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Survivable network design (SND)

Problem
Input:

• an undirected or directed graph G = (V ,E)

• edge-cost c : E → Q+

• terminal set T ⊆ V

• connectivity requirements r : T × T → N

Solution: a minimum cost subgraph of G

Constraints: ∀u, v ∈ T : (connectivity between u and v ) ≥ r(u, v)
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Connectivity

• edge-connectivity λ: max # of edge-disjoint paths

• element-connectivity λT :

max # of paths disjoint in edges and non-terminals

• node-connectivity κ: max # of paths disjoint in inner-nodes

u

v

λ(u, v) = 4
λT (u, v) = 3
κ(u, v) = 2

non-terminal
terminal

Many special cases are defined according to r
(e.g., uniform req., rooted req., subset req.)
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Degree-bounded SND

Degree bounds
• Undirected graphs: Given B ⊆ V and b : B → N,

degree of ∀v ∈ B ≤ b(v)

• Digraphs: Given B−,B+ ⊆ V , b− : B− → N and b+ : B+ → N,

in-degree of ∀v ∈ B− ≤ b−(v)

out-degree of ∀v ∈ B+ ≤ b+(v)

Feasible solutions of Degree-bounded SND are Hamiltonian paths

• connectivity requirements: an undirected connected graph

• degree bounds: B = V , and b(v) = 2 for ∀v
Ü NP-hard to find a feasible solution
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Multi-criteria approximation

Approximation for undirected degree-bounded SND
• α ∈ Q
• β : N→ N

An algorithm achieves (α, β)-approximation if it outputs F ⊆ E such

that

• c(F) ≤ αOPT (edge-cost approx)

• degree of v ≤ β(b(v)) for ∀v ∈ B (degree bounds approx)

for each instance that has a feasible solution.
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Key idea: iterative rounding

Iterative rounding is a powerful tool

• Jain ’01: 2-approx algorithm for edge-connectivity SND

• Fleischer, Jain, Williamson ’01: Extended [Jain ’01] to

element-connectivity SND and node-connectivity SND w/ k ≤ 2

(k := maxu,v r(u, v))

• Breakthrough around ’07: Applied to degree-bounded spanning tree

and degree-bounded SND w/ edge-connectivity req.

But, iterative rounding did NOT work well for

• element-connectivity SND w/ degree-bounds on arbitrary nodes

• node-connectivity SND even w/o degree-bounds if k ≥ 3
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Situation
no degree-bounds degree-bounds

on terminals
degree-bounds

on arbitrary nodes

edge

element

uniform node

out node

?O.K.

• uniform node-conn. req.: undirected graph, r(u, v) = k , ∀u, v ∈ V

• out node-conne. req.: directed graph, root s ∈ V ,

r(u, v) =

k if u = s,

0 otherwise.
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Why were they difficult?

• edge-connectivity SND Ü covering set functions by edges

U ≥ R(U) := maxu∈U,v 6∈U r(u, v)

• node-connectivity SND Ü covering set-pair functions by edges

U U ′ ≥ R(U,U ′) := maxu∈U,v∈U′ r(u, v)

There was no good analysis of iterative rounding for covering set-pair
functions except a few restricted cases.
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What did we do?

• We gave two definitions of laminarity for set-pairs

◦ Laminarity of set-pairs

◦ Strongly laminarity of set-pairs

• We characterized structure on tight set-pair families of

element-connectivity and node-connectivity SND

◦ Iterative rounding was known to work

Ü strongly laminar family (undirected graphs)

or laminar family, one direction (directed graphs)

◦ Iterative rounding was NOT known to work

Ü laminar family (undirected graphs)

or laminar family, both directions (directed graphs)
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What did we do?

• We gave a new analysis for

◦ laminar families (both in undirected and in directed graphs)

◦ strongly laminar families w/ degree-bounds

◦ no edge-cost case

Our ideas

1 New token counting method for laminar family of set-pairs

2 Using two different counting methods according to # of tight

set-pairs v.s. # of tight degree nodes
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Set-pair

• set-pair (= biset): ordered pair Ũ = (U,U ′) of disjoint node sets

• U := tail, U ′ := head

• δ(Ũ) := {uv ∈ E : u ∈ U, v ∈ U ′}

• Γ(Ũ) := V \ (U ∪ U ′) (boundary)

U U ′

δ(Ũ)
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LP relaxation

• R(Ũ) := maxu∈U,v∈U′ r(u, v)− |Γ(Ũ)|

• R(Ũ) > 0⇒ |Γ(Ũ)| < k

• F : a family of set-pairs defined depending on the connectivity

Set-pair relaxation for undirected graphs

min cT x

s.t. x(δ(Ũ)) ≥ R(Ũ) ∀Ũ ∈ F

x(δ(v)) ≤ b(v) ∀v ∈ B

0 ≤ x(e) ≤ 1 ∀e ∈ E
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Laminarity of set-pairs

Laminar family of set-pairs

L is a laminar family of set-pairs if

• {U : (U,U ′) ∈ L} is a laminar set family,

• ∀(U,U ′), (W ,W ′) ∈ L : U ⊆ W ⇒ W ′ ⊆ U ′.

Strongly laminar family of set-pairs

L is a strongly laminar family of set-pairs if

• L is a laminar family of set-pairs,

• ∀Ũ = (U,U ′), W̃ = (W ,W ′) ∈ L :

U ∩W = ∅ ⇒ U ∩ Γ(W̃ ) = ∅, Γ(Ũ) ∩W = ∅.

Laminar
NOT strongly laminar
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Results via structure of tight constraints

no degree-bounds
degree-bounds

on terminals
degree-bounds

on arbitrary nodes

element

uniform node

out node

strongly laminar laminar

laminar, if n > 3k − 3

laminar,
only entering arcs laminar

1. Laminar, undirected Ü (O(k),O(k)·b(v))-approx

2. Laminar, directed Ü (2, k , 2b+(v) + O(k))-approx

3. Strongly laminar w/ degree-bounds, undirected Ü

(4, 4b(v) + O(k))-approx
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Approximation factors: SND w/o degree bounds

node-connectivity

k ≤ 2 2-approx [Fleischer et al. 06] iterative rounding

general O(k3 log n)-approx [Chuzhoy, Khanna 09] decomposition

rooted O(k log k)-approx [Nutov 09] decomposition

subset O(k2)-approx [Nutov 09] decomposition

uniform O(log2 k)-approx [Fakcharoenphol, Laekhanukit 08]
[Nutov 09] decomposition

O(
√

n/ε)-approx [Cheriyan et al. 06] iterative rounding

Ω(
√

k)-fractionality [Aazami et al. 10] iterative rounding

uniform O(k)-approx This talk iterative rounding
(n>3k−3)
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Approximation factors: Edge- and

element-connectivity SND w/ degree-bounds
edge-connectivity

edge-cost degree

spanning tree 1 b(v) + 1 [Singh, Lau 07]

general 2 b(v) + O(k) [Lau et al. 07]

element-connectivity

edge-cost deg terminals deg non-terminals

2 b(v) + O(k) +∞ [Lau et al. 07]

O(log k) O(log k · b(v) + k) O(2k ) · b(v) [Nutov 12]

4 4b(v) + O(k) 4b(v) + O(k) This talk
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Approximation factors: Node-connectivity SND w/

degree-bounds
node-connectivity, undirected graphs

edge-cost degree

general O(k3 log k log |T |) O(2k k3 log |T |) · b(v) [Nutov 12]

O(k3 log |T |) O(k3 log |T |) · b(v) This talk

rooted O(k2 log k log |T |) O(2k k2 log |T |) · b(v) [Nutov 12]

O(k log k) O(k log k) · b(v) This talk

subset O(k2 log k log |T |) O(2k k2 log |T |) · b(v) [Nutov 12]

|T | = O(k) O(k2) O(k2) trivial

|T | = ω(k) O(k log k) O(k log k) · b(v) This talk

Note: (+∞, 2log1−ε nb(v))-approx hardness is known for subset
node-connectivity SND when k is large [Lau et al. 09]

17/29



Approximation factors: Degree-bounded SND for

digraphs
node-connectivity, digraphs

edge-cost in-degree out-degree

out-conn O(log k) +∞ O(2k ) · b+(v) [Nutov 12]

2 k 2b+(v) + O(k) This talk

uniform O(k) +∞ O(2k ) · b+(v) [Nutov 12]

O(k) O(k
√

k) 2b+(v) + O(k
√

k) This talk

implications for undirected graphs

edge-cost degree

out-conn O(log k) O(2k ) · b(v) [Nutov 12]

4 2b(v) + O(k) This talk

uniform O(k) O(2k ) · b(v) [Nutov 12]

O(k) 2b(v) + O(k
√

k) This talk
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Result 1

no degree-bounds
degree-bounds

on terminals
degree-bounds on
arbitrary terminals

element

uniform node

out node

strongly laminar laminar

laminar, if n > 3k − 3

laminar,
only entering arcs laminar

1

1. Laminar, undirected Ü (O(k),O(k) · b(v))-approx
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Laminar family of set-pairs defines a forest

(U,U ′) is the parent of (W ,W ′) if W ⊂ U or if W = U and U ′ ⊂ W ′.
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Token distribution
We prove

Theorem

If x∗ is uniquely defined from the laminar family of tight set-pairs, one of

the following holds:

• ∃e ∈ E : x∗(e) = 0

• ∃e ∈ E : x∗(e) ≥ 1/(4k − 1)

• ∃v ∈ B : |δ(v)| ≤ 4k − 1

Assume 0 < x∗(e) < 1/(4k − 1) for ∀e ∈ E , and |δ(v)| ≥ 4k for
∀v ∈ B.

1. We make each edge distributes at most 2 tokens to set-pairs.

2. We show each set-pair receives ≥ 2 tokens, and the root receives

≥ 4 tokens.
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Initial distribution

Token distribution rule
For each e = uv and its end-node v , e gives a token to

1. minimal (U,U ′) s.t. e ∈ δ(U,U ′) and v ∈ U if it exists,

2. minimal (U,U ′) s.t. e 6∈ δ(U,U ′) and u ∈ U otherwise.

U

U ′

v

e

U

U ′

v
e

22/29



Inductive distribution

Each leaf has 4k tokens

4 4

44

4

4k -4 4k -4

4k -44k -4

4k -4

4

2 2

a set-pair has ≥ 2 children

Ü it collects 4 tokens from them.

2

2

Even if it has only one child, O.K.

when it has own 2 tokens.

42

2

2

22 4

2

2

2 2

2

4

2
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How many red tokens?

Theorem

# of red tokens in the forest < 4(k − 1)× (# of leaves)

< k red set-pairs

blue set remains in the

boundary of the last set-

pair on the path

#red set-pairs on the

path ≤ k − 1

#red set-pairs in the

forest <2(k−1)×#leaves

24/29



How many red tokens?

Theorem

# of red tokens in the forest < 4(k − 1)× (# of leaves)

< k red set-pairs

blue set remains in the

boundary of the last set-

pair on the path

#red set-pairs on the

path ≤ k − 1

#red set-pairs in the

forest <2(k−1)×#leaves

24/29



How many red tokens?

Theorem

# of red tokens in the forest < 4(k − 1)× (# of leaves)

< k red set-pairs

blue set remains in the

boundary of the last set-

pair on the path

#red set-pairs on the

path ≤ k − 1

#red set-pairs in the

forest <2(k−1)×#leaves

24/29



How many red tokens?

Theorem

# of red tokens in the forest < 4(k − 1)× (# of leaves)

< k red set-pairs

blue set remains in the

boundary of the last set-

pair on the path

#red set-pairs on the

path ≤ k − 1

#red set-pairs in the

forest <2(k−1)×#leaves

24/29



How many red tokens?

Theorem

# of red tokens in the forest < 4(k − 1)× (# of leaves)

< k red set-pairs

blue set remains in the

boundary of the last set-

pair on the path

#red set-pairs on the

path ≤ k − 1

#red set-pairs in the

forest <2(k−1)×#leaves

24/29



Result 3

no degree-bounds
degree-bounds

on terminals
degree-bounds on
arbitrary terminals

element

uniform node

out node

strongly laminar laminar

laminar, if n > 3k − 3

laminar,
only entering arcs laminar

3

3. Strongly laminar w/ degree-bounds, undirected Ü
(4, 4b(v) + O(k))-approx
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Strongly laminar family of set-pairs with

degree-bounds

Theorem

If x∗ is defined from a strongly laminar family of tight set-pairs and tight

degree-bounds, then one of the following holds:

• ∃e ∈ E : x∗(e) = 0

• ∃e ∈ E : x∗(e) ≥ 1/4

• ∃v ∈ B : |δ(v)| < 2.5k + 6.25
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Idea 2: Using two different counting methods

L := strongly laminar family of set-pairs
C := set of tight degree-bounded nodes

Case (i): C is small (i.e. 2|C| ≤ # leaves)

A leaf gives tokens to nodes in C, and follow the 2-approx proof without C

Case (ii): C is large (i.e. 2|C| > # leaves in L)

Nodes in C give tokens to leaves, and follow the proof for the laminar
set-pair family in undirected graphs
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Token distribution

CL

5 5

5 5

O(k)

O(k)

O(k)

O(k)
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Token distribution

CL

4 4

4 4

2

2

2

2

When 2|C| ≤ # leaves of L
• each leaf gives 2 tokens to a node in C

• nodes in C release their tokens
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Token distribution
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Conclusion
• Laminar, undirected Ü (O(k),O(k) · b(v))-approx

• Laminar, directed Ü (2, k , 2b+(v) + O(k))-approx

• Strongly laminar w/ degree-bounds, undirected Ü

(4, 4b(v) + O(k))-approx

• Laminar, undirected Ü (+∞, 6b(v) + O(k2))-approx

• Strongly laminar w/ degree-bounds, undirected Ü

(+∞, 2b(v) + O(k2))-approx

Future works

• Narrow the gap between O(k) and Ω(
√

k) for uniform

node-connectivity req. by iterative rounding

• Iterative rounding for other cases of node-connectivity
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