxed problem

cut(m) > Pprojeig(M)
= min $trace AXBXT (Aor —L)
S.t.

XeDoNE&

Do = {X e R™K : XTX = M := Diag(m)} (orthog type)

£ = {X e Rk Xe = e, XTe = m} (linear row/col sums)
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Special Parametrization of X € &

: orthogonal matrices

P— {%e V} €Oy Q= [%rﬁ W} €Ok (%)

LEMMA: Rendl and W. 1990 [5]

Let M = Diag (). Suppose that X « R"*K and
Z e RO-1Dx(k-1) gre related by

X =P [é g} Q'™™M. (%)

Then the following holds:

@ Xce.

Q@ XN & VZWT > —lemT

e X eEDg&Z € O(nfl)x(kfl)

Conversely, if X € £, then there exists Z such that the
representation (*) holds. O
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Projected Eigenvalue Lower Bounds/THEOREM

THEOREM

V,W as above, X := tem” ¢ R"*

Q : RO-1xk=1) , pnxk, 9(7) = VZWTM

Then:

X € &, and Qs invertible R(M-1)x(k=1) .y ¢ _ X
Equivalently, £ can be parametrized using X +VZWTM.

Thus, two objective functions

5 trace AXBXT =

L trace(AXBXT +(VTAV)Z(WTMBMW)ZT +2VTAXBMWZT)
and

L trace((~L)XBXT) = S trace(VT (—~L)V)Z(WTMBMW)ZT.
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Two Projected Eigenvalue Bounds

Let

A=VTAV,L=VT(-L)V,B =WTMBMW,

a =trace AXBXT, C = 2VTAXBMW.

Then:

cut(m) > pt . x = l{a+ min {z.k A(B)A -(A)}+
= Mprojeig,A — 2 =12 o(i)

¢ injective
“min _traceCZ"
0<X+VZWTN
*
peig

IV

CUt(m)ZpSrojeig,L - % min {Zrzl/\i(é))%(i)(l:)}

¢ injective

and note eigenvalues of V'LV are n — 1 nonzero eigenvalues
of L.
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Attainment for Quadratic Terms

let Q € R~ 1xk=1 pe orthog. with cols consisting of
eigenvectors of B corresponding to eigenvalues of B in
nondecreasing order;

let Pa, P, € R" k=1 have orthonormal cols consisting of k — 1
eigenvectors of AL, respectively, corresponding to eigenvalues
in nonincreasing order where the columns correspond to the
largest k — 2 followed by the smallest. Then the minimal scalar
product terms in pjocig a: Pprojeig . &r€ attained by resp.

Zn=PaQ",Z. =P Q".
Get two approx. solutions using O:

Xa=X+VZAWTM, X =X+VZWTM,
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Feasible Solutions; Upper Bounds

Using an approx. solution

Find nearest (Frobenius norm) feas. soln (use strong polytime
LP)

Recall: X € £ N Z implies that Xe = e,XTe =m, and

XTX = Diag(m). Therefore:

IX = X2 = trace (XTX +XTX —2XTX)
= n+n+2trace (—XTX).

Finding nearest feasible solution; a strong polytime LP
Solve the transportation problem:

max = trace XX
Ss.t. Xe=-¢e
XTe=m
X >0
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Node-Arcs for a Random Adjacency Matrix

Table: Existing edges node i to node |
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node |

1 23|45 |78 9 ]|10]|11 12\13\
2 3 4 8 9 |10 (11|12 |13 | 14
3 6 7 8 9 |10 (11|12 |13 | 14
4 7 (8|9 |11|13]| 14

5 6 | 7|9 |10]|12] 13

6 719 |10 12|13

7 8 | 10|12 | 13

8 9 (10|11 | 12 14\

9 10 | 13 | 14

10 11 |12 | 14

11 12

12 13 14\



Random Ex.; Proj. Eigenvalue Lower Bound

Adjacency Matrix,

‘#ﬁlm‘i‘\v
f “\\«/f

42
V’p&\& %

g

~/

7

QA
A
\

b

)\

1<

total edges: 61
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Bounds, Feas. Sol., m= (4 2 1 6),k=4,n=13

. _ ) Adj. after delet. edges;
Ad. after shift set k right (low up] bnds: [0.76067 5])
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Random Problems

nis 144 and mis [28 17 28 32 34 5]
best projection lower and upper bounds are: 5092 5495
relative gap is: 0.076131

\

nis94and mis [3 17 14 32 19 9]

best projection lower and upper bounds are 1672 1890
relative gap is 0.1224

nis 188 and mis [31 27 26 34 7 6 35 22]

best projection lower and upper bounds are 7558 8285
relative gap is 0.091776

N




Quadratic-Quadratic Model

An equivalent quadratically constrained quadratic problem

cut(m) > pipp = min 3 trace AXBXT
st. XoX =X
[Xe —e|>=0
IXTe —mi> =0
X:iOX:j :OVI ?éj

where o is the Hadamard (elementwise) product

(Aor(-L))
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Semidefinite Lower Bounds

Quadratic Model

We can use the various equality (quadratic) constraints in the
representation and use the quadratic objective function. The
Lagrangian relaxation for this quadratic-quadraitc problem is
equivalent to a semidefinite program, SDP. The dual of this is
the SDP relaxation. Adding redundant constraints can help.

Alternatively: directly by lifting process
linearize quadratic terms using the matrix

V= ( yeopxy ) @ veolOT),

vec (

vec (X) is vector formed from the columns of X.
Yx = 0 and is rank one, the hard constraint that is relaxed.




SDP Relaxation

From direct lifting (can use A or —L7?)

trace AXBXT = (AXB, X) = vec(X)T (vecAXB) =
vec (X)T (B ® A)vec(X) = trace(B ® A)(vec (X )vec (X))
The objective function becomes trace AXBX T = trace LaYyx.
Ly 0 0

A7 |10 BoA
B @ A is the Kronecker product

Relax the rank one restriction

| \

cut(m) > pgpp 1= Min tracelLaY
s.t. arrow(Y)=-¢eg

traceD;Y =0

(RGP) trace DY =0
Gi(Y)=0
Yoo =1

Y -0,

N




Linear Transformations

arrow operator

acting (kn + 1) x (kn + 1) matrix Y
arrow(Y) = dlag (Y) o (0 YO,l:kn)T

represents the 0, 1 constraints; guarantees diagonal and 0-th
row (or column) are identical;

Gangster operator

shoots “holes” in a matrix
Yy (i) or(,i) €
(Ga (Y ))ij = { 0 otherwise,

J:={@,]):i=(P-1n+q, j=(r—1)n+dq,
p<r,p,ref{l, ... .k}

represents the (Hadamard) orthogonality of the cols

N
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Linear Transformations

The norm constraints
represented by the (kn + 1) x (kn + 1) matrices

T T
D, n —e, ®e,
i T
—ex®en (exe,)®In

and
D2 = |:

m'm -—m' el

Loss of Slater’s condition

allDy,D,,Y =0,

both trace YD, = 0, trace YD, = O; therefore, range of Y subset
intersection of nullspaces of D1, D5.

feasible set of (RGP) has no strictly feasible points; implies
numerical difficulties for interior-point methods.

Fix: apply facial reduction.

| A\




Facial Reduction;
Y — \72\7T c Skn+1’ Z e g(n-1)(k-1)+1

Vje = O,VjTVJ- = Diag(w) >~ 0, e.g.,

1 0 0
0o 1 0
Vii=| 0 0 1 0
|
il 0 -1

Range of = forms basis for range (any)
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Facially Reduced SDP

Constraints for X € £ eliminated;

min trace VTLAV Z
st arrow(VZVT)=0

G (VZVT) =0
(VZVT)go =1
Z+-0

Slater’s CQ now holds (strict feasibility).
But are we done? Are the constraints onto?
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Final SDP; Slater and Onto (range of G ) Constraints

Projected onto range of gangster;

min  trace (\7TLA\7> Z
st. G3(VZVT) =G ;(En)
Z >0

Dual program (also satisfies Slater)

Doubly Nonnegative

A stronger relaxation adds the nonnegativity elementwise:
vzVvT >0.
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SDP Bounds;m= (4 2 1 6),k=4,n=13

. . ) Adj. after delet. edges;
dpatenniiseRgoh! (low up] bnds: [0.76067 5])

lower bnds: [ Proj L and A; SDP; Doubly Nonneg.]

[—0.52065 0.76067 2.9057 4.8603]
roundedup: [0 1 3 5].
Therefore, 5 is optimal value.
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Random Ex; n =85,k =6, m = [18 20 11 18 11 7]

Proj. Eig. Bounds

nis85andmis 18 20 11 18 11 7
best projection lower and upper bounds are 1518 1714
relative gap is 0.12129

SDP Bounds

sdp lower and upper bounds are 1556 1726
current best lower/upper bounds are: 1556 1714
relative gap is 0.096636

| A\




Summary

@ Model NP hard problems using quadratic-quadratic models
@ First Relaxations lead to eigenvalue problems

@ Lagrangian Relaxation leads to SDP problem and the dual
is the SDP (strong) relaxation

@ The Slater condition typically fails for SDP relaxations
(facial reduction is needed for stability)
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